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At high baryon chemical potential μB, the equation of state of QCD allows a weak-coupling expansion in
the QCD coupling αs. The result is currently known up to and including the full next-to-next-to-leading
order α2s. Starting at this order, the computations are complicated by the modification of particle

propagation in a dense medium, which necessitates nonperturbative treatment of the scale α1=2s μB. We apply
a hard-thermal-loop scheme for capturing the contributions of this scale to the weak-coupling expansion,
and we use it to determine the leading-logarithm contribution to next-to-next-to-next-to-leading order:
α3s ln2 αs. This result is the first improvement to the equation of state of massless cold quark matter in
40 years. The new term is negligibly small and thus significantly increases our confidence in the
applicability of the weak-coupling expansion.
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Introduction.—Quantum chromodynamics (QCD) is the
accepted theory of the strong interaction and describes a
wide range of physical phenomena, from the masses and
properties of hadrons to the observable characteristics of
neutron stars. In the limit of high density, the theory is,
however, notoriously difficult to solve, as lattice simula-
tions are plagued by the infamous sign problem (for some
approaches to overcome it, see, e.g., Refs. [1–7]). In the
limit of very high densities, the asymptotic freedom of
QCD [8] suggests that a weak-coupling approach to the
thermodynamics of the deconfined phase, i.e., quark
matter, might be feasible, but in practice the application
of perturbation theory is very challenging. In fact, no new
perturbative orders have been determined for the equation
of state (EOS) since 1977, when Freedman and McLerran
derived the full next-to-next-to-leading order (NNLO)
result for the pressure as a function of quark chemical
potentials in the limit of massless quarks [9,10]. Since then,
this result has been generalized to the modified minimal
subtraction (MS) scheme [11], to include finite temperature
effects [12,13], and to nonzero quark masses [14–16],

but no realistic attempts to reach next-to-next-to-next-to-
leading order (N3LO) have been made so far.
In a strongly coupled medium at large baryonic density,

interactions with the medium constituents lead to the screen-
ing of color charges—a phenomenon that is a non-Abelian
generalization of Debye screening. This generates a new in-
medium mass scale m∞ ∼ α1=2s μB ≪ μB, a scale which we
shall refer to as “soft.” Here, αs is the strong coupling
constant and μB the baryon number chemical potential [17].
This new scale manifests as infrared (IR) divergences in
naive loop expansions, and a proper handling of the soft
sector to a given order in αs requires a resummation of
diagramswith an arbitrary number of loops. In this sense, the
soft scale requires nonperturbative treatment. These non-
perturbative effects predominantly arise through interactions
of the soft modes with the typical modes in the medium,
which have momenta proportional to μB, a scale which we
shall refer to as “hard.” Because of the small number of soft
modes, the interactions among the soft modes amount to a
subdominant perturbative correction. Diagrammatically, this
is reflected in the restricted set of topologies that require
special treatment; namely, only soft gluonic propagators and
vertex functions need to be resummed.
While the naive loop expansion of the EOS leads to a

series of terms analytic in αs, this need not be the case
for the resummed soft sector: In particular, loop integrals
that are sensitive to both the hard and the soft scales
can also receive contributions from the semisoft region
between the two. This leads to logarithms of the ratio of the
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scales
R μB
α1=2s μB

d4P=ðP2Þ2 ∼ lnðα1=2s μB=μBÞ, and it gives rise

to nonanalytic terms in the weak-coupling series (here and
in what follows, P denotes the magnitude of a Euclidean
four-vector). The first order at which these nonanalytic
terms appear is NNLO, where they lead to a term propor-
tional to α2s ln αs, derived in Refs. [9,10,13].
As shall be made clear in this Letter, the pressure p of

cold and dense three-color, three-flavor (Nc ¼ Nf ¼ 3)
QCD matter with massless quarks can be written in the
form (see, e.g., Ref. [13])

