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Since the discovery of the fractional quantum Hall effect in 1982 there has been considerable theoretical
discussion on the possibility of fractional quantization of conductance in the absence of Landau levels
formed by a quantizing magnetic field. Although various situations have been theoretically envisaged,
particularly lattice models in which band flattening resembles Landau levels, the predicted fractions have
never been observed. In this Letter, we show that odd and even denominator fractions can be observed, and
manipulated, in the absence of a quantizing magnetic field, when a low-density electron system in a GaAs
based one-dimensional quantum wire is allowed to relax in the second dimension. It is suggested that such a
relaxation results in formation of a zigzag array of electrons with ring paths which establish a cyclic current
and a resultant lowering of energy. The behavior has been observed for both symmetric and asymmetric
confinement but increasing the asymmetry of the confinement potential, to result in a flattening of
confinement, enhances the appearance of new fractional states. We find that an in-plane magnetic field
induces new even denominator fractions possibly indicative of electron pairing. The new quantum states
described here have implications both for the physics of low dimensional electron systems and also for
quantum technologies. This work will enable further development of structures which are designed to
electrostatically manipulate the electrons for the formation of particular configurations. In turn, this could
result in a designer tailoring of fractional states to amplify particular properties of importance in future
quantum computation.
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The discovery of the integer and fractional quantum Hall
effects, IQHE and FQHE, in two-dimensional (2D) systems
in the presence of a quantizing magnetic field stimulated
enormous theoretical and experimental activity [1–6]. The
first suggestion that a magnetic field was not essential was
from Haldane [7] who considered a filled, tight binding,
band based on a honeycomb lattice. This system would
show the quantization if time reversal symmetry were to be
broken by a spatially inhomogeneous magnetic field whose
average value was zero. Numerical calculations showed
that a band formed from a regular tight binding lattice could
resemble a Landau level by being sufficiently flat, and
almost dispersionless, so that the kinetic energy is mini-
mized. In this situation, it was found that a localized wave

function model predicted energy minima at filling factors
of 1=3 and 1=5 on the basis of nearest and next nearest
neighbor interactions [8]. In this respect, such lattice
models could resemble a composite fermion model [9],
in which flux quanta act as lattice sites. However, there
were no reports of experimental observations of fractional
quantization of conductance until very recently when
quasi-1D hole conduction in germanium quantum wires
[10], corresponded to charge values of e=2 and e=4.
A 1D system, defined by means of split gate [11] with an

additional top gate on a 2D electron gas, exhibits quantized
conductance at values of 2ne2=h, where n is an integer
1; 2; 3;… [12,13]. If the confinement is reduced, so allowing
the electrons to relax in the second dimension, the energy
levels are determined by both the electron-electron inter-
action and the spatial confinement. This situation has been
investigated in detail both experimentally [14–16] and
theoretically [17–19]. It is found that as the role of the
interaction (confinement) increases (decreases), so a line
of electrons adopts a zigzag or two-row configuration to
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minimize their mutual repulsion [17], which has been
imaged recently [20]. In the present work, we have utilized
quasi-1D electrons and show that there is a range of
parameter space such as confinement conditions and carrier
concentration which support a mix of conductance frac-
tionalization in the relaxed 1D configuration [21].
The devices used in the present work were fabricated from

GaAs=AlGaAsheterostructures grownusingmolecular beam
epitaxy. The two-dimensional electron gas (2DEG) formed
up to 290 nm beneath the surface had a low-temperature
mobility of 1.6 × 106 cm2=Vs (2.0 × 106 cm2=V s), and an
electron density of 9.0 × 1010 cm−2 (1.0 × 1011 cm−2) for
sample 1 (sample 2); see the Supplemental Material,
Ref. [22]. A pair of split gates of length (width) of
0.4 μm (0.7 μm), and a top gate of length 1 μm separated
by a 300 nm thick insulating layer of cross-linked poly
(methyl methacrylate) (PMMA) were patterned by a stan-
dard lithographic technique, see the cartoon in the inset of
Fig. 1(a)[16]. In all experiments, the two-terminal differ-
ential conductance (G) measurements in the Ohmic and
non-Ohmic (nonlinear) regimes were performed by sweep-
ing the split gatevoltage,Vsg, in the presence of an excitation
voltage of 10 μV at 73 Hz in a cryofree dilution refrigerator
with a lattice temperature of 25 mK [23,24].
Figure 1(a) shows results on a 1D channel where G is

