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We show that Britto-Cachazo-Feng-Witten (BCFW) recursion relations can be used to compute all tree
level scattering amplitudes in terms of 2 → 2 scattering amplitude in UðNÞ N ¼ 2 Chern-Simons (CS)
theory coupled to matter in the fundamental representation. As a by-product, we also obtain a recursion
relation for the CS theory coupled to regular fermions, even though in this case standard BCFW
deformations do not have a good asymptotic behavior. Moreover, at large N, 2 → 2 scattering can be
computed exactly to all orders in 't Hooft coupling as was done in earlier works by some of the authors.
In particular, forN ¼ 2 theory, it was shown that 2 → 2 scattering is tree level exact to all orders except in
the anyonic channel [K. Inbasekar et al., J. High Energy Phys. 10 (2015) 176], where it gets renormalized
by a simple function of 't Hooft coupling. This suggests that it may be possible to compute the all loop exact
result for arbitrary higher-point scattering amplitudes at large N.
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Introduction.—Chern-Simons (CS) gauge theories
coupled to matter fields have a wide variety of applications
in areas as diverse as quantum Hall physics, anyonic
physics, topology of three manifolds, quantum gravity
via the AdS=CFT correspondence, etc. In particular, CS
theories coupled to matter in the fundamental representa-
tion [1,2] are conjectured to enjoy a strong-weak duality,
which follows from the study of their corresponding bulk
duals [2–5]. Moreover, at largeN, these theories are exactly
solvable [1,2,6,7]. This led to impressive large N, κ
(keeping the 't Hooft coupling λ ¼ ðN=κÞ fixed) compu-
tations to all orders in the 't Hooft coupling in both sides of
duality and hence verifying the duality quite convincingly.
These computations include exact multipoint current cor-
relators [8–14], exact partition function [2,15–23], and
exact S matrices [24–27] (see also [12,28–31] for further
checks of duality). Recently, the duality was made more
precise in [32–35] and subsequently generalized to finite N
in [36–42]. An example of the strong-weak duality is the
duality between CS gauge theory coupled to fundamental

fermions and CS gauge theory coupled to fundamental
critical bosons. Other examples include self-dual theories,
such asN ¼ 1,N ¼ 2 supersymmetric CS matter theories.
At large N, it was demonstrated that the S matrix for the
2 → 2 scattering computed exactly to all orders in the
't Hooft coupling displays an unusual modified crossing
relation [24,25,27]. Moreover, for N ¼ 2 theory, the result
is tree level exact [24] except in the anyonic channel, where
it gets renormalized by a simple function of the 't Hooft
coupling.
A natural question to ask would be is it possible to

compute arbitrarym → n scattering amplitudes at all values
of the 't Hooft coupling at largeN, κ? Given the simplicity of
the results, at least in the supersymmetric case, it is also
interesting to ask if the computability of scattering ampli-
tudes extends to finite N, κ. As a first step towards these
questions, we compute all tree level amplitudes for the
N ¼ 2 theory and the regular fermionic theory. We show
that a m → n scattering amplitude can be computed recur-
sively in terms of the 2 → 2 scattering amplitudes in these
theories. Similar recursion relations in three dimensions
were first developed in [43], in the context of the Aharony-
Bergman-Jafferis-Maldacena (ABJM) theory, and sub-
sequently applied to other theories such as 3D super-
Yang-Mills theory in [44] and massive 3D N ¼ 2 gauge
theories in [45]. Note that, the self-dual N ¼ 2 supersym-
metric theory is particularly interesting and important since
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via RG flow, we can obtain nonsupersymmetric dual pairs,
such as critical bosons coupled to CS theory and regular
fermions coupled to Chern-Simons theory [12,20].
Four-point scattering amplitude.—In this Letter, we

compute scattering amplitudes in fermion coupled to
SUðNÞ CS theory (FCS)
Z

d3x

�
−

κ

4π
ϵμνρTr

�
Aμ∂μAρ −

2i
3
AμAνAρ

�
þ ψ̄i=Dψ

�
;

ð1Þ
and in N ¼ 2 CS matter theory coupled to a chiral
multiplet given by

SL
N¼2

¼
Z

d3x
�
−

κ

4π
ϵμνρTr

�
Aμ∂μAρ −

2i
3
AμAνAρ

�

þ ψ̄i=Dψ −Dμϕ̄Dμϕþ 4π2

κ2
ðϕ̄ϕÞ3 þ 4π

κ
ðϕ̄ϕÞðψ̄ψÞ

þ 2π

κ
ðψ̄ϕÞðϕ̄ψÞ

�
: ð2Þ

For our purposes, it is convenient to introduce the spinor
helicity basis [46] defined by

pαβ
i ¼ pμ

i σ
αβ
μ ¼ λαi λ

β
i ; ðpi þ pjÞ2 ¼ 2pi:pj ¼ hλαi λi;αi2:

ð3Þ
Below we use the notation hλαi λj;αi ¼ hiji. For a super-
symmetric amplitude, the standard procedure involves intro-
duction of on-shell Grassman variables θ such that the
supercreation and superannihilation operators are given by

Ai ¼ ai þ θiαi; A†
i ¼ θia

†
i þ α†i ; ð4Þ

where ða†i ; aiÞ or ðα†i ; αiÞ create and annihilate a boson or
fermion with momenta pi, respectively. The two on-shell
supercharges for n-point scattering amplitudes are given by

Q ¼
Xn
i¼1

qi ¼
Xn
i¼1

λiθi; Q̄ ¼
Xn
i¼1

q̄i ¼
Xn
i¼1

λi∂θi : ð5Þ

For FCS theory in (1), the tree level 2 → 2 scattering
amplitude is given by [25]

AF
4 ¼ hψ̄ðp1Þψðp2Þψ̄ðp3Þψðp4Þi ¼

h12ih24i
h23i δ

�X4
i¼1

pi

�
:

ð6Þ
For N ¼ 2 theory in (2), the tree level 2 → 2 super-
amplitude is given by

AS
4 ¼

h12i
h23i δ

�X4
i¼1

pi

�
Q2 ¼ h12i

h23i δ
�X4

i¼1

pi

� X4
1¼i<j

hijiθiθj:

ð7Þ

Here AS
4 is the superamplitude computed using the super-

creation or annihilation operators defined in (4). Any
component amplitude can be obtained from (7) by picking
up the coefficient of products of two θ’s.
Higher-point scattering amplitude.—Britto-Cachazo-

Feng-Witten (BCFW) recursion relations are an efficient
method to compute and express arbitrary higher-point
scattering amplitudes in terms of product of lower-point
amplitudes. Standard procedure for BCFW involves the
deformation of two external momenta of the particles by a
complex parameter z such that the particles continue to
remain “on shell” and the total momentum conservation of
the process continues to hold. In 3D, BCFW deformations
are a little different than in 4D and were first discussed in
[43] (we follow their notations closely). BCFW recursion
relations are applicable in 3D provided that the higher-point
amplitudes are regular functions at both z → ∞ and z → 0.
In the following section, we study the z → ∞ (and z → 0)
behavior of the amplitudes in the theories described earlier.
We find it convenient to deform color contracted (we label
them as “1” and “2”) external legs. In three dimensions,
momentum deformation of particles 1 and 2 can be written
in terms of the spinor-helicity variables as

�
λ̂1

λ̂2

�
¼ R

�
λ1

λ2

�
; where R ¼

 
zþz−1

2
− z−z−1

2i

z−z−1
2i

zþz−1
2

!
: ð8Þ

In the theories (1) and (2), all three-point vertices involve
gauge fields and since the CS gauge field does not have an
on-shell propagating degree of freedom, it follows that only
even-point functions are nonzero. This also implies that the
four-point functions are fundamental building blocks for
higher-point functions.
Under the deformation (8), any tree level scattering

amplitude for FCS theory in (1) is not well behaved at large
z and hence does not obey the requirements of BCFW.
However, this situation is cured for the N ¼ 2 theory
defined in (2). Additionally, conservation of the super-
charges in (5) require that the on-shell spinor variables θ be
deformed as

�
θ̂1

θ̂2

�
¼ R

�
θ1

θ2

�
; ð9Þ

where the R matrix is defined by (8).
Let us denote the 2n-point superamplitude as A2nðλ1; λ2;

…; λ2n; θ1; θ2;…; θ2nÞ and the deformed amplitude by
A2nðλ̂1; λ̂2;…; λ2n; θ̂1; θ̂2;…; θ2n; zÞ. The deformed super-
amplitude can be explicitly written as an expansion in the θ
variables as follows:

A2nðzÞ ¼ A0ðzÞ þ A1ðzÞθ̂1ðzÞ þ A2ðzÞθ̂2ðzÞ
þ A12ðzÞθ̂1ðzÞθ̂2ðzÞ

¼ A0ðzÞ þ Ã1ðzÞθ1 þ Ã2ðzÞθ2 þ A12ðzÞθ1θ2; ð10Þ
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where in the last line of (10) we have used (8) and the fact
that θ̂1ðzÞθ̂2ðzÞ ¼ θ1θ2. We have also defined

�
Ã1ðzÞ
Ã2ðzÞ

�
¼ RT

�
A1ðzÞ
A2ðzÞ

�
; ð11Þ

whereRT is the transpose of theRmatrix defined in (8), with
RRT ¼ 1. The supermomentum conservation implies that
the large z behavior of the superamplitudeA2nðzÞ is identical
to that of the componentsA0 andA12. Hence it is sufficient to
show that either A0 or A12 are well behaved, since super-
symmetric ward identity guarantees the required behavior
for the rest of the amplitudes. It is convenient to write the
fields in pairwise contractions, since they transform in the
fundamental representation of the gauge group. For instance,
we are interested in the large z behavior of amplitudes such as
ðψ̄ i

1ϕ2iÞðϕ̄j
3ψ4jÞ… and ðϕ̄i

1ψ2iÞðψ̄ j
3ϕ4jÞ…, where the ellip-

ses represent color contracted bosonic or fermionic particles
allowed by interactions in (2). These amplitudes appear in
A0 and A12 in (10), respectively.
We have checked explicitly by Feynman diagrams that

the amplitude A0 ¼ A6ðψ̄1ϕ2ϕ̄3ψ4ϕ̄5ϕ6Þ is well behaved.
We discuss the large z behavior of the general 2n-point
amplitude using the background field method [47] in the
next section.
Asymptotic behavior of amplitudes.—To understand the

large z behavior of various scattering amplitudes, it is
extremely useful to think from the background field method
point of view introduced in [47]. Here z deformed particles
are considered as hard particles propagating in a back-
ground of soft particles. The amplitude is modified due to
the (a) modified propagator of intermediate hard particle,
(b) modified contribution of various vertices, and (c) modi-
fied fermion wave function, in case an external deformed
particle is a fermion. Detailed analysis shows (we follow
closely [43,47]) that the nontrivial z → ∞ behavior of the
amplitude is due to diagrams of the kind depicted in Fig. 1.
The values of these diagrams are

gauge-fieldexchange∶
4πi
κ

hk4jγμj1i
kν3p

ρ
2

ðk3þp2Þ2
ϵμνρ; ð12Þ

contact vertex∶ −
2π

κ
hk4j1i: ð13Þ

Under the 1–2 z deformations (8), in the z → ∞ limit, the
OðzÞ part of the amplitude cancels and the amplitude
behaves as Oð1=zÞ. Hence, this amplitude has a regular
z → ∞ behavior for N ¼ 2 theory. This cancellation
works even for the four-point function hψ̄1ϕ2ϕ̄3ψ4i, which
receives contributions from the diagrams in Fig. 1 with the
blob removed and k3 → p3; k4 → p4 are taken to be on-
shell momenta. It is important to emphasize that we need
minimum N ¼ 2 amount of supersymmetry for this to
work [48].
Recursion relations in N ¼ 2 theory.—In the last

section, we have demonstrated that A0 is well behaved
in large z. Hence, we can apply the BCFW recursion
relation directly to the superamplitude in the left-hand side
of (10). The recursion formula for a 2n-point superampli-
tude can be expressed in terms of lower-point super-
amplitudes as follows (see Fig. 2):

A2nðz ¼ 1Þ ¼
X
f

Z
dθ
p2
f

�
za;f

z2b;f − 1

z2a;f − z2b;f
ALðza;f; θÞARðza;f; iθÞ þ ðza;f ↔ zb;fÞ

�
; ð14Þ

ðz2a;f; z2b;fÞ ¼
−ðpf − p2Þ · ðpf þ p1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpf − p2Þ2ðpf þ p1Þ2

q
4q · ðpf − p2Þ

; ð15Þ

where the integration is over the intermediate Grassmann
variable θ and A2nðz ¼ 1Þ is the undeformed 2n-point
amplitude. In the above, pf is the undeformed momentum
that runs in the factorization channel f and the summation

in (14) runs over all the factorization channels corresponding
to different intermediate particles going on shell. Here, za;f
and zb;f are given by (15), where the null momenta q are
defined in terms of the spinor-helicity variables as

p1
p2

k4 k3

p1 p2

k3k4

FIG. 1. The diagrams that have a nonregular z → ∞ behavior.
OðzÞ part of these two diagrams cancel against each other to give
a regular z → ∞ behavior of the total amplitude. In the above
diagram, the solid lines correspond to fermions and the dashed
lines correspond to bosons. This amplitude appears in A0 in (10).
The gray colored lines correspond to deformed hard particle.
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qαβ ¼ 1