p ≃
3ðμB=3Þ4

4π2

�
1 − 0.636 620αs − 0.303 964α2s ln αs

−
�
0.874 355þ 0.911 891 ln

Λ̄
μB=3

�
α2s

�

þ c3;2α3s ln2αs þ c3;1ðΛ̄Þα3s ln αs þ c3;0ðΛ̄Þα3s þOðα4sÞ;
ð1Þ

where Λ̄ is the renormalization scale, and where the c3;i are
the as-yet-uncalculated N3LO terms. In this Letter, we
apply the methodology of separating the soft contributions
to the pressure presented in Ref. [13], which allows us to
cleanly separate the logarithmic terms in the expansion.
This methodology is used to determine the first funda-
mentally new perturbative order in the EOS since the
Freedman-McLerran calculation: We shall calculate
the coefficient c3;2 in the equation above, which gives
the dominant N3LO contribution in the αs → 0 limit.
Besides a purely theoretical interest in the problem, there

is strong motivation stemming from a hope that new
perturbative orders will decrease the systematic uncertainty
in the EOS in a range of densities where it might be relevant
for the physics of neutron stars. Indeed, it has recently been
demonstrated that the EOS of neutron-star matter can
be significantly constrained by combining first-principles
information from both low and high densities with
astrophysical observations [18–21]. In light of the present
emergence of the discipline of gravitational-wave
astronomy, there is a real prospect that an active interplay
between QCD calculations, numerical relativity, and obser-
vations will provide a way to deepen our understanding of
how nature works in a previously inaccessible domain [22].
Warm-up computation and setup.—Let us start by

briefly considering how the leading nonanalytic term of
Oðα2s ln αsÞ enters the weak-coupling expansion of the
QCD pressure at T ¼ 0. At leading order α0s, the gluonic
contribution to the pressure is given by the simple vacuum
diagram

ð2Þ

where the (2þ 1) corresponds to two transverse polariza-
tion modes and one longitudinal (eventually removed by a

ghost diagram; not shown). While this gluonic contribution
is divergent, it is clearly independent of μB and in fact
vanishes upon vacuum μB ¼ 0 subtraction. (The corre-
sponding fermionic one-loop diagram gives the Fermi-
Dirac pressure of free quarks.) Corrections at higher orders
in αs arise from decorating the above diagram with an
increasing number of propagators. If the momentum flow-
ing in all of the lines is of order μB, this gives rise to the
naive loop expansion. However, when the integration
momentum in Eq. (2) becomes soft, P ∼ α1=2s μB, adding
an arbitrary number of (one-loop) self-energy insertions to
the gluon line does not change the magnitude of the
diagram. Therefore, the naive loop expansion gets the

answer wrong by an amount ∼
R α1=2s μB
0 d4P ∼ α2sμ

4
B, which

can be corrected by removing the naive expression in the
relevant kinematic regime (i.e., by introducing a counter-
term), and by adding the resummed two-particle-reducible
(2PR) “ring diagrams” of Refs. [9,10,23] to the expression.
Unlike gluons, fermions are not sensitive to the soft scale.

Only excitations above the hard Fermi momentum pF ¼
μB=3 exist, as the softer fermions are Pauli blocked.
Therefore, at T ¼ 0, the fermionic one-loop diagram, and
more generally fermionic lines, do not require similar treat-
ment and instead give rise to a naive expansion in powers of
αs. In addition, ghosts do not require resummations [24].
Consider now the resummed one-loop ring sum depicted

in the first line of Fig. 1. Since only the modes much softer
than μB require resummation, we may split the integral over
the loop momentum P connecting the self-energy inser-
tions into two regions by introducing a cutoff α1=2s μB ≪
Λ ≪ μB and revert to a naive loop expansion in the region
P > Λ,

pres
IR;1 ¼ pres

IR;1ðf0;ΛgÞ þ ploop
IR;1ðfΛ;∞gÞ; ð3Þ

where the notation f:; :g indicates the momentum cutoffs
used. The momentum flowing in the self-energy insertions
of pres

IR;1 may be either soft or hard. If it is hard, then
kinematic approximations may be employed and the self-
energies can be expanded for small external momenta. To
the leading order in the external momenta, this gives rise
to the well-known hard-thermal-loop (HTL) power count-
ing [24] and allows for a convenient computation of the
resummed diagrams within the framework of the HTL

