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We propose that the state of the Universe does not spontaneously violate CPT. Instead, the Universe
after the big bang is the CPT image of the Universe before it, both classically and quantum mechanically.
The pre- and postbang epochs comprise a universe-antiuniverse pair, emerging from nothing directly into a
hot, radiation-dominated era. CPT symmetry selects a unique QFT vacuum state on such a spacetime,
providing a new interpretation of the cosmological baryon asymmetry, as well as a remarkably economical
explanation for the cosmological dark matter. Requiring only the standard three-generation model of
particle physics (with right-handed neutrinos), a Z2 symmetry suffices to render one of the right-handed
neutrinos stable. We calculate its abundance from first principles: matching the observed dark matter
density requires its mass to be 4.8 × 108 GeV. Several other testable predictions follow: (i) the three light
neutrinos are Majorana particles and allow neutrinoless double β decay; (ii) the lightest neutrino is
massless; and (iii) there are no primordial long-wavelength gravitational waves. We mention connections to
the strong CP problem and the arrow of time.
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Introduction.—Observations reveal that, seconds after the
big bang, the Universe was described by a spatially flat
radiation-dominated FRW metric (plus tiny Gaussian, adia-
batic, purely growing-mode scalar perturbations described
by a nearly scale-invariant power spectrum, and, so far, no
primordial vector or tensor perturbations) [1]. This is a clue
about the origin of the Universe, but what is it trying to tell
us? The conventional view is that, in order to explain these
simple initial conditions, one should imagine that the
radiation dominated era we see was preceded by an earlier
hypothetical epoch of accelerated expansion called inflation.
In this Letter (and a longer companion paper [2]) we take

a different view. Ignoring perturbations for the moment, the
metric we see in our past is strikingly simple and analytic:
gμν ¼ a2ðτÞημν, where ημν is the flat Minkowski metric, and
the scale factor aðτÞ is just proportional to the conformal
time τ. If we take this metric seriously, and follow aðτÞ ∝ τ
across the bang, we find that the analytically extended FRW
background with −∞ < τ < ∞ suddenly exhibits a new
isometry: time reversal symmetry τ → −τ. It thus becomes
possible to adopt the natural hypothesis that, contrary to
naive appearances, the state of our Universe does not
spontaneously violate CPT.

In this Letter we explore the hypothesis that CPT is
unbroken, explain how it provides novel explanations for a
number of the observed features of our Universe, and point
out some predictions that will be tested in the coming years.
In particular, we find it yields a remarkably economical
explanation of the cosmological dark matter: if the Universe
is in its preferred CPT-symmetric vacuum, late-time
observers see heavy sterile neutrinos emerging from the
bang, for the same reason that distant observers seeHawking
radiation emerging from a black hole. In our opinion, this
provides themost elegant and compelling darkmattermodel
currently available.
Spacetime (background and perturbations).—In this

Letter we work at the level of QFT on curved space.
Before turning to the state of the QFT, in this section we
first consider what ðCÞPT says about the spacetime itself at
a purely classical level [3]. Thus, we treat the metric and the
radiation fluid using general relativity.
The line element may be written in standard ADM form:

ds2¼−N2dτ2þhijðdxiþNidτÞðdxjþNjdτÞ. To describe
our Universe (a flat FRW spacetime plus small scalar, vector
and tensor perturbations), we use “comoving gauge” so that
the xi ¼ const threads are normal to the τ ¼ const slices
(Ni ¼ 0), and the threads follow the stress-energy flow so
that (for scalar perturbations) themomentum densityTi

0 also
vanishes. Then we can write the lapse asN ¼ a½1þ ϕ�, and
hij as hij ¼ a2½ð1þ 2RÞδij þ 2γð0Þij þ 2γð1Þij þ 2γð2Þij �, where
a ¼ aðτÞ is the background scale factor,R is the “comoving
curvature perturbation,” ϕ is another scalar perturbation
related toR by the Einstein equation, and we have split the
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traceless perturbation γij into its scalar, vector, and tensor

parts: γð0Þij , γð1Þij , γ
ð2Þ
ij [4,5].

