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We apply the recently developed notion of complexity for field theory to a quantum quench through a
critical point in 1þ 1 dimensions. We begin with a toy model consisting of a quantum harmonic oscillator,
and show that complexity exhibits universal scalings in both the slow and fast quench regimes. We then
generalize our results to a one-dimensional harmonic chain, and show that preservation of these scaling
behaviors in free field theory depends on the choice of norm. Applying our setup to the case of two
oscillators, we quantify the complexity of purification associated with a subregion, and demonstrate that
complexity is capable of probing features to which the entanglement entropy is insensitive. We find that the
complexity of subregions is subadditive, and comment on potential implications for holography.
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Introduction.—Among the most exciting developments
in theoretical physics is the confluence of ideas from
quantum many-body systems, quantum information
theory, and gravitational physics. Recent progress in this
vein includes the development of tensor network methods
for simulating quantum many-body systems (see, e.g.,
Ref. [1]), proofs of irreversibility of RG flows using
quantum information techniques [2–7], and the illumina-
tion of the role of codimension-2 extremal surfaces in the
emergence of holographic spacetime (see, e.g., Ref. [8]).
The central technical tool in these ground-breaking results
is the reduced density matrix for a spatial subregion, and
the associated von Neumann entropy, cf. Refs. [9,10].
However, insights from black hole physics [11–14]

suggest that certain codimension-0 and codimension-1
surfaces may also play an important role in reconstructing
bulk spacetime in holography, since these capture informa-
tion beyond that which is accessible to the aforementioned
codimension-2 surfaces—that is, beyond entanglement
entropy. These geometric objects are conjectured to be dual
to the “complexity” of the boundary field theory, according
to the competing “complexity ¼ volume” (CV) [11,12] and
“complexity ¼ action” (CA) proposals [13,14].
Drawing on earlier developments [15–19], Refs. [20,21]

sought to make the above conjectures more precise by

defining the notion of complexity in (free, bosonic)
quantum field theory (this idea was subsequently extended
to fermionic theories in Ref. [22], see also Refs. [23,24];
for alternative approaches to defining complexity in field
theories, see Refs. [25–31]). In light of the successes born
of entanglement entropy mentioned above, understanding
complexity in quantum field theory represents a very
promising research direction. Particularly interesting open
questions include the time dependence of complexity, and
the interplay between complexity and entanglement
entropy in nonequilibrium systems. It is therefore of value
to have a tractable system in which these ideas can be
concretely explored.
To that end, one of the most active areas of research into

nonequilibrium quantum dynamics is the study of quantum
quenches [32,33], in which remarkable progress has been
made in understanding the mechanisms underlying ther-
malization encoded in the reduced density matrix [34].
Theoretical studies within the scope of experimental
verification have revealed that smooth quenches through
a critical point exhibit universal signatures via scalings. The
Kibble-Zurek (KZ) scaling [35,36] is the most well-known
example of this behavior, and has received a great deal of
attention in recent years [37–41]. In this case, the state is
evolved adiabatically until very close to the critical point,
and hence the regime of KZ can be characterized as “slow.”
Recent studies in holography [42,43], free field theory
[44–46], and lattice spin models [47] have also revealed
new scaling behaviors in a “fast” (nonadiabatic) regime.
This fast scaling behavior appears to be a universal feature
of any interacting theory which flows from a CFT in the
ultraviolet (UV) [48–50]. At a technical level, previous
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studies have mainly focused on the scalings of a restricted
set of one- and two-point functions, and recently on
entanglement [51]. However, as we shall argue below,
the latter probes at most only a spatial subsystem, while
complexity is a property of the entire wave function.
Hence complexity represents a means of probing features
of quench dynamics to which entanglement entropy is
insensitive. Initial steps towards applying complexity to
quenches were taken in Ref. [52], for a quench which
monotonically interpolates between two massive theories.
Motivated by these scaling phenomena, we explore the