FIG. 1. Graphical representation of Eq. (3) after kinematic
simplifications are employed. See the text for an explanation.
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effective theory [25–29]. On the other hand, if the
momentum flowing in the self-energy is soft, then this
line (if it is gluonic) also needs to be resummed. However,
because of the small volume of phase space, this contri-
bution is subleading in αs. As we will see later, it is exactly
these latter terms that give rise to the contributions we are
after at N3LO.
The logarithmic contributions to the pressure arise from

scaleless integrals in the semisoft region P ∼ Λ between
the soft and hard scales,

R μB
α1=2μB

d4P=P4 ∼ ln α1=2s , and the

coefficient of the leading NNLO logarithm can be extracted
equally from the ultraviolet (UV) limit of pres

IR;1 or from the

IR limit of ploop
IR;1. The semisoft contribution to the pressure

is in fact particularly simple, as the propagator can be
treated as if it were both soft and hard: Because P ≪ μB,
instead of all topologies, only the restricted HTL set of
diagrams contribute, but because P ≫ α1=2s μB the diagram
can be expanded in the number of self-energy insertions.
To explicitly verify the above claims, we begin with the

UV-regulated LO HTL pressure with the bare counterterm
(2) subtracted [26],

ð4Þ

where the double line corresponds to the HTL-resummed
propagator. Here, the longitudinal and transverse self-
energies read, in d ¼ 3 spatial dimensions,

ΠLðPÞ ¼ 2m2
∞

P2

jpj2
�
1 −

iP0

2jpj ln
iP0 þ jpj
iP0 − jpj

�
; ð5Þ

ΠTðPÞ ¼ m2
∞ −

ΠLðPÞ
2

; ð6Þ

where m2
∞ ¼ αsμ

2
BNf=ð9πÞ is the asymptotic HTL mass

[26]. Note that the breaking of Lorentz symmetry originates
from the rest frame singled out by the presence of the
medium.
Concentrating now on the semisoft region, we expand

the logarithms in Eq. (4) in powers of the self-energy.
Introducing two semisoft momentum-space cutoffs
α1=2s μB ≪ Λ1 ≪ Λ2 ≪ μB, we are left with the integral

psemisoft
IR;1 ¼ −dA

Z
Λ2

Λ1

d4P
ð2πÞ4

�
ΠT þ ΠL

2

P2
−
Π2

T þ Π2
L
2

2P4
þ � � �

�

¼ −
dA

ð4πÞ2
�
m2

∞ðΛ2
2 − Λ2

1Þ −m4
∞ ln

Λ2

Λ1

þOðα3sÞ
�
:

ð7Þ

The terms with a powerlike dependence on the cutoffs
Λ1 and Λ2 must cancel against corresponding terms in
pres
IR;1ðf0;Λ1gÞ and ploop

IR;1ðfΛ2;∞gÞ, respectively. Similarly,
in the full expression, the cutoff dependence in the
logarithm is canceled and Λ1 and Λ2 are replaced with
quantities of magnitudes Oðα1=2s μBÞ and OðμBÞ, as these
are the only scales appearing in the soft and hard
calculations. This gives the logarithm of αs in the
NNLO result.
There are two things to note about the calculation

presented above. First, while the logarithmic term could
be extracted from the semisoft region alone, obtaining the
constant under the logarithm requires a precise calculation
in both the hard and soft kinematic regions, which is a
considerably more challenging task. Second, it turns out
that the term nonanalytic in αs is the same as what one
would obtain by setting the momentum P on shell,
with ΠT ¼ ΠTðiP0 ¼ jpj;pÞ ¼ m2