Next, to treat spinors and CPT, just as we switch from
the wave operator□ to its “square root” (the Dirac operator
=D), we switch from the line element ds2 to its “square root”
(the tetrad ea). Thus, we write ds2 ¼ ηabeaeb, where ηab ¼
diagf−1; 1; 1; 1g is the Minkowski metric, and choose a
local Lorentz gauge where the tetrad one forms ea ¼
eaμdxμ are e0 ¼ −Ndτ and ei ¼ h1=2ij dxj. The spacetime
is ðCÞPT symmetric in the sense that the tetrad geometry
according to an observer who moves forward along the
xi ¼ const thread is identical to the tetrad geometry
according to an observer who moves backward along the
thread and reverses the spatial one forms ei → −ei.
Equivalently, the tetrad at time τ after the bang is the
reverse of the tetrad at the corresponding moment before
the bang along the same thread:

eaμðτ;xÞ ¼ −eaμð−τ;xÞ: ð1Þ

Let us unpack the implications of this simple constraint:
(i) Background geometry: Eq. (1) implies that the scale

factor is odd, að−τÞ ¼ −aðτÞ, with a ∝ τ near the bang (as
in the radiation era).
If this picture is correct, so that the bang is a topologi-

cally enforced singularity, cosmological models in which
aðτÞ undergoes a nonsingular bounce at a minimum scale
factor amin > 0 are misguided.
(ii) Scalar perturbations: In fourier space, neglecting aniso-

tropic stress, R satisfies R00 þ 2ðz0=zÞR0 þ c2sk2R ¼ 0,
where c2s ¼ δp=δρ is the sound speed, k is the comoving
wave number, z2 ≡ a2ϵ and ϵ ¼ ða0=aÞ0=ða0=aÞ2 − 1. Near
the bang, where a ∝ τ and c2s ¼ 1=3, the general solution is
Rðk; τÞ ¼ τ−1½AðkÞ sinðcskτÞ þ BðkÞ cosðcskτÞ�. The con-
dition (1) then sets BðkÞ ¼ 0, eliminating the mode that is
singular at the bang, and selecting thewell-behavedmode that
approaches a constant as τ → 0.
This is precisely the boundary condition responsible

for producing the famous oscillations seen in the CMB
power spectrum, with the correct phases. This observed
phenomenon, usually attributed to inflation, is alternatively
explained by a symmetry argument.
Also note that density pertubations grow as we get

further from the bang in either direction, and, hence, the
thermodynamic arrow of time points away from the bang in
both directions (to the future and past). The possibility that
the thermodynamic arrow of time might reverse is an old
one (going back to the debates between Boltzmann and his
contemporaries [6]), and has been invoked more recently in
several interesting contexts [7–12].
(iii) Vector perturbations: Neglecting anisotropic stress,

the gauge-invariant vector metric perturbation σg satisfies
σ0g þ 2ða0=aÞσg ¼ 0 [4], so σgðk; τÞ ¼ CðkÞ=τ2 near the

bang. In our chosen gauge, σg ∝ γð1Þ0ij , so Eq. (1) implies

that σg (and hence the primordial vorticity, which is tied to
σg by the 0i Einstein equation) vanishes, again in agree-
ment with observations.
(iv) Tensor perturbations: neglecting anisotropic

stress, γð2Þij satisfies γð2Þ00ij þ 2ða0=aÞγð2Þ0ij þ k2γð2Þij ¼ 0 so

that γð2Þij ðk;τÞ¼τ−1½AijðkÞsinðkτÞþBijðkÞcosðkτÞ�. Now
Eq. (1) sets BijðkÞ ¼ 0, eliminating the mode that is
singular at the bang and selecting the mode that is well
behaved.
Note that, for each type of perturbation—scalar, vector,

and tensor—the condition (1) “protects” the geometry near
the bang by precisely eliminating the dangerous singular
modes that would cause the breakdown of linear perturba-
tion theory and destroy the smooth (Weyl) character of the
singularity. In this way of looking at it, the elimination of
the singular modes is not a consequence of a boundary
condition at τ ¼ 0, but is instead enforced by the symmetry
between past and future.
(v) UŪ pair: Eq. (1) implies eaμð0;xÞ ¼ 0. If we combine

