
 

Antiferromagnetism Emerging in a Ferromagnet with Gain

Huanhuan Yang, C. Wang, Tianlin Yu, Yunshan Cao,* and Peng Yan†

School of Electronic Science and Engineering and State Key Laboratory of Electronic Thin Film and Integrated Devices,
University of Electronic Science and Technology of China, Chengdu 610054, China

(Received 3 July 2018; revised manuscript received 28 August 2018; published 5 November 2018)

We present a theoretical mapping to show that a ferromagnet with gain (loss) is equivalent to an
antiferromagnet with an equal amount of loss (gain). Our findings indicate a novel first-order ferromagnet-
antiferromagnet phase transition by tuning the gain-loss parameter. As an appealing application, we
demonstrate the realization as well as the manipulation of the antiferromagnetic Skyrmion, a stable
topological quasiparticle not yet observed experimentally, in a chiral ferromagnetic thin film with gain.
We also consider ferromagnetic bilayers with balanced gain and loss and show that the antiferromagnetic
Skyrmion can be found only in cases with a broken parity-time symmetry phase. Our results pave the way
for investigating the emerging antiferromagnetic spintronics and parity-time symmetric magnonics in
ferromagnets.
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The first-order antiferromagnetic (AFM) to ferromagnetic
(FM) phase transition (or the other way around) has received
a tremendous attention in the community of condensed
matter physics [1–5]. It involves a transition from a
configuration with an antiparallel orientation of the magnetic
moments to a parallel configuration, or vice versa.
Conventionally, the FM-AFM phase transition is induced
by heating [6,7], pressure [8,9], and field [3,4,10], restricted
to some specific materials, such as FeRh,RMn2Ge2, and Dy,
to name a few. It would be very interesting and important if
one could find other effective control methods and principles
to manipulate the first-order FM-AFM phase transition
without the mentioned constraints.
Loss and gain are ubiquitous in nature. Tantalizing

physics under their balance has attracted enormous interest
and has found many great applications in the context of
parity-time (PT ) symmetry and exceptional points (EPs)
[11] in a broad field of quantum mechanics [12], optics
[13–16], acoustics [17,18], optomechanics [19,20], elec-
tronics [21–25], and, very recently, in spintronics [26–30]
and cavity spintronics [31,32]. In Ref. [26], Lee et al.
proposed two coupled macroscopic FM layers respecting
the PT symmetry—one layer with loss and another one
with an equal amount of gain—and discussed their dynam-
ics in the framework of Landau-Lifshitz-Gilbert (LLG)
equation [33]. The positive Gilbert damping (loss) in
magnets usually comes from the phonon dissipation and

the electromagnetic radiation, while the negative one (gain)
can be realized by parametric driving and/or spin transfer
torque [26,28–30]. In this Letter, we investigate the proper-
ties of microscopic easy-plane “gain” ferromagnets. We
map the equation of motion of local magnetic moments to a
dissipative one in antiferromagnets and thus argue for their
equivalence. Based on this finding, we numerically dem-
onstrate the formation of an AFM Skyrmion, a stable
topological quasiparticle yet to be observed experimentally,
in single-layer chiral ferromagnets with gain, and we study
its dynamics driven by spin-polarized electric currents. We
also investigate the spin-wave spectrum in PT symmetric
bilayer ferromagnets by tuning the balanced gain-loss
parameter. The phase diagram of the first-order FM-AFM
phase transition is obtained (see Fig. 1). It is interesting that
the emerging antiferromagnetism and the AFM Skyrmion
can be found only when the PT symmetry is broken.
We start with the following Hamiltonian of a ferromag-

net in two spatial dimensions (the x-y plane):

Hfmig ¼ −
X
hiji

Jmi ·mj −
X
hiji

Dij · ðmi ×mjÞ

þ
X
i

Kðmi · ẑÞ2 þHDDIfmig; ð1Þ

where mi is the unit spin vector at the ith site ðixa; iyaÞ,
with ixðyÞ being an arbitrary integer and a the lattice
constant, J > 0 is the FM exchange coupling constant,
Dij ¼ Dr̂ij × ẑ is the interfacial Dzyaloshinskii-Moriya
interaction (DMI) vector [34,35] with the unit vector r̂ij ¼
rij=rij connecting sites i and j at a distance rij ¼ jrijj,
hiji sums over all nearest-neighbor sites, K > 0 is the
easy-plane magnetic anisotropy constant, and
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HDDIfmig ¼
X
i≠j