∞ and ΠL ¼ ΠLðiP0 ¼
jpj;pÞ ¼ 0, that is, by considering two massive transverse
polarizations of gluons in the semisoft region. This is
natural because this is the particle content of the HTL
theory in its UV limit [30].
Applying the setup to α3s ln2 αs.—We have seen above

how the single ln αs term in the NNLO pressure arises from
a single semisoft integral. Similarly, if a diagram has
multiple semisoft integrals, it has the potential to give rise
to a higher power lnn αs. In particular, going to N3LO, we
may allow two gluon lines in a given Feynman diagram to
be soft, which opens up the possibility of obtaining a
ln2 αs term.
At N3LO, there are three types of contributions to

consider: Higher-order interactions between hard modes
and other hard modes, higher-order interactions between
soft modes and hard modes, and the first interactions
between soft modes and other soft modes.
Diagrammatically, the first arise from unresummed four-
loop diagrams, the second arise from single multiloop 2PR
self-energy insertions into the resummed diagrams in
Fig. 1, and the last correspond to soft limits of resummed
multiloop vacuum diagrams.
The determination of the full N3LO pressure is a

daunting task. However, a full accounting of the different
contributions listed above is not necessary in order to
extract the leading-logarithm term at N3LO, for the
following reason. The insertion of a new soft loop to a
soft line contributes a factor αs

R
d4P=P2=m2

∞ ¼ OðαsÞ,
where the factor αs originates from the new vertex,R
d4P=P2 from the loop integral and the inserted line,

and 1=m2
∞ from splitting the original soft propagator in

two. This implies that the interactions of more than two soft
momenta go beyond N3LO. Therefore, the proper gener-
alization of Eq. (3) to the N3LO case will keep track of
exactly two (gluonic) momenta. Introducing two semisoft
scales α1=2μB ≪ Λi ≪ μB, with i ¼ P, Q, we thus have
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pres
IR;2 ¼ ploop;P; loop;Q

IR;2 ðfΛP;∞g; fΛQ;∞gÞ
þ pres;P; loop;Q

IR;2 ðf0;ΛPg; fΛQ;∞gÞ
þ ploop;P; res;Q

IR;2 ðfΛP;∞g; f0;ΛQgÞ
þ pres;P; res;Q

IR;2 ðf0;ΛPg; f0;ΛQgÞ: ð8Þ

Again the logarithms may be extracted from the Λi

dependence of the individual terms. The last term corre-
sponds to a doubly soft contribution, reproduced faithfully
by the HTL resummation. In the second and third terms,
one of the loop momenta is hard, so the kinematic HTL
approximation is insufficient, and additional diagrams
that go beyond HTL must be considered. Finally, the first
term corresponds to naive four-loop (hard) diagrams, where
no resummations are needed; these graphs are tabulated
in Ref. [23].
As in the NNLO case, the leading logarithm may be

extracted from multiple places in the above expression. We
choose to extract the double logarithm from the last term,
as it corresponds to a previously known two-loop HTL
computation. Specifically, Eq. (34) of Ref. [27] gives the
integral expression for the gauge-invariant sum of the
HTL-resummed diagrams

ð9Þ

In analogy to the previous section, we may expand this
expression in the (now doubly) semisoft limit to extract the
leading ln2 αs term: This amounts to an expansion in powers
of m2

∞ to isolate the m4
∞ term, as it contains dimensionless

integrals that can yield the double logarithm [31].
Furthermore, to obtain the double logarithm, we need the

two integration momenta to be well separated to produce
scale-free integrals. Since m4

∞ already has the correct mass
dimension for the pressure, we may rewrite the expanded
HTL expression in the form

αsm4
∞

Z
d4P
P4

d4Q
Q4

f

�
P
Q
;Ωi

�
; ð10Þ

where the function f is dimensionless, and inside the f
function, P and Q represent the magnitudes of the
Euclidean four-momenta and Ωi represents the remaining
angles. We have chosen to make the dimensionful denom-
inator P4Q4 since we wish to extract precisely the integrals

Z
ΛP
2

ΛP
1

Z
ΛQ
2

ΛQ
1

d4P
P4

d4Q
Q4

∼ ln2α1=2s þOðln αs; 1Þ; ð11Þ

where the new semisoft cutoffs ΛP
1;2;Λ

Q
1;2 inside the f

function are defined as before. In analogy to the NNLO
case, the double logarithm in the full expression arises

when the semisoft cutoffs become replaced by quantities
of Oðα1=2s μBÞ and OðμBÞ.
It is now clear that if we consider an expansion of f

about P=Q ¼ 0,

f

�
P
Q
;Ωi

�
¼ � � � þ a−1ðΩiÞ

Q
P
þ a0ðΩiÞ þ a1ðΩiÞ

P
Q
þ � � � ;