this with Stueckelberg’s observation that an antiparticle is a
particle whose worldline proper time runs counter to
the time in the embedding spacetime [13,14], it becomes
natural to reinterpret the contracting half of our Universe as
an antiuniverse (whose intrinsic proper time runs counter
to the natural timelike coordinate in the embedding super-
space, i.e., the scale factor), so that our CPT-invariant
Universe is reinterpreted as a universe-antiuniverse pair
(UŪ), emerging from nothing. This interpretation continues
to be useful when spinors and antiparticles enter the
story: e.g., the matter-antimatter asymmetry on one side
of the bang is the opposite of the asymmetry on the
other side [2]. To convert this suggestive, semiclassical
picture into a fully quantum one (as Feynman did with
Stueckelberg’s idea) is an important task, beyond the scope
of this Letter.
CPT invariant vacuum.—Now we turn from the space-

time to the state of the QFT living on it.
In Minkowski spacetime, there is a unique vacuum that

respects the Minkowski isometries (more precisely, space-
time translations, Lorentz transformations, and CPT). But
in a generic curved spacetime, the choice of vacuum is
ambiguous: different observers will naturally define differ-
ent, inequivalent vacua, so that the zero particle state
according to one observer will contain particles according
to a different observer [15]. In particular, in an ordinary
FRW spacetime, the isometries (spatial translations, spatial
rotations, and parity) are not enough to determine a
preferred vacuum, and comoving observers at different
epochs will disagree. But, as we explain in this section, if
the FRW background also has an isometry under time
reversal τ → −τ, then there is a preferred vacuum that
respects the full isometry group (including CPT).
Consider a spinor Ψ with mass m > 0 on a flat FRW

background ds2 ¼ a2ðτÞ½−dτ2 þ dx2�. Its Lagrangian is
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L ¼ ffiffiffiffiffiffi
−g

p ½iΨ̄eμaγa∇μΨ −mΨ̄Ψ� ð2aÞ

¼ iψ̄=∂ψ − μψ̄ψ : ð2bÞ

In the first line, we have the usual curved space Dirac
operator [15]; in comoving coordinates, the tetrad is
eμa ¼ ð1=aÞδμa, and γa are the 4 × 4 Dirac gamma matrices.
In the second line, we introduce the Weyl invariant spinor
field ψðτ;xÞ and its effective mass μðτÞ:

ψ ≡ a3=2Ψ; μ≡ am; ð3Þ

with =∂ ≡ γμ∂μ the flat-space Dirac operator, and partial
derivatives ∂μ with respect to xμ ¼ fτ;xg. The resulting
equation of motion is

ði=∂ − μÞψ ¼ 0: ð4Þ

Note that, since aðτÞ is an odd function of τ, so is μðτÞ.
To quantize, we expand ψðxÞ in a basis of solutions of

Eq. (4), ψðk; h; xÞ and ψcðk; h; xÞ:

X

h

Z
d3k

ð2πÞ3=2 ½aðk;hÞψðk;h;xÞþb†ðk;hÞψcðk;h;xÞ�: ð5Þ

Here ψðk; h; xÞ ∝ eikx is the solution with momentum k,
helicity h, and “positive frequency”; ψcðk; h; xÞ≡
−iγ2ψ�ðk; h; xÞ is the charge-conjugate (“negative fre-
quency”) solution; and aðk; hÞ and bðk; hÞ are particle and
antiparticle annihilation operators, which satisfy the usual
fermionic anticommutation relations:faðk; hÞ; a†ðk0; h0Þg ¼
fbðk; hÞ; b†ðk0; h0Þg ¼ δðk − k0Þδh;h0 , all other anticommu-
tators vanishing.
But in a general curved spacetime, there is no canonical

choice for which solutions have positive frequency, and
observers in different regions will make inequivalent
choices: e.g., in FRW the positive frequency solutions
ψ− and ψþ chosen, respectively, by observers in the far past
(τ → −∞) or far future (τ → þ∞) exhibit positive fre-
quency behavior in these two limits, respectively:
ψ�ðk; h; xÞ ∼ exp½−i R τ ωðk; τ0Þdτ0� as τ → �∞, where

k ¼ jkj is the comoving wave number, and ω ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ μ2

p
> 0 is the comoving frequency. The “−” sol-

utions may then be expressed in the “þ” basis:

ψ−ðk; h; xÞ ¼ αðkÞψþðk; h; xÞ þ βðkÞψcþð−k; h; xÞ: ð6Þ

We may adjust the phases of ψþ and ψ− so that
αðkÞ ¼ cos λðkÞ, βðkÞ ¼ i sin λðkÞ, and λð−kÞ ¼ −λðkÞ
is real. The − observer’s annihilation operators ða−; b−Þ are
then related to the þ observer’s annihilation operators
ðaþ; bþÞ by the Bogoliubov transformation

�
aþðþk;hÞ
b†þð−k;hÞ

�

¼
�
cosλðkÞ isinλðkÞ
isinλðkÞ cosλðkÞ

��
a−ðþk;hÞ
b†−ð−k;hÞ

�

: ð7Þ

The observer in the far past (resp. far future) defines the
vacuum to be the state j0−i (resp. j0þi) that is annihilated
by all the operators a− and b− (resp. aþ and bþ):
a�ðk; hÞj0�i ¼ b�ðk; hÞj0�i ¼ 0. We are in the
Heisenberg picture, so states do not evolve. Note that,
unless sin λðkÞ is identically zero, j0−i and j0þi are
inequivalent: j0−i has no particles according to its own
particle number operator N− ¼ a†−a−, but a nonzero
number according to Nþ ¼ a†þaþ. Moreover, since a
and b transform as ½CPT�a�ðk; hÞ½CPT�−1 ¼
−b∓ðk;−hÞ and ½CPT�b�ðk; hÞ½CPT�−1 ¼ −a∓ðk;−hÞ,
the inequivalent vacua j0þi and j0−i are exchanged
by CPT, j0�i ¼ CPTj0∓i, so neither vacuum is CPT
invariant.
However, if we define new operators a0 and b0:

�a0ðþk;hÞ
b†0ð−k;hÞ

�

¼
�

cosλðkÞ
2

∓ isinλðkÞ
2

∓ isinλðkÞ
2

cosλðkÞ
2

��
a�ðþk;hÞ
b†�ð−k;hÞ

�

; ð8Þ

they transform as ½CPT�a0ðk; hÞ½CPT�−1 ¼ −b0ðk;−hÞ
and ½CPT�b0ðk; hÞ½CPT�−1 ¼ −a0ðk;−hÞ, so the corre-
sponding vacuum defined by a0j00i ¼ b0j00i ¼ 0 is CPT
invariant: CPTj00i ¼ j00i. In fact, there is a continuous
family of CPT-invariant vacua, obtained by defining
ðaηðþk; hÞ; b†ηð−k; hÞÞ to be a real SOð2Þ rotation of
ða0ðþk; hÞ; b†0ð−k; hÞÞ through an angle η satisfying
ηðkÞ ¼ −ηð−kÞ. The vacuum defined by aηj0ηi ¼
bηj0ηi ¼ 0 is still invariant under the full isometry group
of the FRW background including CPT. However, among
this family of “η vacua” the vacuum j00i is preferred since it
minimizes the Hamiltonian in the asymptotic “þ=−”
regions (or the particle number according to an early or
late time observer) [2].
Now we assume the Universe is in the preferred CPT-

invariant vacuum state and consider the consequences:
Neutrino dark matter.—Consider the standard model of

particle physics (including a right-handed neutrino in each
generation) coupled to Einstein gravity. There is only one
possible dark matter candidate in this model—one particle
that has not yet been detected and can have a lifetime longer
than the age of the Universe—namely, one of the three
right-handed neutrinos νR;1. This particle appears in two
places in the Lagrangian: the Majorana mass term
ν̄cR;iMijνR;j (where Mij is the 3 × 3 Majorana mass matrix)
and the Yukawa term l̄L;iYijνR;jhc (where lL;j is the left-
handed lepton doublet, hc ¼ iσ2h� is the charge conjugate
of the Higgs doublet h, and Yij is a 3 × 3 Yukawa coupling
matrix). The assertion that νR;1 is exactly stable corre-
sponds to the statement that the standard model couplings
respect the Z2 symmetry νR;1 → −νR;1. This symmetry sets
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to zero the first column of the matrix Yij, whose three
entries Yi1 would otherwise lead the νR;1 to decay.
Thus, in the same limit that νR;1 becomes stable, it also