measured as a function of increasing the asymmetry of the
confinement potential by applying an offset, ΔVsg, to one

of the split gates with the two gates then being swept
together. The net effect of the offset was to push the
conducting channel sideways and increase its width. The
top gate voltage V tg is kept constant at −0.36 V, the initial
2D carrier concentration, n2D was 5 × 1010 cm−2. In the
discussion of this and subsequent figures, all fractions are
in units of e2=h, and the fractional states corresponding to
the flattest plateaus are labeled in the right vertical axis.
On the left, the 0.7ð2e2=hÞ structure, appearing at 1.5, and a
change of gradient at 1 are present. The 0.7ð2e2=hÞ
structure disappears with an increase in channel width
when a structure emerges near 2 which gradually drops to
flatten very close to 3=5, as confinement is further
weakened it persists in the vicinity before disappearing.
The structure at 1 (extreme left) rapidly drops on increasing
the channel width to form a distinct plateau at 1=6 where it
remains with increasing width before turning into a
structure that increases in value until merging with the
plateau at 3=5, this then drops with increasing width to
become flat at 2=5, shown in the green trace. The flattening
at 2=5 was a minimum in the conductance as the structure
then increased with increasing width with a minimum
gradient at 1=2 before disappearing, at which stage the
conduction rises rapidly indicating that a 2D transition has
occurred.
We define a plateau by a minimum in gradient (increas-

ing flatness) whereas the change between plateau values
has a distinct slope. Although we consider that stable
quantum states are indicated by the flattest plateaus there
are cases in this Letter where a plateau starts with a slope
and then contains a flat part. Occasionally there is a slope
that remains constant with a change in gate voltages;
possibly this may be an indication of the stability of the
fractional states. However, here we just consider the mini-
mum gradient structure.
We consistently found the following as stable states 1=6,

2=5, 1=2; a 2=3 plateau was frequently found with a slight
slope, and the 3=5 plateau was often present but slightly
below the expected fractional value. We estimated the
accuracy of plateaus corresponding to the flattest fractions
was 1 in 104 for a split gate voltage length for the 1=6, 1=2,
and 2=5 fractional states, respectively. The absolute value
and length of plateau for these fractions is over 2, (error
0.8%), 3.3, (error 0.2%), and 3.4 mV, (error 0.2%),
respectively. It is noteworthy that whereas the odd denom-
inator fractions have been observed in the FQHE, the 1=6
and 1=2 have not been observed before although a 1=2 is
found in a higher Landau level, 5=2. The main plot and
inset in Fig. 1(b) and Fig. 1(c) show a close-up of the 1=6,
2=5, and 1=2 plateaus in an asymmetric confinement
potential [from Fig. 1(a)]. Also, we observed the fractional
plateau at 1=2 for asymmetric confinement potential in
sample 2 [inset, Fig. 1(c)].
Figure 2 illustrates the sensitivity of the system to a

