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A large class of models addressing the electroweak naturalness problem postulates the existence of new
spontaneously broken global symmetries above the weak scale. The Higgs boson arises as a pseudo-
Nambu-Goldstone boson (PNGB) whose interactions are nonlinear due to the presence of degenerate
vacua. We argue that, once the normalization of the PNGB decay constant f is determined, the Higgs
nonlinear interactions in the gauge sector are universal in the infrared and independent of the symmetry
breaking pattern G=H, even after integrating out heavy composite resonances. We propose a set of
“universal relations” in Higgs couplings with electroweak gauge bosons and in triple gauge boson
couplings, which are unique predictions of the universal nonlinearity. Experimental measurements of these
relations would serve as the litmus test of a PNGB Higgs boson.
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Introduction.—The discovery of the 125 GeV Higgs
boson confirms the Higgs mechanism for electroweak
symmetry breaking. Together with the nonobservation of
new particles to date, the question of naturalness—what
stabilizes the Higgs mass?—becomes even more pressing.
Inspired by the lightness of pions in low-energy QCD, a
large class of models proposes new spontaneously broken
global symmetries above the weak scale, in which the
Higgs boson arises as a PNGB. Prominent examples
include little Higgs models [1–3] and the holographic
Higgs models [4,5]. By now these models are generically
referred to as “composite Higgs” models [6,7]. Testing this
class of models is among the top priorities in current and
future experimental programs in high energy colliders. One
generic feature of the model is the existence of fermionic
top partners responsible for canceling the top quadratic
divergent contribution in the Higgs mass. If such a
cancellation mechanism is confirmed in the future, it would
be a striking confirmation of composite Higgs models [8].
However, there is a distinct class of models in which the top
partner is neutral under QCD, the so-called neutral natu-
ralness models [9], which originated from the twin Higgs
model [10]. In this case it is challenging, experimentally, to
discover the top partner. In this work we will focus on
another generic feature of a composite Higgs model: the

nonlinear interactions due to the PNGB nature of the
Higgs boson.
Effective Lagrangians for PNGB Higgs models rely on

the seminal works of Coleman, Callan, Wess, and Zumino
(CCWZ) [11,12], which requires specifying a broken group
G in the ultraviolet and an unbroken group H in the
infrared. The Nambu-Goldstone bosons (NGBs) are then
“coordinates” parametrizing the coset space G=H. In
CCWZ, each G=H gives a seemingly different effective
Lagrangian, valid below the scale of new symmetry break-
ing, which is at Λ ¼ 4πf ≳ 10 TeV. In addition to the
PNGB Higgs boson, there are typically other composite
resonances, at mρ ¼ gρf ≳ 1 TeV, whose presence and
interactions are model dependent. Below mρ, one often
performs a “matching” of the CCWZ Lagrangian to the
strongly interacting light Higgs (SILH) Lagrangian [13], so
as to facilitate comparison with observables. There are
numerous PNGB Higgs models, each based on a different
coset G=H [6,7], resulting in seemingly different effective
Lagrangians and predictions. For simplicity, collider stud-
ies are often based on the SOð5Þ=SOð4Þ minimal
composite Higgs model.
Later it was realized that the CCWZ Lagrangian can

be reformulated using only infrared data, by imposing
the Adler’s zero condition [14], without referring to a
target coset G=H [15,16]. Thus, in composite Higgs
models with the custodial symmetry, where the Higgs
model transforms as a fundamental representation 4 of
the SOð4Þ subgroup of a potentially larger unbroken
group H, the nonlinear Lagrangian below the cutoff scale
Λ and above the resonance scale mρ is universal. In this
Letter we extend the universal nonlinearity below the mρ

scale and argue that the universality is preserved in the
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gauge sector, which allows us to present new and
universal predictions of a PNGB Higgs model in its
couplings to electroweak gauge bosons and in triple
gauge boson couplings (TGC). Presently, we summarize
our arguments and findings; the details will be presented
in a forthcoming publication [17].
Universal nonlinearity.—One major development in the

