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We find four-dimensional de Sitter compactifications of type IIA supergravity by directly solving the
10-dimensional equations of motion. In the simplest examples, the internal space has the topology of
a circle times an Einstein manifold of negative curvature. An orientifold acts on the circle with two fixed
loci, at which an O8− and an O8þ plane sit. These orientifold planes are fully backreacted and localized.
While the solutions are numerical, the charge and tension of the orientifold planes can be verified
analytically. Our solutions have moduli at tree level and can be made parametrically weakly coupled and
weakly curved. Their fate in string theory depends on quantum corrections.
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Modeling dark energy is a basic challenge for funda-
mental physics. For theories of gravity based on extra
dimensions it is notoriously difficult to obtain positive
cosmological constant (or “de Sitter”) compactifications
[1]. In particular, in the supergravity theories that describe
string theory at low energies, de Sitter solutions are
impossible if one only makes use of the two-derivative
classical action and ingredients obeying standard energy
conditions [2,3].
To evade these constraints it is typical to invoke either

quantum corrections to the effective action, or to use
classical objects, notably orientifold planes (O planes),
that have negative tension. Over the years, several classes
of de Sitter models have been proposed using these ideas
(see, for example, Refs. [4–7]).
Most of the de Sitter solutions to date make use of a four-

dimensional effective theory to describe the physics of the
vacuum. When used consistently, such effective theories
can be a helpful tool. However, the nonlinear nature of
gravity makes it difficult to rigorously justify these four-
dimensional approximations. Moreover, typical construc-
tions involve many ingredients, and inevitably some doubts
have lingered even over seemingly robust constructions
[8–10], with some voices even raising skepticism on the
very existence of de Sitter vacua in string theory [11–14].
The most conservative and robust approach to address

these concerns is to look for simple classical de Sitter
solutions of the full 10-dimensional supergravity equations.

This classical regime is justified provided that we can find
solutions that exist at small string coupling and curvature
so that all quantum corrections can be ignored. Localized
negative energy is then provided by orientifold planes. (In
string theory orientifold planes come in two main varieties
Oþ and O−. They have respectively positive and negative
tension, and opposite Ramond-Ramond charge. The world-
volume theory of D-branes coincident with an O− has an
SO gauge group, while D-branes coincident with Oþ give
Sp gauge groups. Our solutions below will involve both
types of O8 planes. Another configuration involving both
types of O8 planes is the one considered in Refs. [15–17],
dual to M theory on a Klein bottle).
The supergravity backreaction one should expect for O

planes is known from flat-space solutions, but until recently
few nontrivial compactifications including them were
known. As a fallback strategy, some progress was obtained
[18,19] by pretending that the O planes could be “smeared,”
namely, distributed smoothly over the internal manifold.
The solutions obtained this way are encouraging, but are
not physical, since O planes have to be located at fixed
points of involutions and are nondynamical. (Recent
attempts with more exotic strategies include Refs. [20–23]).
More recently, however, compactifications with internal

localized O planes have started to appear, for example
Refs. [24–26]. Their backreaction gives rise to strong
curvature and string coupling near the O plane, and hence
to a localized breakdown of supergravity. At first sight this
may look discouraging. However, the orientifold is an exact
(supersymmetric) solution of string theory whose local
behavior is correctly reproduced in these constructions.
Moreover, since these examples have a negative cosmo-
logical constant, they can be tested using holography
[26,27], and this gives further confidence that the O-plane
backreaction is in fact under control.
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Encouraged by these results, we now present a new class
of de Sitter compactifications to four dimensions from
massive type IIA supergravity, using O8 planes (O planes
with eight space dimensions) which are backreacted and
correctly localized. (A similar construction in an effective
5d theory appeared in Ref. [28]. See also Ref. [29] for some
constraints on de Sitter solutions with O8s.)
Our simplest class of solutions are warped products

dS4 ×M6, with metric (Throughout we work in string
units.)

ds210 ¼ e2Wds2dS4 þ e−2Wðdz2 þ e2λds2M5
Þ: ð1Þ

In the above, ds2dS4 is a metric on de Sitter space with
cosmological constant Λ. Meanwhile, the geometry of the
internal space is such that z is periodically identified and
M5 is an Einstein manifold with constant Ricci scalar 5κ.
The overall scale of κ is unphysical; it can be absorbed
by shifting λ. However, we will presently see that κ < 0
follows from the equations of motion. We take the
functions W, λ, as well as the dilaton ϕ to be functions
of the coordinate z alone. Finally, the only flux present is
the Romans mass F0.
Our analysis parallels Ref. [30], where a similar ansatz

was used to find AdS8 solutions. After some manipulation,
the equations of motion away from sources read

