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We revisit Weyl invariance string theories in generalized supergravity backgrounds. A possible counter-
termwas constructed in awork by Sakamoto, Sakatani, andYoshida, but it seems to be a point of controversy
in some literatures whether or not it is nonlocal. To settle down this issue, we show that the counterterm may
be local and exactly cancels out the one-loop trace anomaly in generalized supergravity backgrounds.
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Introduction.—A great progress in the recent study of
string theory is that the generalized supergravity equations
of motion (GSE) [1–3] (historically, GSE were discovered
in the study of Yang-Baxter deformations of the AdS5 × S5

superstring [4,5], though the bosonic part has already
appeared in much older literature [6]) have been derived
from the κ-symmetry constraints in the Green-Schwarz
(GS) formulation of superstring theories [3]. It is well
known that the usual supergravity equations of motion are
solutions to the κ-symmetry constraints [7,8], but the
discovery of this new supergravity indicates that there
might exist more generalized supergravities.
In this Letter, we are concerned with string theory

defined on generalized supergravity backgrounds (i.e.,
solutions to GSE). As a remarkable characteristic of
GSE, a nondynamical vector field I is contained. In order
to solve the κ-symmetry constraints, it should be a Killing
vector, and this Killing condition plays a crucial role in our
later discussion. It is instructive to note that this Killing
condition was not taken into account in the old literature
[6,9], where a prototype of GSE was derived from the one-
loop finiteness (or the scale invariance) of string theory. In
addition, this extra vector field may be identified with the
trace of nongeometric Q flux, and many solutions of GSE
can be regarded as T folds [10].
There is an issue with the consistency of string theories

in generalized supergravity backgrounds. As a matter of
course, at a classical level, there is no problem. Thanks to
other work [3], the κ symmetry is ensured in generalized
supergravity backgrounds and the GS formulation is
consistently available. The issue arises at a quantum level.

Indeed, the Weyl anomaly may appear in string theories on
generalized supergravity backgrounds [2,6]. In a recent
work [1], Weyl invariance of bosonic string theories on
generalized supergravity backgrounds was shown by con-
structing a possible counterterm {this counterterm was
inspired from the embedding of GSE into double field
theory (DFT) [1]. For the detail of the notation, see
Ref. [1]} as

SFT ¼ 1

4π

Z
d2σ

ffiffiffiffiffiffi
−γ

p
Rð2ÞΦ�; Φ� ≡Φþ IiỸi: ð1Þ

This is a generalization of the standard coupling to dilaton
Φ, the so-called Fradkin-Tseytlin (FT) term [11]: indeed
the standard FT term is reproduced when Ii ¼ 0. To be
more concrete, in generalized supergravity backgrounds,
the Weyl anomaly takes the following form

hTa
ai ¼ −Da½ðZmγ

ab − ImεabÞ∂bXm�; ð2Þ

which is canceled out introducing the counterterm [Eq. (1)].
Compared to the sigma model action, the counterterm
[Eq. (1)] is higher order in α0, and it should be regarded as a
quantum correction. Note also that the Killing vector I
entering the GSE, does not appear in the classical action of
string sigma model, but first appears as a quantum
correction at a stringy level.
A point of controversy in some literature [12–18] is

whether the counterterm [Eq. (1)] is local or not. The
integrand depends on the dual coordinate Ỹi. In computing
its contribution to the trace of the energy-momentum tensor
Ta

a, we need to use the equation of motion of the double
sigma model [19,20],

∂aỸi ¼ ginεba∂bXn þ Bin∂aXn: ð3Þ

This equation implies that Ỹi would be a nonlocal function
of Xm and one may suspect that the counterterm [Eq. (1)] is
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nonlocal as well. However, as we show in this Letter, we
can construct a possible local counterterm by taking
account of the fact that the two-dimensional Ricci scalar
Rð2Þ is locally a total derivative (we really appreciate
J. Maldacena for elucidating this point) and I is a
Killing vector. That is, the (possible) nonlocality in the
integrand of [Eq. (1)] can be removed. This is the main
claim in this Letter.
Weyl invariance of bosonic string.—Let us first recall

the basics on Weyl invariance of bosonic string theory in
D ¼ 26 dimensions,

Sb ¼ −
1

4πα0

Z
d2σ

ffiffiffiffiffiffi
−γ

p ðgmnγ
ab − Bmnε

abÞ∂aXm∂bXn:

The Weyl anomaly of this system takes the form,

2α0hTa
ai ¼ ðβgmnγab − βBmnε

abÞ∂aXm∂bXn: ð4Þ

Here, the β functions at the one-loop level have been
computed (e.g., in Ref. [6]) as

βgmn ¼ α0
�
Rmn −

1

4
HmpqHn

pq

�
;

βBmn ¼ α0
�
−
1

2
DkHkmn

�
; ð5Þ

where Dm and Rmn are the covariant derivative and the
Ricci tensor associated with the spacetime metric gmn and
Hmnp ≡ 3∂ ½mBnp�. For the Weyl invariance of the world-
sheet theory, it is not necessary to require βgmn ¼ βBmn ¼ 0.
As long as they take the form

βgmn ¼ −2α0Dm∂nΦ; βBmn ¼ −α0∂kΦHk
mn; ð6Þ

the Weyl anomaly has a simple form

hTa
ai ∼e:o:m: −Da∂aΦ; ð7Þ

under the equations of motion. Here, Da is the covariant
derivative associated with γab and ∼e:o:m: represents the
equality up to the equations of motion. This anomaly
can be canceled out by adding the FT term [11],

SFT ¼ 1

4π

Z
d2σ

ffiffiffiffiffiffi
−γ

p
Rð2ÞΦ: ð8Þ

Therefore, as long as the target space satisfies Eq. (6),
namely the supergravity equations of motion,

Rmn −
1

4
HmpqHn

pq þ 2Dm∂nΦ ¼ 0;

−
1

2
DkHkmn þ ∂kΦHk

mn ¼ 0; ð9Þ

the Weyl invariance is ensured. As shown in Ref. [21],
Eq. (9) implies that

βΦ ≡ Rþ 4Dm∂mΦ − 4j∂Φj2 − 1

12
HmnpHmnp ð10Þ

is constant, and by choosing βΦ ¼ 0, we obtain the usual
dilaton equation of motion.
The main observation of this Letter is that the require-

ment [Eq. (6)] is a sufficient condition for the Weyl
invariance but is not necessary.
Local counterterm for GSE.—Let us consider a milder

requirement,

βgmn ¼ −2α0DðmZnÞ;

βBmn ¼ −α0ðZkHkmn þ 2D½mIn�Þ; ð11Þ

where Im and Zm are certain vector fields in the target
space, which are functions of XmðσÞ. The condition
[Eq. (11)] reduces to Eq. (6) when Zm ¼ ∂mΦ and Im ¼ 0.
Suppose here that Im and Zm satisfy

£Igmn ¼ 0; IpHpmn þ 2∂ ½mZn� ¼ 0;

£IΦ ¼ 0; ZmIm ¼ 0: ð12Þ

In this case, the string sigma model has a conserved current
associated with the global symmetry Xm → Xm þ ϵIm,
where ϵ is an infinitesimal constant. Then the on-shell
conserved Noether current is given by

Ja ≡ ½Imðgmnγ
ab − Bmnε

abÞ − Ĩnεab�∂bXn; ð13Þ

where the 1-form Ĩm is defined through

Zm ¼ ∂mΦþ InBnm þ Ĩm: ð14Þ

When the β functions take the forms of Eq. (11), the
Weyl anomaly [Eq. (4)] becomes

hTa
ai ∼e:o:m: −Da½ðZmγ

ab − ImεabÞ∂bXm�: ð15Þ

Then, there is a rigid scale invariance [6], but it had been
believed that the Weyl invariance would be broken because
the counterterm [Eq. (8)] cannot cancel out the anomaly
[Eq. (15)]. However, we will construct a modified local
counterterm so as to cancel out Eq. (15).
Recall that the Lagrangian of the two-dimensional

gravity is locally a total derivative,

ffiffiffiffiffiffi
−γ

p
Rð2Þ ¼ ∂aα

a; ð16Þ

where αa is a vector density that should transform as

δξα
a ¼ £ξαa ¼ ξb∂bα

a − αb∂bξ
a þ ∂bξ

bαa; ð17Þ
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under diffeomorphisms on the worldsheet. We then intro-
duce the following counterterm (since αa is defined only
locally, the integral itself here should be defined more
carefully depending on topologies of the string worldsheet)