4
ðλ2 þ iλ1Þαðλ2 þ iλ1Þβ: ð16Þ

Note that (14) has a very similar form (but not quite the same
as discussed below) to the one obtained in [43] for theABJM
theory [49] that enjoysN ¼ 6 supersymmetry. It is remark-
able that such recursion formulas exist in a theory with much
lesser supersymmetry such as the one in discussion.
The appearance of square roots in expression (15) could

be seen as a concern for giving rise to branch cuts in
the amplitudes. However, note that ALð−zÞARð−zÞ ¼
−ALðzÞARðzÞ in the integrand of (14) [50]. Also the
prefactor is an odd function of z. Consequently the total
integrand is an even function of za;f and zb;f and hence only
depends on z2a;f and z2b;f. Moreover, the integrand is also
symmetric under za;f ↔ zb;f. This implies that the ampli-
tude is only a function of z2a;f þ z2b;f and z

2
a;fz

2
b;f, and hence

there are no square roots in the final expression.
As an explicit demonstration of recursion relations in

(14), consider the six-point [51] amplitude A6ðλ1…λ6Þ≡
ðϕ̄ψÞðψ̄ϕÞðϕ̄ϕÞ in the N ¼ 2 Superconformal Chern-
Simons theory. This amplitude factorizes into two channels
as shown in Fig. 3.
The recursion formula can be explicitly written as

hϕ̄1ψ2ψ̄3ϕ4ϕ̄5ϕ6i

¼
�
za;f

z2b;f − 1

z2a;f − z2b;f
h ˆ̄ϕ1ϕ̂fϕ̄5ϕ6iza;fh ˆ̄ϕð−fÞψ̂2ψ̄3ϕ4iza;f

þ ðza;f ↔ zb;fÞ
�

i
p2
f

����
pf¼p234

þ
�
za;f

z2b;f − 1

z2a;f − z2b;f
h ˆ̄ϕ1ψ̂fψ̄3ϕ4iza;fh ˆ̄ψ ð−fÞψ̂2ϕ̄5ϕ6iza;f

þ ðza;f ↔ zb;fÞ
�

i
p2
f

����
pf¼p256

ð17Þ

¼
�
32π2i
κ2

��h2jp4j3ip12 ·p56− h2jp1j3ip34 ·p56

p2
256p

2
124

þ½h3jp12j5iðh2jp1j5ip34 ·p56− h2jp6j5ip34 ·p12Þ
− h34ih12iðh1jp6j4ip12 ·p56− h1jp2j5ih4jp6j5iÞ�

×
1

p2
234p

2
123p

2
126

�
: ð18Þ

Fields with hats correspond to deformed momenta. We
have checked (17) explicitly by computing the relevant
Feynman diagrams. It is a curious fact that the total number
of Feynman graphs that contribute to A6 is 15. Of these, 11
are reproduced by the channel pf ¼ p234 and the remaining
four in the channel pf ¼ p256. Moreover, we have also
reproduced the correct additional poles in the respective
channels. The final answer is manifestly free of any
spurious poles and square roots as we argued above.
Recursion relations in the fermionic theory.—In this

section, we show that the BCFW recursion relations can be
used to compute 2n-point amplitude A2n ¼ ðψ̄1ψ2Þ…
ðψ̄2n−1ψ2nÞ for the regular fermionic theory coupled to
CS gauge field (1). If we apply (8) to this amplitude, it is
easy to show that it does not have a good large z (as well as
z → 0) behavior; hence we cannot readily apply the BCFW
recursion relation [52] to determine all higher-point fer-
mionic amplitudes. However, we show below that we can
use the recursion relation of the N ¼ 2 to write a recursion
relation for the fermionic theory.
As a first step towards this, let us note that the Feynman

diagrams for any tree level all-fermion scattering amplitude
in the N ¼ 2 theory (2) is identical to that of the tree level
scattering amplitude in the fermionic theory (1). In the
previous section, we proved for the N ¼ 2 theory that an
arbitrary higher-point superamplitude can be written only in
terms of the four-point superamplitude. The same can be said
for the component amplitudes, including the purely fer-
mionic component amplitude [53]. Let us note that, for the
four-point superamplitude, supersymmetry relates all the
component four-point amplitudes to one component ampli-
tude, which can be taken to be four-fermion scattering
amplitude [see (7)]. Thus, an arbitrary higher-point compo-
nent amplitude can be written only in terms of four-fermion
amplitude. This can be recursively done for an arbitrary
2n-point amplitude; however, for simplicity, we write the
recursion relation for the six-point amplitude below,

FIG. 2. Recursion formula for a 2n-point amplitude. The black
lines denote the undeformed legs, the external gray lines
represent the deformed legs, and pf represents the momentum
in the factorization channel.