complexity of exact critical quench solutions for free scalar
theories, and find evidence for universal scaling behavior.
Our primary model will consist of a bosonic oscillator
whose frequency varies smoothly with time, and asymp-
totes to a finite constant in both the far future and past. We
first define complexity for a single mode, and then general-
ize our results to a one-dimensional harmonic chain.
However, we find that a judicious definition of complexity
is required in order to make the scaling expectations for
free field theory manifest. Utilizing this setup, we contrast
the complexity and the entanglement entropy for a fixed
bipartition of the Hilbert space of two coupled harmonic
oscillators. This model enables us to quantify the notion
of “complexity of purification” recently introduced in
Ref. [53], which allows one to associate a complexity to
subregions (i.e., mixed states). We find that the complexity
of subregions is subadditive, which may have interesting
implications for the CV vs CA proposals above.
Complexity of quantum quenches.—Quench model: We

shall begin with the following simple Hamiltonian describ-
ing a free bosonic oscillator:

HðtÞ ¼ 1

2M
P2 þ 1

2
Mω̃2X2; ð1Þ

whereM is the mass of the oscillator, ω̃ðt=δtÞ is some time-
dependent frequency profile with an intrinsic scale set by
the parameter δt, and the canonical position and momentum
operators satisfy ½X;P� ¼ i. However, for reasons that will
become apparent below, it is preferable to work with the
dimensionless variables x≡ϖX, p≡ P=ϖ, ω≡ ω̃=ϖ,
where ϖ is some new mass scale, which will be given
an interpretation as the gate scale when we introduce our
quantum circuit (see Supplemental Material [54]). Setting
ϖ ¼ M for simplicity, Eq. (1) becomes

HðtÞ ¼ M

�
p2

2
þ ω2

x2

2

�
; ð2Þ

where the quantities appearing in the parentheses are all
dimensionless, and we shall henceforth set M ¼ 1. The
time-evolved initial ground-state wave function at time t for
the Hamiltonian (2) takes the form

ψ0ðx; tÞ ¼ N exp
�
i
2

_f�

f�
x2
�
; ð3Þ

where N ≡ ð2πf�fÞ−1=4, and fðt=δtÞ is the solution to the
equation

f̈ þ ω2f ¼ 0: ð4Þ
Now, we desire a quench profile ω2ðt=δtÞ which admits an
exact solution to this equation, and which asymptotes to a
constant at both early and late times, with changes occur-
ring in the time window ½−δt; δt�. One of the most common
profiles used in the literature (see, e.g., Ref. [51]) is

ω2ðt=δtÞ ¼ ω2
0

�
1 −

1

cosh2ð tδtÞ
�
: ð5Þ

Here ω0 is a free parameter, but will gain an interpretation
as the dimensionless reference-state frequency below. This
profile has the property that the system is initially gapped at
t ¼ −∞, but becomes gapless at t ¼ 0, corresponding to
oscillator excitations above the ground state (3) as the
system evolves via Eq. (2). In this case, the function fðtÞ
can be written explicitly in terms of hypergeometric
functions; see Ref. [51].
Our interest in this setup is due to the fact that it can also

be used to study the ground state of two (or more) harmonic
oscillators with a time-dependent coupling. The same
model was considered in Refs. [51,60,61] for investigating
entanglement entropy during a quench. Explicitly, the
Hamiltonian for two oscillators is given by

H ¼ 1

2
½p2

1 þ p2
2 þ 2Ω2ðx1 − x2Þ2 þ ω2ðx21 þ x22Þ�: ð6Þ

In the normal-mode basis x� ¼ ðx1 � x2Þ=
ffiffiffi
2

p
, this

Hamiltonian takes the decoupled form

HðtÞ ¼ HþðtÞ þH−ðtÞ; ð7Þ

where the subscript denotes the use of the � mode in
Eq. (2), with ω2þ ¼ ωðtÞ2 and ω2

− ¼ ωðtÞ2 þ 4ΩðtÞ2. The
corresponding wave function is then given by

ψðxþ; x−; tÞ ¼ ψ0ðxþ; tÞψ0ðx−; tÞ; ð8Þ

with ψ0 given by Eq. (3). Note that this construction
naturally generalizes to an N-oscillator harmonic chain,
which we will consider after introducing complexity below.
Circuit complexity: To evaluate the complexity of the

target state (8), we shall apply the circuit complexity
approach of Ref. [20], adapted at the level of covariance
matrices as in Ref. [62]. The reader is referred to these
works for details. In brief, a circuit U is a unitary operator
whose action on some reference state ψR produces the
desired target state ψT ,
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jψTi ¼ UjψRi: ð9Þ