SðI;ZÞFT ¼ −
1

4π

Z
d2σαaðZm∂aXm − Imεab∂bXmÞ: ð18Þ

Note that this reduces to the FT term [Eq. (8)] when Im ¼ 0
and Zm ¼ ∂mΦ. Supposing that Zm and Im are independent
of γab, the contribution of the counterterm [Eq. (18)] to the
Weyl anomaly becomes

hTiFT ¼ 4πffiffiffiffiffiffi−γp γab
δSðI;ZÞFT

δγab

¼ Da½ðZmγ
ab − ImεabÞ∂bXm�

− φa
aDc½ðImγcd − Zmε

cdÞ∂dXm�: ð19Þ

Here, suggested by the identity in two dimensions,

δð ffiffiffiffiffiffi
−γ

p
Rð2ÞÞ ¼ ∂c½

ffiffiffiffiffiffi
−γ

p ðγcaDbδγab − γabDcδγabÞ�; ð20Þ

we have used the variation

δαc ¼ ffiffiffiffiffiffi
−γ

p ðγcaDbδγab − γabDcδγabÞ
þ ϵcd∂dðφabδγabÞ; ð21Þ

where φab is a symmetric tensor made of the fundamental
fields and their derivatives. In fact, the divergence in the last
term of Eq. (19) vanishes by using the on-shell conserva-
tion law of a Noether current

Dc½ðImγcd − Zmε
cdÞ∂dXm� ¼ DcJc ∼e:o:m:

0; ð22Þ

and we obtain

hTiFT ∼e:o:m:Da½ðZmγ
ab − ImεabÞ∂bXm�: ð23Þ

Thus, this can exactly cancel out the anomaly [Eq. (15)].
Actually, the requirement [Eq. (11)] was proposed as the

condition for the one-loop finiteness of string sigma model
[6]. Now, we found that the Weyl symmetry can also be
preserved upon introducing the above counterterm; hence
one may anticipate that string theory should be consistently
defined with the relaxed condition [Eq. (11)]. In the
following, we will explain the condition [Eq. (11)] in
terms of supergravity.
Generalized supergravity e.o.m.—From Eqs. (5) and

(11), the condition for theWeyl invariance can be expressed
as modified supergravity equations of motion,

Rmn −
1

4
HmpqHn

pq þ 2DðmZnÞ ¼ 0;

−
1

2
DkHkmn þ ZkHkmn þ 2D½mIn� ¼ 0: ð24Þ

In fact, these are GSE for gmn and Bmn originally proposed
in Ref. [2] and later derived in Ref. [3] from the require-
ment for the κ invariance of the GS type IIB superstring
theory on an arbitrary background. There, the conditions
[Eq. (12) ]are also required for the κ invariance, and then
equations of motion [Eq. (24)] lead to the following
generalized dilaton equation of motion:

R −
1

12
jHj2 þ 4DmZm − 4ðjIj2 þ jZj2Þ ¼ 0: ð25Þ

Equations of motion in Eqs. (24) and (25) define the NS-NS
sector of the generalized supergravity. See Refs. [1–3] for
the modified equations of motion for the Ramond-Ramond
fields. In particular, when Zm ¼ ∂mΦ and Im ¼ 0, these
reduce to the conventional supergravity equations of
motion.
In general, from the condition [Eq. (12)], we can choose

a particular gauge where the 1-form Ĩm in Eq. (14) vanishes
[1,2]. Therefore, in the generalized supergravity, the
generalization is characterized only by the vector field
Im. Note also that due to the presence of a Killing vector,
any solution to GSE may be regarded as a nine-dimensional
background via compactification on a circle.
In earlier works, many solutions to GSE have been

obtained from the q deformation [22], homogeneous Yang-
Baxter deformations [10,23–25], and non-Abelian T dual-
ity [10,15,26] (see also Ref. [13]), while it was not clarified
whether these solutions are consistent string backgrounds
at a quantum level or not. However, the cancellation of the
Weyl anomaly that we have explicitly shown here would be
an important step towards clarifying the quantum consis-
tency (the solution obtained from the q deformation
includes an imaginary Ramond-Ramond field, and would
not be a consistent string background).
As presented in Refs. [1,27], we can regard solutions to