μ0M2
sa6

4πr3ij
½mi ·mj − 3ðmi · r̂ijÞðmj · r̂ijÞ�

ð2Þ

is the nonlocal dipolar interaction, with μ0 being the
vacuum magnetic permeability and Ms the saturation
magnetization. Ideal magnetic materials for the energy
model (1) are Fe0.7Co0.3Si [36], CoFeB [37], etc. The
generalization of the present model to generic two-
dimensional (2D) magnets with, e.g., honeycomb lattices,
next-nearest-neighbor interactions, or different anisotropy
axes, is straightforward.
In a ferromagnet with gain, the time evolution of the

magnetization dynamics can be described by the modified
LLG equation [26,33]

dmi

dt
¼ −γmi ×Heff;i − αmi ×

dmi

dt
; ð3Þ

where γ is the (positive) gyromagnetic ratio and α > 0 is
the gain coefficient. The first term in the right-hand side of
Eq. (3) describes the Larmor precession of local spins about
the effective field Heff;i ¼ −ðμ0Msa3Þ−1∂Hfmig=∂mi.
The second term is a torque driving the spin away from
the field. Owing to the very presence of the gain, the energy
change rate of the spin system

dH
dt

¼ αγμ0Msa3

1þ α2
X
i

jmi ×Heff;ij2 ð4Þ

is always non-negative. The parallel state of magnetizations
in the ferromagnet is thus unstable, and the system seeks
the energy maximum.
To obtain more insights, we utilize a mapping ni ¼ −mi

and recast Eq. (3) into

dni

dt
¼ −γni × H̃eff;i þ αni ×

dni

dt
; ð5Þ

which recovers the dissipative LLG equation describing
the collective motion of spin vectors ni governed by
a new Hamiltonian H̃fnig ¼ −Hfnig, with H̃eff;i ¼
−ðμ0Msa3Þ−1∂H̃fnig=∂ni. Interestingly, we note that H̃
can be interpreted as a 2D AFM Hamiltonian, with J being
the AFM exchange constant andK the easy-axis anisotropy
constant along the z direction. While the physical meaning
of a negative dipolar interaction −HDDIfnig is not so
transparent, we find that the dipole-dipole interaction
effectively renormalizes the exchange constant as J → J −
μ0M2

sa3=ð4πÞ when the stabilized magnetizations are
aligned in an antiparallel manner by expanding the
Hamiltonian for nearest neighbors. This correction, how-
ever, usually is negligibly small: In Fe0.7Co0.3Si [36], for
instance, the ratio μ0M2

sa3=ð4πJÞ ∼ 10−4. We thus conclude
that a ferromagnet with gain is equivalent to an antiferro-
magnet with an equal amount of loss. The statement can be
presented the other way around as well: An antiferromagnet
with gain is equivalent to a ferromagnet with the same loss.
Then we show that the above mapping indicates a first-

order FM-AFM phase transition by tuning the gain-loss
parameter α. To this end, we choose the magnetization hmx

i i
as the order parameter, with h� � �i representing the average
over all sites, and numerically solve Eq. (3) with the
MUMAX3 package [38]. We use materials parameters of
Fe0.7Co0.3Si [39]. By systematically changing the param-
eter α, we observe a sharp transition of the order parameter
at the point α ¼ 0, as shown in Fig. 1(a). The internal
magnetization configuration changes from a FM state to an
AFM one, as depicted in the inset. This is direct evidence of
the first-order FM-AFM phase transition. Further, we find
that for bilayer ferromagnets with the PT symmetry, the
first-order phase transition point coincides with the EP,
depending on both the gain-loss parameter and the inter-
layer coupling constant, as shown in Fig. 1(b) (see the
derivations and discussions below).
Now we introduce one compelling application of our

findings on Skyrmion generations and manipulations. It is
common wisdom that Skyrmions cannot stabilize in a
single easy-plane ferromagnet without applying the exter-
nal magnetic field perpendicular to the plane [36,40,41].
We challenge this view by realizing an AFM Skyrmion in a
FM thin film with gain. In the simulations, we choose a
fixed gain parameter α ¼ 0.01.
We start with a random initial (t ¼ 0) magnetization

profile [see Fig. 2(a)], which mimics the state of the thermal
demagnetization, for instance. At t ¼ 0.035 ns, local
magnetic moments quickly evolve to an antiparallelly
aligned state, as shown in Fig. 2(b). We therefore achieve
an AFM state in a ferromagnet with the energy cost
2 × 602 J ≈ 9.4 eV. The average power is estimated to
be as low as 43 nW, comparable to that used to excite spin
waves in FM thin films [42]. However, the Skyrmionic spin
texture is yet to emerge. In Fig. 2(c), we randomize all spins
inside a circle of radius 5 nm in the film center, which can