modern S-matrix program concerns the reconstruction of
effective field theories from the soft limits of scattering
amplitudes. One prime example is the nonlinear sigma
model (NLSM) describing interactions of NGBs, whose
scattering amplitudes have long been know to possess the
Adler’s zero. Using a 4-point (pt) vertex as the building
block, one can construct the 6-point tree-level amplitudes
using only 4-pt vertices, which would not satisfy the
Adler’s zero condition. This necessitates the introduction
of a 6-pt vertex whose value is uniquely determined by
requiring the Adler’s zero condition in the 6-pt amplitude.
This program was initiated in Ref. [18] and completed to an
arbitrary number of external legs in Refs. [19,20]. At the
level of the Lagrangian, the Adler’s zero condition is
equivalent to imposing constant shift symmetries in the
NGB field, πa → πa þ εa þ � � �, where εa is a set of
infinitesimal constants. It turned out this is sufficient to
reconstruct the NLSM Lagrangian without recourse to
CCWZ and without reference to a coset [15,16]. The
equivalence of the nonlinear shift symmetry approach to
that of the CCWZ becomes manifest once a suitable basis
of group generators for H is chosen.
Consider a set of scalars πa furnishing a linear

representation of the unbroken group H, πa → πa þ
iαiðTiÞabπb þOðα2Þ, where Ti is the generator of H.
We choose a basis where Ti is purely imaginary and
antisymmetric, ðTiÞT ¼ −Ti and ðTiÞ� ¼ −Ti. It will be
convenient to define the matrix T :

T ab ¼
2

f2
ðTiÞarðTiÞsbπrπs; ð1Þ

where f is the NGB decay constant. Notice that we
have changed the normalization of f from that in
Refs. [15,16,21,22], so as to conform with the convention
in the literature in composite Higgs models. Then the
nonlinear shift symmetry that enforces the Adler’s zero
condition to all orders in 1=f is [21,22]

πa0 ¼ πa þ ½F 1ðT Þ�abεb; F 1ðT Þ ¼
ffiffiffiffi
T

p
cot

ffiffiffiffi
T

p
; ð2Þ

and the leading order two-derivative Lagrangian invariant
under the nonlinear shift symmetry is

Lð2Þ ¼ 1

2
½F 2ðT Þ2�ab∂μπ

a∂μπb; F 2ðT Þ¼ sin
ffiffiffiffi
T

p
ffiffiffiffi
T

p : ð3Þ

Notice that Eq. (3) is written entirely using infrared data:
the Adler’s zero condition and the linearly realized group
H. The broken groupG only serves the purpose of counting
the number of NGBs, which is related to the normalization
of the decay constant f. Applying Eq. (3) to the case of 4
under SOð4Þ gives the universal NLSM Lagrangian for a
composite Higgs.
So far we have only established the universal non-

linearity below the cutoff scale Λ and above the resonance
scale mρ. Integrating out the resonances results in the
SILH Lagrangian. The crucial observation of SILH is that,
after the composite resonances are integrated out, the
nonlinearity of the effective Lagrangian is preserved [13].
After the matching, one simply replaces the well-known
4π counting in NLSM by gρ ¼ mρ=f. Operators in NLSM
that are suppressed by Λ ¼ 4πf are now suppressed
by mρ ¼ gρf in the SILH Lagrangian. Otherwise the
structure of the effective Lagrangian, including the non-
linearity, remains the same. More explicitly, the NLSM
Lagrangian is organized by the naive dimensional analysis
(NDA) [23],

Seff ¼
Z

d4xΛ2f2L
�
π

f
;
∂
Λ

�
¼

Z
d4xLð2Þ þ � � � : ð4Þ

SILH replaces Λ → mρ, but the nonlinear structure
remains the same. Therefore the “symmetry-preserving”
part of the SILH Lagrangian inherits the universal non-
linearity from the NLSM Lagrangian.
There are effects that break the nonlinear shift sym-

metry of the NLSM. One example is the gauging of the
electroweak SUð2ÞL ×Uð1ÞY inside the SOð4Þ, which
can be incorporated by replacing the ordinary derivative,
∂μ → Dμ ¼ ∂μ þ iAμ. Therefore, gauging the electroweak
symmetry does not spoil the universal nonlinearity in the
NLSM. Generally speaking, massive spin-1 vectors cou-
pling to the Higgs current must be in the adjoint repre-
sentation of SOð4Þ [24], and integrating out these massive
vectors produce the same nonlinear interactions as in the
NLSM Lagrangian [13]. This implies integrating out
massive spin-1 vectors will also preserve the universality
in SILH. It is possible to produce higher dimensional
operators violating the shift symmetry that are not present
in the gauged NLSM Lagrangian. These operators, how-
ever, must be suppressed by the same coupling associated
with the renormalizable interaction in the SM Lagrangian
[13], such as the top Yukawa coupling and the quartic
Higgs coupling. Therefore these operators reside in sectors
containing fermions and Higgs potential energy. If we
focus on the gauge sector, these violations of universal
nonlinearity do not arise.
Oðp2Þ nonlinearity.—After gauging the SUð2ÞL ×