0 ¼ 25κe−4ϕ=5

α2=5
þ 4α0ϕ0

α
−
4ðα0Þ2
α2

−
5

2
F2
0e

2ϕ−2W

− 20W0ϕ0 þ 40ðW0Þ2 þ 20Λe−4W þ 4ðϕ0Þ2; ð2aÞ

0 ¼ F2
0e

2ðWþϕÞ þ 4Λ − 4e4WW00 −
4e4Wα0W0

α
; ð2bÞ

0 ¼ αΛþ α3=5κe4W−ð4ϕ=5Þ −
1

5
e4Wα00; ð2cÞ

where primes indicate derivatives with respect to z and we
have introduced the function

α≡ e5λ−2ϕ: ð3Þ

As mentioned above, the sources in our solutions are O8
planes. (We also comment on the possibility of including
D8-branes). We take them to be extended along all
directions except z. At the locus z ¼ z0 of one of these
sources the functions describing the ansatz are continuous,
but have discontinuities in their first derivatives that are
fixed by the equations of motion:

eW−ϕΔW0 ¼ 1

5
eW−ϕΔϕ0 ¼ −

1

4
ΔF0; Δα0 ¼ 0; ð4aÞ

F0jz→ðz0Þ− ¼ −eW−ϕ
�
ϕ0 −W0 þ α0

α

�
: ð4bÞ

We also have that −2πΔF0 is the charge of the source: this
equals 1 for a D8. For the two types of O8 planes, called
O8�, the charge is �8.
In our de Sitter solutions, the coordinate z is periodically

identified according to z ∼ zþ 2z0, and there is an orienti-
fold action z → −z. At the fixed locus z ¼ 0 there is an
O8þ, while at z ¼ z0 there is an O8− (see Fig. 1).
Correspondingly we have F0 ¼ −ð4=2πÞ for z ∈ ð0; z0Þ,
while in the mirror region, z ∈ ð−z0; 0Þ, F0 ¼ 4=2π. All the
metric coefficients are even under z → −z.
We can see a constraint on the parameters of our ansatz

by evaluating Eq. (4) for small positive z tending towards
zero. Approaching from this direction we find W0ð0Þ ¼
1
5
ϕ0ð0Þ ¼ ð1=2πÞeϕ−Wð0Þ, α0ð0Þ ¼ 0. Imposing this on the

first order equation [Eq. (2a)] we then find that

Λ ¼ −
5

4
κe4W−2λ; ð5Þ

where the functions are evaluated on the O8þ. (A similar
formula appeared in Ref. [31].) As promised, for Λ > 0 we
see that the scalar curvature κ must be negative. In the
equations below we set κ ¼ − 4

5
Λ for convenience.

In the vicinity of the O8þ (or other finite coupling
sources) one can readily solve the equations of motion,
Eq. (2), perturbatively. At the first few orders we obtain

e−4W ¼ c1 þ
F0ffiffiffiffiffi
c2

p z − 2c21Λz2 þOðz3Þ; ð6aÞ

e−
4
5
ϕ ¼ c1c

2=5
2 þ F0ffiffiffiffiffi

c210
p z −

c1F0Λ
6

ffiffiffiffiffi
c210

p z3 þOðz4Þ; ð6bÞ

α ¼ c2 þ
c1c2Λ
2

z2 þ
ffiffiffiffiffi
c2

p
F0Λ
6

z3 þOðz4Þ: ð6cÞ

Here, c1, c2 are constants parametrizing the solution, and
F0 is as specified in Fig. 1.
As a consistency check, one can compare the above to an

orientifold in flat space. This takes the familiar form

ds210 ∼H−1=2ð−dx20 þ dx21 þ � � � dx28Þ þH1=2dz2; ð7Þ

FIG. 1. A pictorial representation of the coordinate z together
with the Z2 orientifold action resulting in two O8 planes.
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and eϕ ∼ gsH−5=4, where H is a harmonic (i.e., linear)
function of z. Using Eq. (5) we identify H ∼ e−4W and for
Λ → 0 in Eq. (6) the perturbative expansion truncates
leading to the expected behavior.
The local solution Eq. (6) is valid for z > 0, and the