In analogy with quantum circuits, U can be thought of as a
sequence of fundamental gates, each of which effects an
infinitesimal change to the state. The complexity of the
target state is then defined as the length of the optimum
circuit according to some suitably chosen depth function
(e.g., the number of gates). Note the keyword “optimal”:
there may be arbitrarily many different circuits which
satisfy Eq. (9). Hence the central feature of Ref. [20]
was to use the geometric approach of Nielsen and collab-
orators [15–17] to convert the problem of finding the
optimum circuit into that of identifying the minimum
geodesic in the geometry generated by the algebra of gates.
Given the form of Eq. (8), it is sufficient to begin with a

single oscillator. Hence we are interested in target states
of the form

ψTðx; tÞ ¼
�
a
π

�
1=4

exp
�
−
1

2
ðaþ ibÞx2

�
; ð10Þ

where aðtÞ, bðtÞ ∈ R are the real and imaginary parts of the
frequency i _f�=f� in Eq. (3), and we have suppressed the
time dependence for compactness. Note that a > 0 [one
can verify that the solutions to (4) indeed satisfy this
normalizability constraint], while b may take any sign.
Our reference state will be provided by the ground state of
our time-dependent Hamiltonian (6) at t ¼ −∞,

ψRðxÞ ¼
�
ωR

π

�
1=4

exp

�
−
ωR

2
x2
�
; ð11Þ

where 0 < ωR ∈ R. Our task is now to construct a circuitU
satisfying (9) according to the geometric approach out-
lined above.
The details of our complexity calculation are given in

Supplemental Material. The key point is that we may view
U as a matrix which acts at the level of covariance matrices,
so that (9) becomes

GT ¼ UGRUT; ð12Þ

where the matrix elements of G are given by

Gab ¼ hψ jξaξb þ ξbξajψi; ð13Þ

where ξa ≡ fx1; p1;…; xN; pNg are the dimensionless
phase-space operators for N oscillators. The covariance
matrix is an equivalent representation of the wave function,
which has the advantage of making the explicit choice of
gates more transparent. In particular, we seek the minimal
set of gates necessary to effect the desired transformation.
As explained in Supplemental Material [54], this naturally
leads to hyperbolic space, with the metric

ds2 ¼ 2dz2 þ dy2

8z2
; ð14Þ

and therefore the complexity of the target state (10) is given
by the well-known geodesic distance formula on H2

(cf. Supplemental Material [54]), which admits a particu-
larly compact expression in terms of the squeezed target-
state covariance matrix G̃T ¼ SGTST :

C ¼ 1

2
lnðχ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

q
Þ; χ ≡ 1

2
trG̃T; ð15Þ

where S is the squeezing operator defined such that
SGRST ¼ 1. This result immediately generalizes to the
case of N oscillators: since G̃T is block diagonal in an
appropriate basis, the geometry factorizes into N indepen-
dent copies of H2. Hence the complexity of a one-
dimensional lattice of oscillators is

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
j¼1

�
1

2
lnðχj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2j − 1

q
Þ
�
2

vuut : ð16Þ

Note that in this expression, we have added the complex-
ities in the L2 norm; we shall comment on the use of other
norms in Supplemental Material [54]. By taking the
continuum limit of such a lattice, we obtain the complexity
for a bosonic system in 1þ 1 dimensions. Specifically, we
consider the harmonic chain whose Hamiltonian is given by

H ¼ 1

2

XN
n¼1

½Π2
n þ ðϕnþ1 − ϕnÞ2 þm2ðtÞϕ2

n�; ð17Þ

where ðϕn;ΠnÞ are mutually conjugate scalar field varia-
bles. Since we work with dimensionless variables, we shall
set the lattice spacing (i.e., the UV cutoff) to unity. In
momentum space, each mode then satisfies