Uð1ÞY subgroup of SOð4Þ, Lð2Þ in the unitary gauge
becomes
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Lð2Þ ¼ 1

2
∂μh∂μhþ g2f2

4
sin2ðθ þ h=fÞ

×

�
Wþ

μ W−μ þ 1

2cos2θW
ZμZμ

�

¼ 1

2
∂μh∂μhþ

�
1þ 2

ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p h
v
þ ð1 − 2ξÞ h

2

v2
þ � � �

�

×

�
m2

WW
þ
μ W−μ þ 1

2
m2

ZZμZμ

�
; ð5Þ

where mW ¼ gv=2 ¼ mZ cos θW , sin θ≡ v=f and ξ≡
v2=f2 ¼ sin2 θ. In particular, v ¼ 246 GeV is different
from hhi ¼ fθ, the vacuum expectation value of the
PNGB Higgs h. It is important to note that, at this order,
couplings of n Higgs bosons with WW and ZZ are
completely determined by (i) Adler’s zero condition and
(ii) the Higgs boson sits in the 4 of the SOð4Þ. If we define
the coefficient of ðh=vÞnðm2

WW
þ
μ W−μ þm2

ZZμZμ=2Þ to be
bnh, we see the first two coefficients are

bh ¼ 2
ffiffiffiffiffiffiffiffiffiffi
1 − ξ

p
; b2h ¼ 1 − 2ξ: ð6Þ

As has been emphasized, the normalization of f, and hence
ξ, is not universal and dependent on the particular coset
G=H. Thus we can extract bh from the hVV, V ¼ W, Z,
couplings and use it as an input to predict b2h, which would
be one experimental test of the universal nonlinearity. b2h
could, in principle, be measured in a VV → hh scattering
process.
Since the coupling bnh is completely fixed by one free

parameter ξ, there are many more predictions from the
universality. It is worth stressing that, experimentally, the
overarching goal should be to overconstrain the universality
and perform as many tests as possible. However, at this
order, all other predictions involve bnh, n ≥ 3, and require
measuring VV → nh, n ≥ 4, which is a daunting task
even in a future high energy collider. (The amplitude for
VV → 3h vanishes for a symmetric coset [16,25]). It would
be more desirable if we could use only a 2 → 2 processes,
which is possible if we include the Oðp4Þ operators.
Oðp4Þ nonlinearity.—Turning off any gauging for now,

there are two building blocks for Oðp4Þ operators: daμ and
Ei
μ, which transforms as the 4 and 6A (adjoint) of SOð4Þ,

respectively,

daμðπ; ∂Þ ¼
ffiffiffi
2

p

f
½F 2ðT Þ�ab∂μπ

b;

Ei
μðπ; ∂Þ ¼ 2

f2
∂μπ

a½F 4ðT Þ�abðTiπÞb; ð7Þ

where F 2ðT Þ is defined in Eq. (3) and

F 4ðT Þ ¼ −
2i
T
sin2

ffiffiffiffi
T

p

2
: ð8Þ

In our notation a; b; � � � ¼ 1;…; 4 run in the 4, while
i; j; � � � ¼ 1;…; 6 run in the 6A, of SOð4Þ. Under the
nonlinear shift symmetry in Eq. (2),

dμ → U dμ;

Ei
μTi → UðEi

μTiÞU−1 − iU∂μðU−1Þ; ð9Þ

where U ∈ H and its explicit form can be found in
Refs. [15,16].
Gauging the electroweak SUð2ÞL × Uð1ÞY amounts to

replacing ∂μ → Dμ ¼ ∂μ þ iAμ in daμðπ; ∂Þ and Ei
μðπ; ∂Þ.