change in carrier concentration at a fixed in-plane magnetic

FIG. 1. Conductance characteristics of a top-gated split gate
device as a function of asymmetry and width of the confinement
potential (sample 1, cooldown 1). Inset on the right side in (a)
shows a schematic diagram of the device; split gates are shown in
red; PMMA is shown in gray sandwiched between the split gates
and the top gate (orange). (a) At V tg ¼ −0.36 V, the offset or
asymmetry between the split gates, ΔVsg was incremented from
0.65 (left) to 0.98 V (right) in steps of 10 mV so widening the
channel and flattening the confinement. (b) Main and inset, and
(c) show close-up views of fractional states at 1=6, 2=5, and 1=2,
respectively, as seen in (a). An inset in (c) shows a close-up of the
1=2 fractional state in a symmetric confinement potential in
sample 2 (cooldown 1) at V tg ¼ −0.6 V. A horizontal offset of
4 mV was set between the consecutive traces in (a) for clarity.
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field, BII ¼ 10 T normal to the current direction. A fixed
offset on the split gate voltage produces an asymmetric,
wide confinement and the higher integer plateaus
1; 2; 3ðe2=hÞ are not found. Each plot corresponds to a
more negative top gate voltage producing a decreasing n2D
from left to right in the range ð4.0 − 1.0Þ × 1010 cm−2; see
Supplemental Material, Ref. [22]. It is seen that a weak
structure on the left drops in value until it flattens on either
side of a conductance value of 1=2. The traces on either side
of the indexed 1=2 exhibit flat plateau in the range 6=11 to
5=11; we suggest that this indicates a band of stable states
within these limits. Outside the limits, the structure devel-
ops a gradient that alternates in sign. On further reducing
the carrier concentration, the structure drops in value and
flattens before disappearing, indicating a transition to 2D
behavior for maximum channel width. Flat plateaus form
on both sides of the 1=4 between limits of 3=10 and 6=25,
indicating that there is a band of stable states which are
located around the 1=4 in a similar way to the states in the
vicinity of 1=2. There is a resemblance here to the
observations reported for holes in Ge [10]. The theoretical
discussion on the 5=2 plateau in the FQHE suggests its
origin to stem from a pairing of two 1=4 states [25] and has
stimulated considerable interest in quantum technology
applications as it is thought to be non-Abelian. The
similarity in the behavior of the structure near the 1=2
and 1=4 values found here indicates that they are linked.
The band of states around the 1=4 and 1=2 may be related
to the proposed non-Abelian nature of the 1=4 in that the
differing details of the exchange path provide distinct states
that are degenerate. The differences due to the small
changes in the confinement provide a different exchange
path; the change in confinement energy alters the level
energy to provide the band around the 1=4. Similar
considerations apply to the formation of the band around
the 1=2, particularly if this arises from pairs of 1=4 states.
The sensitivity to the magnitude of in-plane magnetic

field is shown in more detail in Fig. 3, where both n2D ¼
5 × 1010 cm−2 and the offset voltage are held constant. The

structure on the left commences movement when the field
is applied and continues to decrease as the field is
increased. The gradient of the structure varies continually
with increasing BII but there are regions of flatness, or
minimal gradient, which occur in the vicinity of 1=6, 1=7,
1=12, 1=16, 1=18, and, surprisingly, near 1=25, at the
highest values of B the conductance drops sharply and
much smaller values of conductance plateaus are observed
as if the square of a fractional state (i.e., 1=25, 1=40, 1=50,
1=75) is involved [26]. The continual movement of the
structure with BII , from a small value, implies that it is not
related to spin but, rather, is dependent on flux.
In order to investigate the nature of the conduction

process, we have measured the differential conductance as
the source-drain voltage (Vsd) was increased into the non-
Ohmic regime. It is a well-known fact that the differential
conductance becomes one-half of its value in the non-
Ohmic regime due to the lifting of the momentum degen-
eracy [27,28]. Figure 4(a) shows a conductance plateau at
2=5 at Vsd ¼ 0 V (right); on increasing Vsd the structure
eventually flattens and settles at 1=5. This result indicates a
fractional band conduction is occurring as opposed to a
fractional transmission coefficient which will behave in
a different manner with source-drain voltage and tend to
increase so increasing the differential conductance. Also, as
the differential conductance decreased towards the 1=5 a
plateau emerged at 1=4 perhaps indicating that another
state was attempting to form as the conducting level was
pulled further down below the source potential and the
carrier concentration increased. However, the observation
of the 1=5 indicates the stability of this state for the
confinement conditions.
Figure 4(b) shows the differential conductance of an