GSE as solutions in DFT [28–31], which is a manifestly
T-duality covariant formulation of supergravity. For the
solutions of DFT, by using adapted coordinates where the
Killing vector Im is constant, we find that the dilaton has a
linear dependence on the dual coordinate x̃m [1]. Moreover,
if we perform a formal T duality (a formal T duality means
the factorized T duality along a nonisometry direction xz,
which maps the coordinate xz into the dual coordinate x̃z.
Such a transformation is a symmetry of the equations of
motion of DFT) along the Im direction, an arbitrary solution
to GSE is mapped to a solution of the conventional
supergravity that has a linear coordinate dependence in
the dilaton [1,2,32].
Constructions of local αa.—So far, we have not pre-

sented an explicit form of the vector density αa. Let us
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explain here two ways to construct αa. Naïvely, from the
defining relation,

ffiffiffiffiffiffi
−γ

p
Rð2Þ ¼ ∂aα

a; ð26Þ

one might expect that αa can be expressed consistently in
terms of the metric γab. However, it is not the case as it is
clearly explained in Refs. [33,34]. To construct αa in terms
of the metric γab, the general covariance on the worldsheet
should be broken. On the other hand, similarly to the
approach of Ref. [33], if we introduce a zweibein eāa on the
worldsheet (ā and b̄ are the flat indices), we find that

αa ¼ −2
ffiffiffiffiffiffi
−γ

p
eāaωb̄

b̄ ā ð27Þ

satisfies Eq. (26), where ωā
b̄ c̄ is the spin connection. In this

case, despite αa being manifestly covariant under diffeo-
morphisms, it is not covariant under the local Lorentz
symmetry. In the following, we will introduce two possible
manners to construct covariant expressions of αa.
A construction with Noether current: The first approach

is based on the approach explained in Sec. II. B of
Ref. [34]. In two dimensions, if there exists a normalized
vector field na (γabnanb ¼ �1≡ σ), we can show

ffiffiffiffiffiffi
−γ

p
Rð2Þ ¼ 2σ∂a½

ffiffiffiffiffiffi
−γ

p ðnbDbna − naDbnbÞ�: ð28Þ

In string theories on generalized supergravity backgrounds,
there exists a natural vector field on the worldsheet, which
is the Noether current Ja in Eq. (13). Supposing Ja is not a
null vector on the worldsheet, the vector field na can be
defined as na ≡ ðJa=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σγcdJcJd

p
Þ. Then αa is defined as

αa ≡ 2σ
ffiffiffiffiffiffi
−γ

p ðnbDbna − naDbnbÞ; ð29Þ

which is manifestly covariant and a local function of the
fundamental fields. Moreover, by taking a variation of this
αa in terms of γab, where the Noether current transforms as

δð ffiffiffiffiffiffi
−γ

p
JaÞ ¼ δð ffiffiffiffiffiffi

−γ
p

γabÞ∂bXmIm; ð30Þ

after a tedious computation, we find the desired variation
formula [Eq. (21)] with φab given by

φab ¼ σ

 
ncεcðanbÞ þ

2εðaðcδ
bÞ
dÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σγghJgJh
q DcXmImnd

!
: ð31Þ

Therefore, this fully determines the variation of αa, for
which the Weyl anomaly is canceled out in generalized
supergravity backgrounds.
A construction from a gauged sigma model: As the

second approach, we shall introduce some auxiliary
fields to construct αa. For simplicity, we take a gauge
Ĩm ¼ 0 here.