Formally, we can choose to gauge the full SOð4Þ and daμ
now becomes

daμðπ; DÞ ¼
ffiffiffi
2

p

f
½F 2ðT Þ�abðDμπÞb; Dμ ¼ ∂μ þ iAi

μTi;

ð10Þ

where Ti is the generator of SOð4Þ. Although the gauging
explicitly breaks the nonlinear shift symmetry, one can
formally treat the gauge field as a “spurion” in the 4 of
SOð4Þ that transforms covariantly in the same way as
daμðπ; ∂Þ. This suggests a new building block that is
covariant under both the shift symmetry and local gauge
transformation,

ðf−μνÞa ¼
ffiffiffi
2

p
i

f
½F 2ðT Þ�abðTiπÞbFi

μν; ð11Þ

where Fi
μν is the field strength tensor of Ai

μ. Similarly, from
Ei
μðπ; DÞ one can identity another spurion in the 6A of

SOð4Þ and construct another covariant object:

ðfþμνÞi ¼ Fi
μν þ

2

f2
Fj
μνðTjπÞa½F 4ðT Þ�abðTiπÞb; ð12Þ

which comes from singling out the term in Ei
μðπ; DÞ

proportional to Ai
μ and replacing the gauge field by its

field strength tensor. Again both operators are constructed
using only the infrared data, without recourse to a coset
G=H. The corresponding operators in the CCWZ
formalism can be found in Ref. [26], whose notation
we follow.
In the end there are four building blocks, daμ; Ei

μ; ðf−μνÞa,
and ðfþμνÞi, for constructing the Oðp4Þ operators. For
objects carrying the SOð4Þ adjoint index it is useful to
further classify them as reducible representations of
SOð4Þ ∼ SUð2ÞL × SUð2ÞR, an SUð2Þ ×Uð1Þ subgroup
of which is identified with the electroweak gauge group.
Their expressions in the unitary gauge, to all orders in
1=f, are
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daμ ¼
ffiffiffi
2

p �
δa4∂μ

�
h
f

�
þ δar

2
sinðθ þ h=fÞ×ðWr

μ − δr3BμÞ
�
;

ðEL=R
μ Þr ¼ 1� cosðθ þ h=fÞ

2
Wr

μ þ
1 ∓ cosðθ þ h=fÞ

2
Bμδ

r3;

ðf−μνÞa ¼
1ffiffiffi
2

p sinðθ þ h=fÞðWr
μν − δr3BμνÞδra;

ðfþL=R
μν Þr ¼ 1� cosðθ þ h=fÞ

2
Wr

μν þ
1 ∓ cosðθ þ h=fÞ

2
δr3Bμν; ð13Þ

where the superscripts L and R refer to the upper and lower
signs, respectively, and r ¼ 1, 2, 3 is the adjoint index in
SUð2ÞL=R. There are 11 independent operators at Oðp4Þ
that can be constructed [26], six of which are even under
space inversion x⃗ → −x⃗ and not contracted with ϵμνρσ . We
focus on these six CP-even operators in this work and
compute them to all orders in 1=f. They are

O1 ¼ ðdaμdμaÞ2; O2 ¼ ðdaμdaνÞ2;
O3 ¼ ½ðEL

μνÞr�2 − ½ðER
μνÞr�2;

O�
4 ¼ −idaμdbν ½ðfþL

μν ÞrTr
L � ðfþR

μν ÞrTr
R�ab;

Oþ
5 ¼ ½ðf−μνÞa�2; O−

5 ¼ ½ðfþL
μν Þr�2 − ½ðfþR

μν Þr�2; ð14Þ

where Tr
L=R is the SUð2ÞL=R generator. Using the SILH

power counting, the four-derivative effective action is

Sð4ÞSILH ¼
Z

d4xm2
ρf2Lð4Þ

�
π

f
;
D
mρ

�
¼

X
i

ci
g2ρ

Oi; ð15Þ

where ci are expected to be order unity constants, although
in some cases operators contributing to couplings of neutral

particles and the on-shell photon are further suppressed by
additional loop factors [13].
Predictions.—Here we present predictions of nonlinear

interactions in Higgs couplings to electroweak gauge
bosons and TGC in the unitary gauge. We start by para-
metrizing the couplings as follows:

Lh ¼
X
i

m2
W

m2
ρ
ðCh

i I
h
i þ C2h

i I2h
i þ C3V

i I3V
i Þ; ð16Þ

where Ih
i and I

2h
i areOðp4Þ operators contributing to hVV

and hhVV couplings, respectively, while I3V
i involves

TGC. Here V ¼ W, Z, γ. The Ci’s in the above are
dimensionless coefficients. We list only a subset of the
operators and predictions from the universal nonlinearity in
Table I. The complete list and prediction will be presented
in Ref. [17]. Notice that O1;2 in Eq. (14) do not contribute
to operators appearing in Table I.
Recall that ci’s in Eq. (15) are incalculable coefficients

in the derivative expansion of the effective theory and
parametrize our ignorance of the ultraviolet physics.
From Table I we can extract “universal relations” among
Ci’s in Eq. (16) that are independent of the ci’s. Some
examples are

TABLE I. Predictions of universal Higgs nonlinearity. Here cw ¼ cos θW and c2w ¼ cos 2θW , where θW is the
weak mixing angle, and tw ¼ tan θW .