(b)(a)

x

y
z

FIG. 1. (a) Order parameter hmx
i i as a function of α in a single

FM layer. The dots are numerical results. (Inset) Spin configu-
rations of FM and AFM states. (b) Phase diagram of the PT
symmetric bilayer by tuning the gain-loss parameter α and the
interlayer coupling constant λ. Symbols are numerical results,
and the green curve is the analytical formula min∀ kαcðkÞ ¼
λ=½2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ0ðλþ ζ0Þ
p �.
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be realized by local heatings or current pulses [43]. At
t ¼ 0.14 ns, an AFM Skyrmion stabilizes [see Fig. 2(d)].
The profile of the staggered magnetization of the AFM
Skyrmion can be well described by the formula proposed in
Ref. [44], as shown in the inset of Fig. 2(e).
To manipulate the AFM Skyrmion motion, we apply an

in-plane spin-polarized electric current je ¼ −jex̂ with
je ¼ 5.0 × 1011 Am−2. We find that the AFM Skyrmion
propagates with a large velocity 3000 ms−1. We note that
the Skyrmion trajectory is exactly along the flowing
direction of electrons, without suffering the Skyrmion
Hall effect [see Fig. 2(e)]. The high speed of the AFM
Skyrmion agrees with the formula v ¼ ðβ=αÞux̂ obtained
from Thiele’s equation [45,46], as shown in the inset of
Fig. 2(f), where u ¼ μBje=½jejMsð1þ β2Þ� is the drift
velocity of conduction electrons, with μB being the Bohr
magneton, e the electron charge, and β the material non-
adiabatic parameter (we set β ¼ 0.1 in the simulations). We
do not observe any visible difference with or without
dipolar fields. Owing to the repulsive force from the
boundary, the AFM Skyrmion is slowed down but finally
annihilates at the edge since the driving force from the
current overcomes the edge repulsion, as shown in Fig. 2(f).
All these features of the AFM Skyrmion motion can be well
reproduced by simulating (5) instead of (3) (not shown).
Compared to their FM counterparts, AFM Skyrmions

[47] have some other advantages, such as the elevated
mobility [48–51] and unusual thermal properties [48,52],
among others [53–57]. One recent breakthrough toward

this direction is the experimental realization of ferrimag-
netic Skyrmions in GdFeCo films with an inhibited
Skyrmion Hall effect [58,59]. Because of its intrinsic
difficulties in materials and detections, the AFM
Skyrmion is yet to be observed in experiments. Our strategy
to generate the AFM Skyrmion in single-layer ferromag-
nets thus provides a possible way to overcome the barrier.
We next extend the original idea of Ref. [26] to two

coupled FM films by including finite intralayer exchange
couplings, which enables us to investigate the spin-wave
(magnon) excitations. The schematic setup is shown in
Fig. 3(a), with m and m0 representing the spatiotemporal
magnetization direction in the layer with gain and the layer
with loss, respectively. The equations of motion for the
coupled magnetization dynamics read

dmi

dt
¼ −γmi × ½Heff;i þ λðJ=μ0Msa3Þm0

i� − αmi ×
dmi

dt
;

dm0
i

dt
¼ −γm0

i × ½H0
eff;i þ λðJ=μ0Msa3Þmi� þ αm0

i ×
dm0

i

dt
;

ð6Þ

where H0
eff;i is made identical to Heff;i in Eq. (3) by

replacing its constituent m with m0, and λ > 0 is the ratio
between the interlayer and the intralayer exchange cou-
pling. Under a combined operation of parity P (mi ↔ m0

i
and Heff;i ↔ H0

eff;i) and time reversal T (t → −t, mi →
−mi, m0

i → −m0
i, Heff;i → −Heff;i, and H0

eff;i → −H0
eff;i),

(a) (b)

(c) (d)

FIG. 3. (a) Schematic plot of coupled FM bilayers
(30 × 30 × 1 nm3) with balanced gain (red layer) and loss (green
layer) with equilibrium magnetizations along the x̂ direction.
(b) Evolution of ω1;2 on α for two representative spin-wave
modes k ¼ ½ð π

6aÞ; ð π4aÞ� (blue curves) and ½ð π
6aÞ; ð π6aÞ� (red curves).

(c) Contour plot of the mode dependence of αc. PT symmetry is
never broken in the white region labeled “Inf”, the abbreviation
for infinity. (d) Critical frequency ωc as a function of k. In the
calculations, we adopted the materials parameters of Fe0.7Co0.3Si
and the interlayer coupling constant λ ¼ 0.1.