ϕ̈k þ
�
4 sin2

k
2
þm2ðtÞ

�
ϕk ¼ 0; ð18Þ

where we have imposed periodic boundary conditions
k ¼ kþ 2π, and the quench profile is given by mðtÞ ¼
ωðt=δtÞ in Eq. (5). The reference state, jψRi is given by the
ground state of the Hamiltonian (17) at t ¼ −∞ when
mðtÞ ¼ ω0. Integrating over momentum modes, the con-
tinuum limit of Eq. (16) is simply

CðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

2π

0

dk
2π

�
1

2
lnðχkðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2kðtÞ − 1

q
Þ
�
2

s
; ð19Þ

where χkðtÞ is given in Eq. (15) with the covariance matrix
corresponding to the kth oscillator.
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Since we are interested in the behavior of complexity as
the system passes through the critical point of the quench, it
is sufficient to evaluate this function at t ¼ 0; see Fig. 1.
This then allows us to extract the universal scaling
behaviors, which we examine in more detail in the next
section.
Universal scalings in complexity: We now wish to

examine the presence of universal scalings of the critical
complexity with respect to the quench rate. In particular,
the contributions from individual momentum modes to
Cð0Þ in Eq. (19) are plotted in Fig. 2. We find that all modes
go to zero in the sudden-quench limit δt → 0, which is
consistent with results for instantaneous quenches. For all
k > 0, we observe mode-dependent saturation in the slow
regime δt → ∞, consistent with what one expects from KZ.
In the adiabatic approximation, the KZ scale arises from the
Landau criterion for the breakdown of adiabaticity,

1

EðtÞ2
dEðtÞ
dt

				
tKZ

¼ 1; ð20Þ

where tKZ is the Kibble-Zurek time and E is the time-
dependent mass gap from criticality. For the profile (5), one

finds tKZ ≈
ffiffiffiffiffiffiffiffiffiffiffiffi
δt=ω0

p
, atwhich time the frequency isωKZðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4sin2ðk=2Þ þm2ðtKZÞ
p

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4sin2ðk=2Þ þ ðω0=δtÞ

p
, where

we have used the fact that m2ðtKZÞ ∼ ω2
0t

2
KZ=δt

2, since in the
slow regime δt > tKZ by definition. Hence the KZ scaling for
the kth modemaybe extracted by calculating the complexity at
this frequency. One finds logarithmic KZ scaling in the slow
regime for δt < ðω0=4Þcsc2ðk=2Þ. As soon as δt exceeds this
value, we observe saturation in the frequency (to 2 sinðk=2Þ),
and hence also in complexity to

Cksat ¼
1

2
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 þ 2 − 2 cos k

p
2j sin k

2
j

�
: ð21Þ

TheKZ approximation is superimposed on the exact results in
Fig. 2, which clearly shows agreement with the saturation
value (21) in the large-δt limit.
The critical complexity of the zero mode k ¼ 0 exhibits

universal scalings in both the slow and fast regimes. Indeed,
this same behavior is exhibited by the single quantum
oscillator we initially introduced upon sending the fre-
quency to zero (i.e., we take the ω− solution for the two-
oscillator case above). Unlike higher modes, the zero mode
does not saturate at large δt since the logarithmic scaling is
always present. From the KZ analysis above, we can derive
the universal coefficient of the log as 1

4
, which is confirmed

by fitting the exact solution, as shown in Fig. 3. We note
that the KZ scaling exhibited by entanglement entropy
under a critical quantum quench has the same form, but
with a 1

6
coefficient instead [51,63]. Meanwhile in the fast

regime (δt < 1 in lattice units), the complexity grows
linearly with δt. While these scalings are present for higher
modes as well, they are confined to increasingly narrow
regions of δt for larger values of k.
Complexity vs entanglement.—One of the main motiva-

tions for the holographic complexity proposals was the
observation that the information contained in the reduced
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FIG. 1. Log-log plot of complexity of the (1þ 1)-dimensional
free field theory (19) at the critical point t ¼ 0 vs the quench rate
δt (measured in units of the lattice spacing), with ω0 ¼ 0.005.
The straight-line fit (blue) reveals linear scaling in the fast regime.
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FIG. 2. Single-mode contributions to the complexity (19) at the
critical point t ¼ 0 for ω0 ¼ 0.005 and k ¼ f0.006; 0.111;
0.216; 0.320; 0.425g (red, orange, yellow, green, blue). For large
δt, the exact solutions (dotted) agree with the saturation values
(21) predicted from KZ (solid).
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FIG. 3. Zero-mode contribution to Cð0Þ (19) as a function of
the quench rate ω0δt, with ω0 ¼ 0.005. The complexity scales
linearly in the fast regime (lnC= ln δt ¼ 1, blue), and smoothly
transitions to a logarithmic scaling 1