Ih
i Ch

i

(1) hZμDμνZν=v ½4c2wð−2c3 þ c−4 Þ þ 4cþ4 cos θ�=c2w
(2) hZμνZμν=v −2½ðcþ4 − 2cþ5 Þ cos θ þ ðc−4 þ 2c−5 Þc2w�=c2w
(3) hZμDμνAν=v 8ð−2c3 þ c−4 Þtw
(4) hZμνAμν=v −4ðc−4 þ 2c−5 Þtw
I2h
i C2h

i
(1) h2ZμDμνZν=v2 2½c2wð−2c3 þ c−4 Þ cos θ þ cþ4 cos 2θ�=c2w
(2) h2ZμνZμν=v2 −½ðcþ4 − 2cþ5 Þ cos 2θ þ c2wðc−4 þ 2c−5 Þ cos θ�=c2w
(3) h2ZμDμνAν=v2 4twð−2c3 þ c−4 Þ cos θ
(4) h2ZμνAμν=v2 −2twðc−4 þ 2c−5 Þ cos θ
I3V
i C3V

i
igcwWþμνW−

μZν þ H:C: δg̃Z1 ¼ 2½ð2c3 − c−4 Þ cos θ − cþ4 �=c2w
igcwWþ

μ W−
ν Zμν δκ̃Z ¼ 2½ð2c3 − c−4 Þ cos θ − cþ4 c2w − 4cþ5 s

2
w�=c2w

ieWþ
μ W−

ν Aμν δκ̃γ ¼ −4ðcþ4 − 2cþ5 Þ
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C2h
3

Ch
3

¼ C2h
4

Ch
4

¼ 2c2wCh
2 − c2wCh

4=tw
2δκ̃γ

¼ 1

2
cos θ ¼ 1

2

�
1 −

1

2
ξþ � � �

�
; ð17Þ

2c2wC2h
1 − c2wC2h

3 =tw
2c2wCh

1 − c2wCh
3=tw

¼ 2c2wC2h
2 − c2wC2h

4 =tw
2c2wCh

2 − c2wCh
4=tw

¼ cos 2θ
2 cos θ

¼ 1

2

�
1 −

3

2
ξþ � � �

�
; ð18Þ

where the notation is explained in the caption of Table I.
These relations are all determined by the one single input
parameter sin θ and free from the incalculable coefficients
in Eq. (15). As such, they serve as universal predictions of
Higgs nonlinearity and can be tested in future experimental
programs on the Higgs boson. Note that Ih;2h

3 do not
contribute to processes involving the on-shell photon.
It is interesting to compare the prediction of universal

nonlinearity with theories without a PNGB Higgs, e.g.,
the standard model effective field theory (SMEFT) [27]
which augment the SM Lagrangian with higher dimen-
sional operators with arbitrary coefficients. In particular,
the dim-6 and dim-8 operators relevant for our discussion
are parameterized as follows:

LSMEFT ⊃
X

i¼W;B;HW;HB

αi
m2

ρ
Oi þ

α8i
f2m2

ρ
ðH†HÞOi; ð19Þ

where OW , OB, OHW , OHB are defined explicitly in
Ref. [13] with the gauge boson fields canonically normal-
ized. Then Eqs. (17) and (18) now become, at the leading
order in ξ,

C2h
3

Ch
3

≈
1

2

�
1þ α8HW − α8HB

αHW − αHB
ξ

�
; ð20Þ

C2h
4

Ch
4

≈
1

2

�
1þ α8W − α8B þ α8HW − α8HB

αW − αB þ αHW − αHB
ξ

�
; ð21Þ

2c2wC2h
1 − c2wC2h

3 =tw
2c2wCh

1 − c2wCh
3=tw

≈
1

2

�
1þ α8W þ α8B þ α8HW þ α8HB

αW þ αB þ αHW þ αHB
ξ

�
; ð22Þ

2c2wC2h
2 − c2wC2h

4 =tw
2c2wCh

2 − c2wCh
4=tw

≈
1

2

�
1þ α8HW þ α8HB

αHW þ αHB
ξ

�
: ð23Þ

Comparing these relations, we can see that the difference
between the universal nonlinearity and SMEFT start from
OðξÞ, which is the contribution from the dim-8 operators.