(a) (b) (c)

(d) (e) (f)
t=0 ns t=0.035 ns t=0.04 ns

t=0.14 ns t=0.148 ns t=0.154 ns

-je

0

-1

+1
mz

5 nm

x

y

z

FIG. 2. (a) Random spin configuration at t ¼ 0. (b) AFM state
evolved at t ¼ 0.035 ns. (c) Randomizing spins inside the circle
at t ¼ 0.04 ns. (d) AFM Skyrmion stabilized at t ¼ 0.14 ns.
(Inset) Magnetization profile of the cross section of the AFM
Skyrmion. (e) Current-driven AFM Skyrmion motion. (Inset)
Spatial distribution of the z component of the Néel vector li, with
X being the position of the Skyrmion center. The dots are
numerical results and the green curve is a fitting with Eq. (7)
in Ref. [44]. (f) AFM Skyrmion annihilation at the film boundary.
(Inset) Current dependence of the Skyrmion velocity when it is
far from the edge. The dots are numerical results, and the solid
line is the analytical formula.
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we find that Eqs. (6) are invariant and thus respect the PT
symmetry. To obtain the spin-wave spectrum, we consider a
small deviation of both mi and m0

i from their equilibrium
direction x̂: mi¼ð1;δmi;y;δmi;zÞ andm0

i¼ð1;δm0
i;y;δm

0
i;zÞ,

with jδmi;yj þ jδmi;zj þ jδm0
i;yj þ jδm0

i;zj ≪ 1. The eigen-
solutions of linearized equations (6) have the forms of
δmi;y ¼ Yeiðk·r−ωtÞ, δmi;z ¼ Zeiðk·r−ωtÞ and δm0

i;y ¼
Y 0eiðk·r−ωtÞ, δm0

i;z ¼ Z0eiðk·r−ωtÞ, with r ¼ ðix; iyÞa and

k ¼ ðkx; kyÞ being the wave vector of the spin wave. We
thus obtain the equation for the column vector ΨðkÞ ¼
ðY; Z; Y 0; Z0ÞT:

HðkÞΨðkÞ ¼ ωðkÞΨðkÞ; ð7Þ

where H is a 4 × 4 matrix

HðkÞ ¼ γ

ð1þ α2Þμ0Msa3

0
BBBBB@

χ1ðkÞ þ α½χ�2ðkÞ− 2iK0� χ2ðkÞ þ αχ1ðkÞ αχ�0 χ0

−αχ1ðkÞ þ χ�2ðkÞ− 2iK0 −αχ2ðkÞ þ χ1ðkÞ χ�0 αχ�0
αχ0 χ0 χ1ðkÞ− α½χ�2ðkÞ− 2iK0� χ2ðkÞ− αχ1ðkÞ
χ�0 αχ0 αχ1ðkÞ þ χ�2ðkÞ− 2iK0 αχ2ðkÞ þ χ1ðkÞ

1
CCCCCA
;

ð8Þ

with χ0 ¼ iλJ, χ1ðkÞ ¼ 2D sin kya, χ2ðkÞ ¼ 2iJðcos kxaþ
cos kyaÞ − ið4þ λÞJ − 2iK0, and K0 ¼ K þ μ0M2

sa3=2
summing up the easy-plane anisotropy and the demagnet-
izing energy. The solutions of eigenfrequencies come in
pairs �ω. Two positive solutions, corresponding to
counterclockwise magnetization precession around the
ground state along the x̂ direction, are relevant and can
be expressed as

ω1;2ðkÞ ¼ λþ 2ζðkÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2 − 4α2ζðkÞ½λþ ζðkÞ�

q
ð9Þ

multiplied by γJ=½ð1þ α2Þμ0Msa3�, with ζðkÞ ¼ 2−
cos kxa − cos kyaþ ðD=JÞ sin kya. In deriving Eq. (9),
we have dropped the contribution from K0 since we focus
on the exchange spin-wave region. For a given k, as
the gain and loss parameter α increases, the two eigen-
frequencies approach one another, and at some critical
value α ¼ αc they coalesce at the EP and bifurcate into the
complex plane [see Fig. 3(b)]. At the EP, the two normal
modes coalesce as well. The domain with real eigenfre-
quencies is termed the exact phase, otherwise known as the
broken phase. From Eq. (9), one can obtain both the critical
gain-loss parameter and the critical frequency. Never-
theless, we point out a special region −λ ≤ ζðkÞ ≤ 0 in
which the PT symmetry is never broken without consid-
ering the nonlinear effect of the LLG equations (6). This
fact is in contrast to conventional PT symmetric systems
suffering symmetry breaking when the strength of the gain-
loss term exceeds a certain critical value [26]. Of course,
the nonlinear magnon-magnon interaction complicates this
picture and will generate a level broadening of spin-wave
eigenmodes [42]. For ζðkÞ outside ½−λ; 0�, the two critical
parameters are given by