4
log δt in the slow regime

(red). The transition to KZ occurs at ω0δt ∼ 1, which in this case
is δt ∼ 200 in lattice units.
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density matrix of any spatial bipartition of the CFT Hilbert
space, as encoded in the entanglement entropy, is generally
insufficient to determine the entire bulk geometry [12]
(see also Ref. [64] and references therein). One can then
ask whether complexity provides another take on the
information contained in reduced density matrices.
Indeed, recent proposals for the complexity of subregions
in holography—that is, on the bulk side—have been made
in Refs. [65–69]. However, since the field-theoretic notion
of complexity above is defined for pure states, it is not
a priori clear how to define complexity for the reduced
density matrix corresponding to some spatial subregion.
A particularly natural extension of existing pure-state

definitions to this case is the complexity of purification,
recently outlined in Ref. [53], in which the complexity of
the subsystem is defined by minimizing over the complex-
ities of all possible purifications (see also Ref. [70]).
Applying our quench setup above to the case of two
oscillators allows us to quantify this proposal, by consid-
ering the reduced density matrix corresponding to a single
oscillator, say x1, and purifying within the original Hilbert
space of Gaussian states (i.e., without ancilla). The total
wave function depends on six real parameters, three of
which we fix by our knowledge of the covariance matrix for
oscillator x1. Minimizing over the remaining three param-
eters then gives the complexity of purification for the
subsystem, which we shall denote CA in reference to a
generic subsystem A and its complement Ā.
As observed in Fig. 4, the complexity of purification

satisfies C=2 ≤ CA ≤ C, which we have verified numerically
for a wide range of values in the six-parameter landscape
spanned by the components of the covariance matrix. The
upper inequality is saturated if and only if the original target
state happens to be the least complex state among all
possible purifications. Meanwhile, the lower inequality is

saturated if and only if the original target state is a product
state with respect to the chosen bipartition; i.e., subsystem
A describes a pure state, SA ¼ 0. This can be understood
from the fact that the purification process seeks to produce
a state which is as close to the reference state as possible,
since the latter has minimum complexity by fiat. Since in
this case the reference state is an unentangled product state,
the minimum purification is one in which the complement
Ā is also an unentangled product state—but this is only
possible if the original state is a tensor product of the form
HA ⊗ HĀ; otherwise the entanglement across the biparti-
tion prevents one from obtaining the reference state in the
restriction Ā. While one should exercise caution in blithely
generalizing from this simple two-oscillator case, the above
leads us to suggest that the complexity of subsystems is
subadditive:

CA þ CĀ ≥ C: ð22Þ

As observed in Ref. [53], this agrees with the holographic
CA proposal, but not with the CV proposal, which is
superadditive.
Outlook.—Quenches represent tractable models of

dynamical quantum systems in which complexity can be
better understood, as well as yield new physical insights;
e.g., we have found that complexity can be used to extract
universal scalings.We have also examined the complexity of
subregions (i.e., mixed states) via their purifications. Since
complexity encodes global information about the state, it is
sensitive to features towhich entanglement is blind.We find
that subregion complexity appears to satisfy superadditivity
(22), which is consistent with the CA proposal. While it
would be premature to take definitive lessons for holography
from such simple free-fieldmodels, this may provide further
hints as to the proper notion of complexity in holographic
field theories, and thereby shed light on ongoing efforts to
reconstruct bulk spacetime in AdS=CFT.
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FIG. 4. Comparison of the complexity (16) as a function of time
t of the original target state (solid) and the optimum purification
(dashed) for δt ¼ 10 (blue) and δt ¼ 1 (red), with ωR ¼ 0.5 for
both oscillators. Note that the latter never exceeds the former, and
is always greater than C=2; that is, the complexity of purification
appears to satisfy superadditivity (22). We have tested this
conjecture numerically for ∼70000 cases.
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