This is to be expected, since at the dim-6 level the
nonlinearity makes no prediction due to the arbitrary
normalization of f. However, the ratio of the dim-8
coefficient with that of the dim-6 is determined by the
nonlinearity.
The universal relations could be tested both at the

hadron collider and at a future lepton collider. The triple
gauge boson couplings can be measured through the
diboson production f1f̄2 → V1V2, where V1;2 denote the
massive gauge bosons W�, Z. Here the initial states are
quarks for a hadron collider and electrons for an eþe−
collider. The hVV couplings have been studied extensively
in the literature [28–44]. In contrast, the hhVV couplings,
in particular the different Lorentz structures, have received
very little attention [45–49]. They can be measured through
the double Higgs production in the vector boson fusion
(VBF) channel or double Higgs production in association
with a vector boson or even an off-shell single Higgs
decay: h� → h�V�V.
Conclusion.—In this work we argued for the universal

nonlinearity of models containing a PNGB Higgs boson
that transforms as the 4 of an SOð4Þ subgroup of the
unbroken group H, without referring to a particular coset
space G=H. We presented the effective action up to Oðp4Þ,
as well as its predictions in the Higgs couplings to
electroweak gauge bosons and the TGC. These universal
relations are fixed by a single input parameter sin θ, which
is related to the normalization of f, and could potentially be
tested using multivariate techniques in collider experiments
[32,39,50,51]. In addition, the TGC could also be probed to
a high precision at the HL-LHC [33,37]. In a forthcoming
publication [17] we will provide a comprehensive phe-
nomenological analysis of the universal relations, which
would serve as the smoking gun signal of the PNGB nature
of the Higgs boson.

This work is supported in part by the U.S. Department of
Energy under Contracts No. DE-AC02-06CH11357 and
No. DE-SC0010143.

[1] N. Arkani-Hamed, A. G. Cohen, and H. Georgi, Phys.
Lett. B 513, 232 (2001).

[2] N. Arkani-Hamed, A. G. Cohen, E. Katz, A. E. Nelson,
T. Gregoire, and J. G. Wacker, J. High Energy Phys. 08
(2002) 021.

[3] N. Arkani-Hamed, A. G. Cohen, E. Katz, and A. E. Nelson,
J. High Energy Phys. 07 (2002) 034.

[4] R. Contino, Y. Nomura, and A. Pomarol, Nucl. Phys. B671,
148 (2003).

[5] K. Agashe, R. Contino, and A. Pomarol, Nucl. Phys. B719,
165 (2005).

[6] B. Bellazzini, C. Csaki, and J. Serra, Eur. Phys. J. C 74,
2766 (2014).

[7] G. Panico and A. Wulzer, Lect. Notes Phys. 913, 1 (2016).
[8] C.-R. Chen, J. Hajer, T. Liu, I. Low, and H. Zhang, J. High

Energy Phys. 09 (2017) 129.

PHYSICAL REVIEW LETTERS 121, 261802 (2018)

261802-5

https://doi.org/10.1016/S0370-2693(01)00741-9
https://doi.org/10.1016/S0370-2693(01)00741-9
https://doi.org/10.1088/1126-6708/2002/08/021
https://doi.org/10.1088/1126-6708/2002/08/021
https://doi.org/10.1088/1126-6708/2002/07/034
https://doi.org/10.1016/j.nuclphysb.2003.08.027
https://doi.org/10.1016/j.nuclphysb.2003.08.027
https://doi.org/10.1016/j.nuclphysb.2005.04.035
https://doi.org/10.1016/j.nuclphysb.2005.04.035
https://doi.org/10.1140/epjc/s10052-014-2766-x
https://doi.org/10.1140/epjc/s10052-014-2766-x
https://doi.org/10.1007/978-3-319-22617-0
https://doi.org/10.1007/JHEP09(2017)129
https://doi.org/10.1007/JHEP09(2017)129


[9] N. Craig, A. Katz, M. Strassler, and R. Sundrum, J. High
Energy Phys. 07 (2015) 105.

[10] Z. Chacko, H.-S. Goh, and R. Harnik, Phys. Rev. Lett. 96,
231802 (2006).

[11] S. R. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177,
2239 (1969).