becomes decoupled from all of the other particles in the
standard model, and so might seem to become a poor dark
matter candidate since it is not produced by thermal
processes in the early Universe. But, in our picture, these
particles have a predictable nonzero cosmic abundance,
according to late-time comoving observers like us, just
because the Universe is in the CPT-invariant vacuum j00i,
which differs from our late-time vacuum j0þi. If the stable
neutrino’s mass has a certain value, it automatically has the
abundance, coldness, and darkness needed to match obser-
vations. This yields a strikingly simple alternative explan-
ation for the dark matter, different from previous neutrino
dark-matter models based on thermal or resonant produc-
tion mechanisms [16–20].
To see this explicitly, note that near the bang, i.e., during

the radiation era, above the electroweak phase transition,
when aðτÞ ∝ τ, the dark matter neutrino has equation of
motion:

ði=∂ − μÞN1 ¼ 0 ðμ ¼ γτÞ: ð9Þ

Here, N1 ≡ a3=2ðνR;1 þ νcR;1Þ and γ is a constant given by
γ ¼ ðmdm=mplÞ ffiffiffiffiffi

ρ1
p

, where mdm is the mass of the right-
handed neutrino νR;1, mpl ¼ ð8πG=3Þ−1=2 ≈ 4 × 1018 GeV
is the Planck scale, and ρ1 ¼ a4ρ (the radiation density
times a4) is a constant.
To understand the behavior of Eq. (9), consider the

comoving frequency ωðτÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ μ2

p
. If ω were inde-

pendent of τ, the solutions would be N1 ∝ eiðkx−ωτÞ, just as
in Minkowski space. But since ω does depend on τ, we turn
to the WKB method. Consider the dimensionless WKB
parameter jω0ðτÞ=ω2j: for fixed comoving wave number k,
this vanishes near the bang (as jτj → 0) and far from the
bang (as jτj → ∞), but reaches a maximum value ∼γ=k2 at
an intermediate conformal time jτmaxj ∼ k=γ. Thus, for
wave numbers k ≫ γ1=2, the WKB parameter is always
≪1, WKB remains good and the Bogoliubov transforma-
tion between ða−; b−Þ and ðaþ; bþÞ is trivial: sin λðkÞ ≈ 0.
On the other hand, for wave numbers k ≪ γ1=2, WKB is
badly violated, and the Bogoliubov transformation is
maximal: j sin λðkÞj ≈ 1. To see this, consider ω ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ k2

p
: in the limit k ≪ γ1=2, μ2 dominates and k2 is

negligible unless the mode is far outside the Hubble
horizon; so we can neglect the spatial gradient terms in
Eq. (9) and solve ðiγ0∂τ − μÞψ ¼ 0 to find ψ ¼
ψ̂ exp½ikxþ i

R
τ μðτ0Þdτ0� where ψ̂ ¼ ðξ;−ξÞ, with ξ a

constant 2-spinor. Since μðτÞ is odd, the solution switches
from purely positive frequency in the far past to purely
negative frequency in the far future (corresponding to
j sin λðkÞj ¼ 1).

Thus, for late time observers like us, the number
density ndm of dark matter particles is ndm ¼
ð2πaÞ−3 Ph

R
d3kh00jNþj00i where the matrix element

is j sinðλðkÞ=2Þj2, so that ndm ∼ ð2πaÞ−3γ3=2 ∼
ð2πÞ−3ðmdm=mplÞ3=2ρ3=4, where ρ3=4 ∼ s, the radiation
entropy density. Since the ratio ndm=s is conserved during
the subsequent expansion, it must match the present day
value ndm;0=s0, where s0 ∼ 2.3 × 10−38 GeV3 [21], ndm;0 ¼
ρdm;0=mdm is the present dark matter number density,
and ρdm;0 ∼ 9.7 × 10−48 GeV4 is the present dark
matter energy density [1]. Thus, we estimate mdm ∼
½ðρdm;0=s0Þð2πÞ3m3=2