ð12Þ

the only term that will give a double logarithm will be
the constant term a0. This corresponds precisely to the
P ≪ Q limit. Similarly, there is a contribution from P ≫ Q
corresponding to an expansion of f about Q=P ¼ 0.
Correctly accounting for the two integration regions reveals
that the full double logarithm comes from the average of
these contributions.
After extracting the average of the two series coefficients

defined above, we are left with a double logarithm
multiplying a (convergent) dimensionless angular integral
given in Eq. (3) of the Supplemental Material [32], which
can be computed analytically. The result is the coefficient
c3;2 of the α3s ln2 αs term in Eq. (1),

c3;2α3s ln2αs ¼ −
11

48

NcdA
ð2πÞ3 αsm

4
∞ln2αs

¼ 3ðμB=3Þ4
4π2

½−0.266075α3s ln2αs�; ð13Þ

where the second equality holds forNc ¼ Nf ¼ 3. We have
additionally verified that by repeating the calculation with
ΠT ¼ m2

∞ and ΠL ¼ 0 from the outset, the result for c3;2
remains unchanged, as was the case for the α2s ln αs term.
Equation (13) is our main result.
In order to elevate our result to the subleading-logarithm

order Oðα3s ln αsÞ, more care must be taken. Single loga-
rithms may appear when only one of the loop momenta is
semisoft while the other one is either soft or hard: If the
other loop momentum is soft, a full HTL resummation of
that line must be performed and the result cannot be
expanded in powers of ΠT=L as above. Meanwhile, if the
other loop momentum is hard, no kinematic simplifications
can be performed and no restrictions on topology and the
number of fermion lines can be applied in that part of the
diagram. In addition, the expansion of the soft one-loop
diagram of Eq. (3) to higher orders in the soft loop
momentum will lead to contributions of Oðα3s ln αsÞ that
go beyond the HTL effective theory.
Conclusions.—In the Letter at hand, we have extracted

the leading N3LO correction to the pressure of cold quark
matter using an existing two-loop computation within the
hard-thermal-loop effective theory. We note that the HTL
result was derived in the different context of a hot quark-
gluon plasma, but it is equally applicable to cold quark
matter, as the soft contributions to the EOS are insensitive
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to the details of the physics at the hard scale (T for a hot
quark-gluon plasma and μB for cold quark matter). The
hard scale appears in the calculation only through the
asymptotic mass m2

∞ ∼ αs
R
d3pfðpÞ=jpj, where f is the

relevant distribution function.
We note that at higher orders, the semisoft contributions

should continue to give rise to the leading logarithms
αnþ1
s lnn αs. Quite strikingly, we find that the leading-

logarithm contributions at NNLO and N3LO are described
by a theory with only two transverse gluons with a mass
m∞. This leads us to conjecture that the leading-logarithm
terms even at higher orders can be computed in this vastly
simplified framework.
In Fig. 2, we display the pressure, evaluated with Λ̄ ¼

2μB=3 and a two-loop running coupling, which indicates that
the partial N3LO term constitutes only a tiny correction to
the existing NNLO result. One often estimates the error
of a perturbative result such as Eq. (1) by studying its
dependence on the renormalization scale Λ̄. However, the
variation of this scale is completely insensitive to any as-yet-
uncalculated soft physics: It is sensitive only to some subset
of higher-order UV-sensitive terms in the weak-coupling
series. As such, it is possible to grossly underestimate the
systematic error by this procedure, as is the case at high T,
where the soft contributions are even parametrically larger
than the next hard correction at any order (as they enter with
odd powers of α1=2s ). That the leading-logarithm soft con-
tribution at N3LO gives a negligible correction to the NNLO
result thus inspires significant confidence in the error
estimation of the previous results, and by extension increases
confidence in using the perturbative result as ab initio input
in calculations of the properties of neutron stars [15,18–21]
as well as simulations of gravitational-wave signals from
neutron-star mergers.
By exploiting the same techniques that were outlined in

the present Letter, we are confident that a calculation of the

pressure to order Oðα3s ln αsÞ is feasible, and we plan to
report the result of this calculation in the near future.
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