[12] C. G. Callan, Jr., S. R. Coleman, J. Wess, and B. Zumino,
Phys. Rev. 177, 2247 (1969).

[13] G. F. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi,
J. High Energy Phys. 06 (2007) 045.

[14] S. L. Adler, Phys. Rev. 137, B1022 (1965).
[15] I. Low, Phys. Rev. D 91, 105017 (2015).
[16] I. Low, Phys. Rev. D 91, 116005 (2015).
[17] D. Liu, I. Low, and Z. Yin, arXiv:1809.09126.
[18] L. Susskind and G. Frye, Phys. Rev. D 1, 1682 (1970).
[19] C. Cheung, K. Kampf, J. Novotny, and J. Trnka, Phys.

Rev. Lett. 114, 221602 (2015).
[20] C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, and J. Trnka,

J. High Energy Phys. 02 (2017) 020.
[21] I. Low and Z. Yin, Phys. Rev. Lett. 120, 061601

(2018).
[22] I. Low and Z. Yin, J. High Energy Phys. 10 (2018) 078.
[23] A. Manohar and H. Georgi, Nucl. Phys. B234, 189

(1984).
[24] I. Low, R. Rattazzi, and A. Vichi, J. High Energy Phys. 04

(2010) 126.
[25] R. Contino, C. Grojean, D. Pappadopulo, R. Rattazzi, and

A. Thamm, J. High Energy Phys. 02 (2014) 006.
[26] R. Contino, D. Marzocca, D. Pappadopulo, and R. Rattazzi,

J. High Energy Phys. 10 (2011) 081.
[27] B. Henning, X. Lu, and H. Murayama, J. High Energy Phys.

01 (2016) 023.
[28] J. S. Gainer, K. Kumar, I. Low, and R. Vega-Morales,

J. High Energy Phys. 11 (2011) 027.
[29] S. Bolognesi, Y. Gao, A. V. Gritsan, K. Melnikov, M.

Schulze, N. V. Tran, and A. Whitbeck, Phys. Rev. D 86,
095031 (2012).

[30] D. Stolarski and R. Vega-Morales, Phys. Rev. D 86, 117504
(2012).

[31] P. Artoisenet et al., J. High Energy Phys. 11 (2013) 043.

[32] J. S. Gainer, J. Lykken, K. T. Matchev, S. Mrenna, and M.
Park, Phys. Rev. D 91, 035011 (2015).

[33] R. Franceschini, G. Panico, A. Pomarol, F. Riva, and A.
Wulzer, J. High Energy Phys. 02 (2018) 111.

[34] K. Hagiwara, R. D. Peccei, D. Zeppenfeld, and K. Hikasa,
Nucl. Phys. B282, 253 (1987).

[35] C. Degrande, N. Greiner, W. Kilian, O. Mattelaer,
H. Mebane, T. Stelzer, S. Willenbrock, and C. Zhang,
Ann. Phys. (Amsterdam) 335, 21 (2013).

[36] A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D.
Marzocca, and M. Son, J. High Energy Phys. 02 (2017) 115.

[37] D. Liu and L.-T. Wang, arXiv:1804.08688.
[38] G. Durieux, C. Grojean, J. Gu, and K. Wang, J. High

Energy Phys. 09 (2017) 014.
[39] N. Craig, J. Gu, Z. Liu, and K. Wang, J. High Energy Phys.

03 (2016) 050.
[40] J. Gu, H. Li, Z. Liu, S. Su, and W. Su, J. High Energy Phys.

12 (2017) 153.
[41] W. H. Chiu, S. C. Leung, T. Liu, K.-F. Lyu, and L.-T. Wang,

J. High Energy Phys. 05 (2018) 081.
[42] S.-F. Ge, H.-J. He, and R.-Q. Xiao, J. High Energy Phys. 10

(2016) 007.
[43] Y. Chen, N. Tran, and R. Vega-Morales, J. High Energy

Phys. 01 (2013) 182.
[44] Y. Chen, R. Harnik, and R. Vega-Morales, Phys. Rev. Lett.

113, 191801 (2014).
[45] M. J. Dolan, C. Englert, N. Greiner, and M. Spannowsky,

Phys. Rev. Lett. 112, 101802 (2014).
[46] M. J. Dolan, C. Englert, N. Greiner, K. Nordstrom, and M.

