
 

Comment on “Minimum Action Path Theory
Reveals the Details of Stochastic Transitions
Out of Oscillatory States”

In a recent Letter [1], de la Cruz et al. studied a noise-
induced transition in an oscillating stochastic population
undergoing birth- and death-type reactions. When
described by deterministic rate equations, the population
approaches a stable limit cycle. The intrinsic noise, caused
by the discreteness of molecules and randomness of their
interactions, leads to an escape from this limit cycle
through an adjacent unstable limit cycle, and de la Cruz
et al. attempted to evaluate the mean first passage time
(MFPT) to escape.
A crucial approximation, made in the Letter, was to

replace the original master equation by the “chemical
Langevin equation” (CLE), their Eq. (2). Unfortunately,
this standard procedure, based on the van Kampen expan-
sion in the inverse population size 1=Ω ≪ 1 [2], applies only
for typical, small fluctuations around the stable limit cycle. It
fails in the tails of themetastable quasistationary distribution
of the population size around the limit cycle. One of these
tails determines the escape rate of the population through the
unstable limit cycle. As a result, the MFPT, predicted by de
la Cruz et al., involves an error that grows exponentially
with the population size Ω ≫ 1, due to an error in the
calculation of S. In this situation, their study of a preexpo-
nential factor in the MFPT does not have much meaning.
The inadequacy of the van Kampen system-size expan-

sions for a description of large fluctuations in Markov jump
processes is, by now, well documented [3–9]. The only
general exception appears when the system is close to the
proper bifurcation of the underlying deterministic model
[5,9–12]. In the present case, it is the saddle-node bifurca-
tion of the stable and unstable limit cycles.
Fortunately, there is no need for uncontrolled approx-

imations. The Freidlin-Wentzell Wentzel-Kramers-
Brillouin (WKB) theory was extended to stochastic
populations quite some time ago [13–15]. The correspond-
ing WKB technique employs the same large parameter
Ω ≫ 1 but circumvents the van Kampen system-size
expansion, see, e.g., Ref. [9] for a recent review.
Moreover, this WKB technique was already applied to
escape from a limit cycle, in the context of the extinction of
long-lived oscillating populations [16].
Even within the framework of the CLE, much of the

Letter is devoted to a rediscovery of known results, as de la
Cruz et al. seem to be unaware of a body of important

previous analytical, numerical, and experimental works on
the noise-induced escape from limit cycles and from
attractors of dynamical systems in general [17–22]. A
proper formulation of the Freidlin-Wentzell escape opti-
mization problem, which was put forward in these works,
and which is lacking in the Letter, involves the time interval
−∞ < t < ∞. A minimum action path—an instanton—
exits the limit cycle at t ¼ −∞ while performing an infinite
number of loops. There is a whole one-parameter family of
instanton solutions, linked to one another through the time
translations t → tþ const, and each instanton yields the
same classical action. Any evidence to the contrary results
from finite-time numerical artifacts.
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