functions for z < 0 are defined to be even under z → −z.
The first derivatives then are discontinuous as required in
Eq. (4). Thus the solution has a singularity at z ¼ 0, as
expected from the presence of an O8þ. This singularity,
however, is milder than the ones displayed by orientifolds
of lower dimensionality, where fields usually diverge.
One can now evaluate the solution Eq. (6) at a small z

and start a numerical evolution. For a certain open set in
the space of the constants ci, the solution ends with a
singularity which we recognize numerically to be locally
identical to the O8− with diverging dilaton. This again
takes the form Eq. (7), but now H ¼ ðgs=4πÞjzj. Moreover,
one can check that on a numerical solution with this
behavior, the Eqs. (4) are automatically satisfied, except
for α0ðz0Þ ¼ 0, which can be arranged with a one-parameter
fine-tuning of the initial conditions. Figure 2 illustrates a
typical numerical solution.
Near the O8− one can also perform a perturbative

analysis like that resulting in Eq. (6). This is done by
imposing that the leading power behavior for the dilaton
and metric coefficients is the one inferred from Eq. (7).
On the resulting local solution (which matches with our
numerical one near the O8−) all the conditions in Eq. (4) are
automatically satisfied, with the correct tension.
An important caveat to our solutions (and other super-

gravity backgrounds with orientifolds) is that at the
orientifolds the curvature becomes large and the super-
gravity approximation is locally not valid. This is especially
so in our examples where the string coupling is also large
near the O8−. This makes the derivation of the boundary
conditions Eq. (4) sensitive to string corrections, and even
formally their extrapolation to infinite coupling at the O8−
is ambiguous due to this divergence (see Ref. [30] for a
similar discussion). Nevertheless, the fact that the system is
attracted to solutions with this behavior, which is the same
for an O8− in flat space, makes us think that Eqs. (4) are

still physically relevant, and that they are a good way to
ensure the correct tension for the orientifolds.
The simple class of de Sitter solutions presented above

can be enlarged by including additional fluxes. For in-
stance, we can generalize our metric ansatz to

ds210 ¼ e2Wds2dS4 þ e−2Wðdz2 þ e2λ2ds2M2
þ e2λ3ds2M3

Þ: ð8Þ

Compared to our previous example, we have split the five-
manifold M5 into M2 andM3 which are two Einstein spaces
with Ricci scalars 2κ2 and 3κ3; below we see that at least
one of them must be negative. Again we take W, λi, ϕ to
only depend on z, and in addition to F0 we allow

F4 ¼ f4e−6Wþ3λ3−2λ2dz ∧ volM3
: ð9Þ

Here f4 is a constant, and the z dependence has been
chosen such that the equation of motion d⋆F4 ¼ 0 is
automatically satisfied.
In this more general setup, the equations of motion away

from sources read

0 ¼ −F2
0e

2ϕ−2W þ 6κ3e−2λ3 − 12λ03ϕ
0 þ 15ðλ03Þ2

þ 2
α0

α
ð−3λ03 þ 2ϕ0Þ þ 4κ2e3λ3−2ϕ

α
−
�
α0

α

�
2

þ 4ðϕ0Þ2

− 8W0ϕ0 þ 16ðW0Þ2 þ 8Λe−4W þ f24
e6λ3−6W−2ϕ

α2
;

ð10aÞ

0 ¼ Λ − e4W
�
W00 þ α0W0

α

�
þ f24e

6λ3−2ðWþϕÞ

4α2
þ F2

0

4
e2ðWþϕÞ;

ð10bÞ

0 ¼ −
α00

α
þ 2κ2

e3λ3−2ϕ

α
þ 5Λe−4W þ f24e

6λ3−6W−2ϕ

2α2

þ 3κ3e−2λ3 ; ð10cÞ

0 ¼ −
α00

α
þ 2κ2

e3λ3−2ϕ

α
− 2Λe−4W þ α0

α
ð3λ3 þ 4W − 2ϕÞ0

þ ð3λ3 þ 4W − 2ϕÞ00; ð10dÞ

where now α≡ e2λ2þ3λ3−2ϕ, and at the sources we must also
provide the discontinuity equation 1

2
Δλ03 ¼ ΔW0.