FIG. 3. BCFW recursion for the six-point amplitude. Factorization into two channels. Each four-point amplitude on the rhs is on shell.
Two adjacent lines with the same color are color contracted. Note that the gray lines in particular represent the BCFW deformed legs.

PHYSICAL REVIEW LETTERS 121, 161601 (2018)

161601-4



hψ̄1ψ2ψ̄3ψ4ψ̄5ψ6i ¼
�
za;f

z2b;f − 1

z2a;f − z2b;f

�
z2a;f þ 1

2za;f
þ i

z2a;f − 1

2za;f

h1̂4i
hf̂4i

hf̂6i
h2̂6i

�
h ˆ̄ψ1ψ̂fψ̄3ψ4ih ˆ̄ψ ð−fÞψ̂2ψ̄5ψ6iza;f

þ ðza;f ↔ zb;fÞ
�

1

p2
f

����
pf¼p256

þ
�
za;f

z2b;f − 1

z2a;f − z2b;f

�
z2a;f þ 1

2za;f
þ i

z2a;f − 1

2za;f

h1̂6i
hf̂6i

hf̂4i
h2̂4i

�

× h ˆ̄ψ1ψ̂fψ̄5ψ6ih ˆ̄ψ ð−fÞψ̂2ψ̄3ψ4iza;f þ ðza;f ↔ zb;fÞ
�

1

p2
f

����
pf¼p234

;

¼
�
16π2i
κ2

��
1

p2
124p

2
125p

2
256

−
1

p2
123p

2
126p

2
234

�
½−h1jp34j2ih3jp56j4ih5jp12j6i þ h56ih12ih34i

× ðh5jp12j6ih56i þ h3jp56j4ih34i þ h1jp34j2ih12iÞ�: ð19Þ

The above answer is remarkably simple and is manifestly
invariant under the permutations of particle pairs f12g; f34g,
and f56g, as expected.
Discussion.—In this Letter, we presented recursion rela-

tions for all tree level amplitudes inN ¼ 2 CSmatter theory
andCS theory coupled to regular fermions.Belowwediscuss
some interesting open questions for future research.
It was shown in [24] that the 2 → 2 scattering amplitude

in the N ¼ 2 theory does not get renormalized except in
the anyonic channel, where it gets renormalized by a simple
function of the 't Hooft coupling. A natural question is why,
in the N ¼ 2 theory, the scattering amplitude has such a
simple form, whereas the corresponding amplitudes in the
fermionic [25] and other less supersymmetric N ¼ 1 [24]
theories are quite complicated, and if the simplicity of the
amplitudes continues to persist with higher-point ampli-
tudes. It is also interesting to explore an analog of the
Aharonov-Bohm phase for higher-point amplitudes. It may
very well turn out that the Aharonov-Bohm phases of
higher-point amplitudes are products of the Aharonov-
Bohm phases of the 2 → 2 amplitude. BCFW recursion
relations provide a strong indication towards this result.
To answer the above questions,we need to compute higher

scattering amplitudes to all orders in λ. A possible way is to
investigate the Schwinger-Dyson equation. However, the
Schwinger-Dyson equation approach is quite complicated
even at the six-point level. A refined approach might be to
look for a larger class of symmetries such as dual super-
conformal symmetry [54] andYangian symmetry and use the
powerful formulation of [55] to obtain results. Given the fact
that these theories are exactly solvable at large N as well as
the fact thatN ¼ 2 theory is self-dual, it could turn out that
the N ¼ 2 theory may be one of the simplest playing
grounds to develop new techniques in computing Smatrices
to all orders [55]. Furthermore, exact solvability at large N
indicates that these models might even be integrable. One
possible way to investigate integrability is to show the
existence of an infinite-dimensional Yangian symmetry.
Since these theories relate to various physical situations,
any of the above exercisesmayprovide insight into finiteN, κ
computations.
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