Ohmic fractional plateau at 1=2 in a symmetrical confine-
ment. The differential conductance drops, as expected, with
increasing Vsd but attempts to flatten and form a plateau at
1=3 followed by a flattening at 3=10 with intervening
structure. The structure always remains slightly above the
value of 1=4 produced by the lifting of the momentum
degeneracy. The conversion of the 1=2 into a non-Ohmic
differential of 1=3 implies that this state is derived from an
Ohmic 2=3; the states then appear as if almost degenerate

FIG. 2. Effect of variation of carrier concentration on the
conductance in the presence of BII (sample 2, cooldown
2).V tg was varied from −0.45 (left) to −0.62 V (right) in steps
of −10 mV, at Bll ¼ 10 T; ΔVsg ¼ −180 mV.

FIG. 3. Effect of variation of BII on the fractional states (sample
1, cooldown 1). BII was varied from 0 (left) to 12 T (right) in
steps of 0.5 T; V tg ¼ −0.36 V; ΔVsg ¼ 800 mV.
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with only small changes in energy required for a conversion
process, see Supplemental Material [22].
The momentum of the electron system should remain

constant for two conductance values where there is only a
small change in confinement and is given byNðEÞm � vdE,
where NðEÞ is the density of states at the Fermi level, v is
the electron group velocity, m� is the electron effective
mass, and dE ¼ eVsd is the energy spread of the injected
electrons. For a small change in confinement potential and
constant Vsd the momentum should be constant, conse-
quently, the difference in the current,NðEÞvdEe�, indicates
a change in the effective charge e�. However such con-
firmation requires a direct charge measurement as has been
accomplished in measurements of shot noise [29].
There has been discussion of spin phases due to various

patterns of ring exchange in the zigzag [17,18], and in two
dimensions it has been proposed as a mechanism of
fractionalization [30,31], although in the absence of a
quantizing magnetic field the ring exchange can increase
the electron energy [32]. However, in the quasi-1D zigzag
regime, in which a line of electrons splits into two, the
transverse localization of the electrons contributes to the
energy of the system and the latter can be reduced by the
increase in spatial freedom given by a cyclic rotation [33].
We suggest that this drives the correlated rotational motion
responsible for the fractionalization. The various fractions

observed correspond to different ring configurations which
are dependent on the shape of the confinement potential
and carrier concentration, these form a band separated by a
gap from the main 1D band.
The pronounced and continuous changes in conductance

with BII , from a small value, indicate that the system is
responding to the change in flux rather than a simple spin
polarization. With increasing field, we have identified
minimum gradient plateaus at 1=6, 1=12, 1=18. This
pattern may indicate a more complex pattern of cyclic
motion involving pairing [34]. Although the effects of the
interaction are most apparent in the plane of the electron
gas there will be a correlated motion normal to the plane, to
reduce the repulsion, which couples to the parallel mag-
netic field. In this context, it is interesting that studies of the
5=2 fraction in the FQHE have indicated that there is a
dependence on the wave function normal to the plane [25].
Given the low carrier concentration used here, it is

possible that the termination of the even-denominator series
is due to all the electrons in the channel forming a collective
state. The final rapid drop in the plateau values may
indicate a change in mechanism to a dependence on the
square of fractional charge. Measurement of charge [29] of
the states identified here will be of importance in this
regard. An interesting feature is the difference between
these results and those where charge enters as a square as
with holes in Ge [10], perhaps indicating a variation in the
strength of the coupling due to the difference between s and
p basis wave functions.
To summarize, at very low values of carrier concen-

tration, <6 × 1010 cm−2, we propose that the interactions
between the electrons create correlated motion and frac-
tional behavior in the absence of a magnetic field which is
very different to that observed in the FQHE. There may be
implications for quantum information schemes in the
possible non-Abelian nature of the 1=4 state and perhaps
other even fractions. We have used the simplest structures
for this investigation and the nature of the confinement may
be altered by the electrons as with edge state reconstruction
in the 2D case [35]. More sophisticated structures will
allow a more precise probe of these new states and open
new avenues in the design and tailoring of fractions with
specific properties.
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