pl �2=5 ≈ few × 108 GeV. A more pre-
cise calculation [2] yields mdm ¼ 4.8 × 108 GeV.
We emphasize that the definition of j00i, and the

resulting estimate of ndm, is controlled by CPT symmetry,
not by the detailed physics of the bang itself. In particular,
we have seen that the Bogoliubov transformation is
insensitive to the behavior of a (or μ) near τ ¼ 0, where
the WKB parameter vanishes, and is instead dominated by
the WKB bump experienced by modes of wave number
k ∼ γ1=2 at a proper time t ∼m−1

dm before or after the bang
(when the temperature is already orders of magnitude
below the Planck scale, and the usual radiation-dominated
Friedmann equation should be reliable).
Other predictions.—Several other predictions follow [2]:

(i) The three light neutrino mass eigenstates are Majorana
particles (which will be tested by future neutrinoless double
β-decay searches [22]), and one of them is exactly massless
(which will be tested by future cosmological constraints on
the sum of the light neutrino masses [23]). (ii) We have
focused on the stable right-handed neutrino, but the other
two (unstable) right-handed neutrinos are thermally
coupled and can explain the observed matter-antimatter
asymmetry by thermal leptogenesis [24,25]. (iii) Since
gravitational waves are massless, the corresponding þ
and − vacua agree. Thus, no long wavelength gravitational
waves are produced by our mechanism.
Discussion.—Let us end with a few remarks.
(i) Here we assumed a flat, radiation dominated FRW

background. In a forthcoming paper, we explain how this
background arises [26]. (ii) In this Letter, we have
described the background spacetime geometry and radia-
tion fluid purely classically, according to general relativity.
A fuller treatment of the singularity to include the trace
anomaly [15] and quantum back-reaction requires semi-
classical methods, involving complex classical solutions
along the lines of Refs. [27–29]. (iii) A fascinating open
question is whether current observations allow the standard
model or, more properly, its minimal extension incorpo-
rating neutrino masses, to remain valid all the way up to the
Planck scale, or whether new physics is required below
this scale. With the measured central values of the Higgs
and top quark masses, the Higgs quartic self-coupling λ
runs to negative values at an energy scale below the
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Planck mass [30,31]; however a recent analysis suggests
that a strictly positive λ all the way is only disfavored at the
1.5 or 2σ level [32]. Even if the Higgs effective potential
runs negative at large vev, finite temperature corrections are
sufficient to stabilize the Higgs field at zero vev in the very
early Universe. There would only be an instability
(to a negative-Higgs-potential bulk phase) at late cosmo-
logical times, far to our future. We find it intriguing that
the most economical possibility, of no new physics, may be
viable [33], and might even explain the dark matter.
(iv) We have seen that stability of the dark matter neutrino
νR;1 implies that the Lagrangian has a symmetry under
νR;1 → −νR;1. This symmetry suffers from no anomalies—
not even gravitational anomalies [34]. It is well known that
in the standard model, the lepton representations
flL; νR; eRg echo the quark representations fqL; uR; dRg.
(This observation underlies Pati-Salam grand unification
[35], in which the leptons are a fourth color.) The parallel
symmetry in the quark sector, uR;1 → −uR;1, is interesting
for other reasons. Naively, it forces the bare mass of the up
quark to zero which, in turn, solves the strong CP problem
[36]. Unlike the symmetry we are using, this Z2 symmetry
is anomalous due to the strong interactions; however, if it
holds at any energy and, in particular, at a very high energy
scale, this may be sufficient to solve the strong CP problem
[37]. A deeper understanding of these symmetries will
likely require new insights into the origin of the three
generations in the standard model.

We thank Claudio Bunster, Job Feldbrugge, Angelika
Fertig, Steffen Gielen, Jaume Gomis, David B. Kaplan,
Ue-Li Pen, Laura Sberna, and Edward Witten for discus-
sions. Research at Perimeter Institute is supported by the
Government of Canada through Innovation, Science and
Economic Development, Canada and by the Province of
Ontario through the Ministry of Research, Innovation and
Science.

Note added.—Shortly after our Letter appeared on the
arXiv, a follow-up paper [38] pointed out that the ANITA
experiment may have already seen evidence for our dark
matter candidate.
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