Let us consider the action of a gauged sigma model

S0 ¼ −
1

4πα0

Z
d2σ

ffiffiffiffiffiffi
−γ

p ½ðgmnγ
ab − Bmnε

abÞDaXmDbXn

− Z̃εabFab�; ð32Þ

where DaXm ≡ ∂aXm − ImAa, Fab ≡ ∂aAb − ∂bAa, and
I ≡ Im∂m satisfies the Killing equations. This model has
a local symmetry,

Xm → Xm þ Imv; Aa → Aa þ ∂av: ð33Þ

This action can reproduce the bosonic string action Sb after
integrating out the auxiliary field Z̃. In order to cancel out
the one-loop Weyl anomaly, we have to add the following
local term to S0:

Sc ≡ 1

4π

Z
d2σ

ffiffiffiffiffiffi
−γ

p
Rð2ÞðΦþ Z̃Þ; ð34Þ

which is a higher order in α0. The contribution to the trace
of the energy-momentum tensor coming from Sc is

hTic ¼
4πffiffiffiffiffiffi−γp γab

δSc
δγab

∼e:o:m:Dað∂aΦþ ∂aZ̃Þ: ð35Þ

The equations of motion for Aa and Z̃ give

∂aZ̃ ¼ εbaJb − jIj2εbaAb; εabFab ¼ −α0Rð2Þ; ð36Þ

where Ja is the Noether current defined in Eq. (13). Since
the field strength Fab vanishes to the leading order in α0, by
using the local symmetry [Eq. (33)], we can find a gauge
where the order Oðα00Þ term vanishes

Aa ¼ 0þ α0Aa; εabð∂aAb − ∂bAaÞ ¼ −Rð2Þ: ð37Þ

Here, Aa is a quantity of order Oðα00Þ. Then the trace
[Eq. (35)] is evaluated as

hTic ∼e:o:m:Dað∂aΦþ εbaJbÞ þOðα0Þ
¼ Da½ðZmγ

ab − ImεabÞ∂bXm� þOðα0Þ: ð38Þ

This completely cancels out the one-loop Weyl anomaly
[Eq. (15)], which comes from S0.
After eliminating Z̃, the action S0 þ Sc becomes

S0 þ Sc ¼ Sb þ
1

4π

Z
d2σ

ffiffiffiffiffiffi
−γ

p ½Rð2ÞΦþ ϵabð−2ϵacAcÞJb

− α0jIj2γabAaAb�: ð39Þ

As it is clear from Eq. (37), the gauge field Aa may be
regarded as the desired αa via αa ¼ −2ϵabAb. Then, by
neglecting the higher order term in α0, the resulting
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expression is precisely the same as the standard sigma

model action including our local counterterm SðI;ZÞFT (18).
Note that the second term in the action [Eq. (39)] is the

same as Eq. (5.13) of Ref. [16]. There, it was obtained by
rewriting the nonlocal piece of the effective action Snonlocal
of Ref. [12] through the identifications of Im and Zm with
some quantities in the Yang-Baxter sigma model. In
Ref. [12], the nonlocal action Snonlocal appeared in the
process of non-Abelian T duality, and it played an
important role to show the tracelessness of Tab.
However, according to the nonlocal nature of the effective
action, by truncating the nonlinear term by hand, it was
concluded in Ref. [12] that the string model (called the B’
model) is scale invariant but not Weyl invariant. On the
other hand, the action [Eq. (39)] or our local counterterm
[Eq. (18)] with αa defined as Eq. (29) is local and free from
the Weyl anomaly.
Conclusion and Discussion.—We have constructed a

local counterterm [Eq. (18)] that cancels out the Weyl
anomaly of bosonic string theory defined in generalized
supergravity backgrounds, without introducing a mani-
festly T-duality-covariant formulation of string theory.
This result supports the Weyl invariance of string theory
in generalized supergravity backgrounds. In order to claim
the quantum consistency of string theory in generalized
supergravity backgrounds, it may be necessary to study
some aspects of the associated CFT picture in more detail
(e.g., higher genus cases), but the first nontrivial test has
been passed. Here, we have considered the bosonic string
theory, but the same counterterm should work in the RNS
superstring theory as well.
Our result indicates new possibilities of string theory in

more general backgrounds. In fact, if we appropriately
choose the parameters of the nine-dimensional gauged
supergravity [35,36] and perform a formal T duality along
the ten-dimensional direction, we can obtain the GSE [37].
In DFTor its extension, the exceptional field theory, we can
construct various deformed supergravities that are similar
to GSE by performing the formal T dualities and S dualities
[38]. It is important to study the consistency of string
theories defined on solutions of these deformed super-
gravities. A reasonable conjecture is that as long as the
target space satisfies the equations of motion of the
exceptional field theory, the string theory could be defined
consistently. We hope to come back on this interesting topic
in our future researches.
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