αcðkÞ ¼
λ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζðkÞ½λþ ζðkÞ�p ;

ωcðkÞ ¼
γJ

μ0Msa3
λþ 2ζðkÞ
1þ α2cðkÞ

; ð10Þ

both of which are mode dependent. Figures 3(c) and 3(d)
show the distribution of αc and ωc over the first Brillouin
zone, respectively. The center of the white region in
Fig. 3(c) does not coincide with the origin, with a down-
ward shift arctanðD=JÞ caused by the DMI.
In the exact phase α<min∀ kαcðkÞ¼ λ=½2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ0ðλþζ0Þ
p �

with ζ0 ¼ 3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðD=JÞ2

p
, predictions from the linear

spin-wave theory compare well with the full simulation of
Eqs. (6) that the steady-state magnetizations in both layers
oscillate around the initial misalignment from the x̂ axis
without being attenuated or amplified (see Fig. 4). Since
both layers are in the FM state in the exact phase, we
observe only the counterclockwise spin-wave modes.

(a) z

x
-y

(b) z

x
-y

4×10-3

4×
10

-3

FIG. 4. Trajectory of the steady-state magnetizations at the site
ð30a; 30aÞ in both (a) the gain layer and (b) the lossy layer in the
exact phase, with enlarged details shown on the right side. The
blue dot indicates the instantaneous phase of the spin. We set
pinned boundary conditions and α ¼ 0.01 with the same rest
parameters as were used in Fig. 3.
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In the broken phase α > λ=½2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ0ðλþ ζ0Þ

p � ≈ 0.012 for
λ ¼ 0.1, the linear theory indicates an exponential growth
of the spin-wave amplitude, which is associated with the
case in which the eigenfrequencies (9) have an imaginary
part. The induced instability can drive the spin away from
its equilibrium direction. The situation in the critical phase
α ¼ λ=½2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ0ðλþ ζ0Þ
p � is similar: The linear spin-wave

theory introduces a linear instead of an exponential growth
of the wave amplitude, which is the consequence of the EP
degeneracy. The lossy layer thus preserves the in-plane FM
state to some extent (not shown). However, in the gain
layer, it is interesting that the original in-plane magnetiza-
tions along the x̂ direction evolve to be perpendicular to
the plane (but with a negligibly small global canting of an
angle less than 2.5° with respect to the normal of the lossy
layer) and finally form an AFM Skyrmion, as shown in
Figs. 5(a)–5(d). The EP thus exactly coincides with the
FM-AFM phase transition point in the gain layer, which has
been verified by micromagnetic simulations; see Fig. 1(b).
Negative damping is essential to realizing our proposal.

Its real world implementation methods are multiform,
besides the two approaches introduced above. A recent
experiment reported the electric-field-induced negative
magnetic damping in FMjFE (ferroelectric) heterostruc-
tures [60]. In Ref. [61], Wegrowe et al. thoroughly analyzed
the spin transfer in an open FM layer, and they found that
the negative damping appears naturally for describing the
exchange of spins between the magnetic system and the
environment [62–64].
In summary, we uncovered a mapping between a

ferromagnet with gain and an antiferromagnet with an
equal amount of loss. A novel first-order FM to AFM phase
transition, or vice versa, was predicted by tuning the gain-
loss parameter. In a chiral easy-plane ferromagnet in the
presence of gain, we showed the emergence of a stabilized
AFM Skyrmion without applying any external field. In 1D
and 2D nonchiral gain ferromagnets, we envision the
formation of AFM domain walls [65] and vortices [66],
respectively. We also studied the spin-wave spectrum in
FM bilayers with balanced gain and loss. We predicted a
spectral region in the first Brillouin zone, in which the PT
symmetry is never broken in the framework of linear spin-
wave theory. We found that the emerging antiferromag-
netism and the AFM Skyrmion appear in the gain layer
only in cases of a broken PT symmetry phase. The results

presented here open a new way to create and manipulate
AFM solitons in simple ferromagnets through the first-
order FM-AFM phase transition, and they build a novel
bridge connecting the PT symmetry to magnonics and
Skyrmionics.
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