Solutions can now be constructed as above. We begin
with a finite coupling O8þ at z ¼ 0 and evolve to an infinite
coupling O8− at z ¼ z0. Note that F4 in Eq. (9) is odd under
the orientifold as expected. In this case, the analog of the
constraint Eq. (5) is

Λ ¼ −
1

2
κ2e−2λ2þ4W −

3

4
κ3e−2λ3þ4W −

f24
8
e−4λ2−2Wþ2ϕ;

ð11Þ

0 5 10 15
z
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20

30

FIG. 2. A numerical solution with Λ ¼ 1. The functions are eϕ

(solid line), eW (dashed line), α (dotted line, rescaled). At the right
endpoint, it behaves as an O8− with diverging dilaton.
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where the right-hand side is evaluated at the O8þ. From this
we see in particular that at least one of the κi must be
negative. The resulting solutions depend on two continuous
parameters, which can be thought of as the remaining initial
conditions of the solution near the O8þ after tuning to hit
the O8−. (As another consistency check of these equations,
we can see that they admit a solution of the form AdS4×
H2 × S4, which is a simple variation on the AdS6 × S4 of
Ref. [24]. This is most easily seen by going to a gauge
where dz2 in Eq. (8) is replaced by e2Qdz2. Then the
solution is obtained by setting Q ¼ 2W, λ2 ¼ 2W,
λ3¼2WþlogðsinzÞ, ϕ¼5Wþconst., W¼−1

6
logðF0coszÞþ

const, κ2 ¼ Λ, and κ3 ¼ 2. This results in a negative
cosmological constant.)
Let us now comment on the properties of these de Sitter

solutions. The first significant feature is that all our
examples have classical moduli; i.e., the solutions come
in continuous families. The number of moduli apparent
from our construction is easily seen by parameter counting.
The local solutions [Eq. (2)] depend on two continuous
parameters and require a one-parameter tuning to reach a
physical O8−, resulting in one modulus. The more general
solutions [Eq. (8)] have two moduli.
One way to understand some of these moduli is that the

equations of motion are invariant under the rescaling

gMN → e2cgMN; ϕ → ϕ − c; F4 → e4cF4: ð12Þ

This rescaling can be used to make the coupling and
curvature as small as one wants, and in particular to
parametrically reduce the region around the O8− where
supergravity breaks down.
In the simplest solutions of type Eq. (1), the four-form

flux vanishes and the single modulus is the parameter c
above. In the more general solutions, Eq. (8), with nonzero
F4, flux quantization implies that the rescaling parameter c
is discretized. The two continuous moduli of these sol-
utions do not admit such a simple presentation.
In the full string theory, one expects that quantum

corrections will generate a potential on these moduli. In
the controllable regime of small string coupling these
corrections are small, and might in principle be determined.
In the proximity of the O8−, there is a localized breakdown
of supergravity and all string corrections become relevant.
In general however, one no longer expects [32] the surviving
vacua, if any, to be under parametrically good control. For
example, in the simplest class of solutions where c appears to
be a modulus in supergravity, we expect the potential to be
such that c is fixed in any true solution of string theory.
Within the classical supergravity approximation we can

also try to analyze the stability of our solutions. One
obvious source of instabilities is tachyons. [Such perturba-
tive instabilities are present in related models we have
studied involving D8-branes (either on top of the orienti-
folds or away from them). In this case a probe computation

as in Ref. [30] shows that the position of the D8’s along z
is tachyonic.] These can be assessed in our examples by a
Kaluza-Klein (KK) reduction similar to that discussed in
Ref. [33]. Nonperturbative instabilities, such as brane
bubble nucleation, should also be considered.
Let us also remark on the physical scales of these

solutions. By unwarping the metric, one can see that both
the cosmological constant Λ and the KK scale do not
change as the modulus c varies. Thus there is no parametric
separation of scales, although it might be achieved by a
suitable choice of the internal manifold. By contrast,
the effective 4d Planck constant scales as e10c and hence
is large in the weak coupling regime.
In summary, we have found a new class of de Sitter

solutions in supergravity. They are obtained directly from
the classical equations of motion in ten dimensions, with
fully localized orientifold-plane sources. Irrespective of the
fate of these particular solutions, we expect our approach to
be useful more broadly, for example, for Op planes for
p < 8, more general metric ansätze, and de Sitter solutions
in other dimensions. (For instance, an identical analysis to
the above leads to dSd solutions with only F0 for any
2 ≤ d ≤ 7.) Our strategy is conceptually very simple; it
took some time to identify the right combination of
ingredients and to build enough trust in the structure of
O-plane singularities. Now that a first set of examples has
been obtained, we expect more to follow.
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