Spannowsky, Eur. Phys. J. C 75, 387 (2015).
[47] F. Bishara, R. Contino, and J. Rojo, Eur. Phys. J. C 77, 481

(2017).
[48] E. Arganda, C. Garcia-Garcia, and M. J. Herrero, arXiv:

1807.09736.
[49] W. Kilian, S. Sun, Q.-S. Yan, X. Zhao, and Z. Zhao, arXiv:

1808.05534.
[50] Y. Chen, E. Di Marco, J. Lykken, M. Spiropulu, R. Vega-

Morales, and S. Xie, J. High Energy Phys. 01 (2015) 125.
[51] J. Brehmer, K. Cranmer, F. Kling, and T. Plehn, Phys.

Rev. D 95, 073002 (2017).

PHYSICAL REVIEW LETTERS 121, 261802 (2018)

261802-6

https://doi.org/10.1007/JHEP07(2015)105
https://doi.org/10.1007/JHEP07(2015)105
https://doi.org/10.1103/PhysRevLett.96.231802
https://doi.org/10.1103/PhysRevLett.96.231802
https://doi.org/10.1103/PhysRev.177.2239
https://doi.org/10.1103/PhysRev.177.2239
https://doi.org/10.1103/PhysRev.177.2247
https://doi.org/10.1088/1126-6708/2007/06/045
https://doi.org/10.1103/PhysRev.137.B1022
https://doi.org/10.1103/PhysRevD.91.105017
https://doi.org/10.1103/PhysRevD.91.116005
http://arXiv.org/abs/1809.09126
https://doi.org/10.1103/PhysRevD.1.1682
https://doi.org/10.1103/PhysRevLett.114.221602
https://doi.org/10.1103/PhysRevLett.114.221602
https://doi.org/10.1007/JHEP02(2017)020
https://doi.org/10.1103/PhysRevLett.120.061601
https://doi.org/10.1103/PhysRevLett.120.061601
https://doi.org/10.1007/JHEP10(2018)078
https://doi.org/10.1016/0550-3213(84)90231-1
https://doi.org/10.1016/0550-3213(84)90231-1
https://doi.org/10.1007/JHEP04(2010)126
https://doi.org/10.1007/JHEP04(2010)126
https://doi.org/10.1007/JHEP02(2014)006
https://doi.org/10.1007/JHEP10(2011)081
https://doi.org/10.1007/JHEP01(2016)023
https://doi.org/10.1007/JHEP01(2016)023
https://doi.org/10.1007/JHEP11(2011)027
https://doi.org/10.1103/PhysRevD.86.095031
https://doi.org/10.1103/PhysRevD.86.095031
https://doi.org/10.1103/PhysRevD.86.117504
https://doi.org/10.1103/PhysRevD.86.117504
https://doi.org/10.1007/JHEP11(2013)043
https://doi.org/10.1103/PhysRevD.91.035011
https://doi.org/10.1007/JHEP02(2018)111
https://doi.org/10.1016/0550-3213(87)90685-7
https://doi.org/10.1016/j.aop.2013.04.016
https://doi.org/10.1007/JHEP02(2017)115
http://arXiv.org/abs/1804.08688
https://doi.org/10.1007/JHEP09(2017)014
https://doi.org/10.1007/JHEP09(2017)014
https://doi.org/10.1007/JHEP03(2016)050
https://doi.org/10.1007/JHEP03(2016)050
https://doi.org/10.1007/JHEP12(2017)153
https://doi.org/10.1007/JHEP12(2017)153
https://doi.org/10.1007/JHEP05(2018)081
https://doi.org/10.1007/JHEP10(2016)007
https://doi.org/10.1007/JHEP10(2016)007
https://doi.org/10.1007/JHEP01(2013)182
https://doi.org/10.1007/JHEP01(2013)182
https://doi.org/10.1103/PhysRevLett.113.191801
https://doi.org/10.1103/PhysRevLett.113.191801
https://doi.org/10.1103/PhysRevLett.112.101802
https://doi.org/10.1140/epjc/s10052-015-3622-3
https://doi.org/10.1140/epjc/s10052-017-5037-9
https://doi.org/10.1140/epjc/s10052-017-5037-9
http://arXiv.org/abs/1807.09736
http://arXiv.org/abs/1807.09736
http://arXiv.org/abs/1808.05534
http://arXiv.org/abs/1808.05534
https://doi.org/10.1007/JHEP01(2015)125
https://doi.org/10.1103/PhysRevD.95.073002
https://doi.org/10.1103/PhysRevD.95.073002

