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Starting from a parametrization of the quantum effective action for gravity, we calculate correlation
functions for observable quantities. The resulting templates allow us to reverse engineer the couplings
describing the effective dynamics from the correlation functions. Applying this new formalism to the
autocorrelation function of spatial volume fluctuations measured within the causal dynamical triangu-
lations program suggests that the corresponding quantum effective action consists of the Einstein-Hilbert
action supplemented by a nonlocal interaction term. We expect that our matching-template formalism can
be adapted to a wide range of quantum gravity programs allowing us to bridge the gap between the
fundamental formulation and observable low-energy physics.
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Introduction.—A characteristic feature of quantum grav-
ity research is its fragmentation into disjoint branches
including, e.g., string theory [1,2], loop quantum gravity
[3,4], the asymptotic safety program [5–8], causal dynami-
cal triangulations (CDT) [9], causal set theory [10,11],
group field theory [12,13], and nonlocal gravity theories
[14–16]. Each approach formulates its own fundamental
dynamics typically at the Planck scale. The complexity of
these formulations makes it quite hard to derive physical
consequences from the fundamental formulation. (Any
candidate for a theory of quantum gravity that reproduces
general relativity in the infrared gives rise to universal one-
loop corrections to, e.g., the Newton potential. However, it
is highly nontrivial that a given microscopic prescription
based, e.g., on a discretized spacetime structure or the
violation of Lorentz symmetry at trans-Planckian scales,
admits such a limit.)
A canonical way towards addressing this problem would

be the construction of the quantum effective action Γ which
encodes the dynamics of a quantum theory taking all
quantum fluctuations into account. In this way, it stores
the outcome of a large number of (scattering) processes in
an economical way. Generally, finding the exact form of Γ
is considered equivalent to solving the theory. Not surpris-
ingly, calculating the quantum effective action is a hard
problem. While fundamental Lagrangians describing our
known physical theories are local and often restricted to a
small number of interaction terms, Γ generically contains

all possible interactions permitted by the symmetries of
the theory. Furthermore, quantum corrections related to
massless particles like the graviton give rise to nonlocal
terms [17].
In contrast, correlation functions built from fluctuations

of physical quantities like volumes of (sub-) manifolds Σ,
Vn ¼

R
Σ d

nx
ffiffiffi
g

p
, and curvatures are accessible even at the

nonperturbative level [18–21]. In this Letter, we explicitly
demonstrate that this information allows us to reconstruct
(parts of) the underlying quantum effective action, thereby
taking a first explicit step in such a reconstruction program.
Starting from the two-point autocorrelation functions of
three-volume fluctuations measured in Monte Carlo sim-
ulations within CDT [18–21], we determine several cou-
plings appearing in Γ. Our analysis provides first-hand
evidence for the presence of nonlocal terms which could
affect the gravitational dynamics at cosmic scales.
The quantum effective action for gravity.—In the case of

gravity, the quantum effective action may be built from the
spacetime metric and its curvature tensors. The local part of
the quantum effective action can then be organized in terms
of a derivative expansion. The lowest order terms coincide
with the Einstein-Hilbert action

Γlocal ¼ 1

16πGN

Z
d4x

ffiffiffi
g

p ½2Λ − R� þ…; ð1Þ

where GN and Λ are Newton’s constant and the cosmo-
logical constant. The dots represent terms containing four
or more derivatives as

R
d4x

ffiffiffi
g

p
R2, or the Goroff-Sagnotti

counterterm [22–24] which will not be resolved here.
The nonlocal (NL) part of Γ typically contains inverse

powers of the Laplacian □≡ −gμνDμDν acting on curva-
ture tensors. At second order in the curvature, this leads to
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terms of the form (For UV modifications of gravity
including these types of form factors, see, e.g., [25,26].)

ΓNL ∝
Z

d4x
ffiffiffi
g

p
RF ð□ÞR; ð2Þ

where R is linear in the curvature tensors and the fun-
ctions F ð□Þ are known as form factors. (The form
factors F ð□Þ, defined through the matrix elements
hxjF ð□Þjyi≡ Lðx − yÞ allow us to write nonlocal termsR
d4x

ffiffiffiffiffiffiffiffiffi
gðxÞp R

d4y
ffiffiffiffiffiffiffiffiffi
gðyÞp

RðxÞLðx − yÞRðyÞ into quasilocal
form. Regularity of the nonlocal terms may require sup-
plementing the operator appearing in the structure functions
by nontrivial endomorphism terms built from the curvature
[27]. We do not include them in the expressions (2), since
their resolution depends on correlators which are beyond
the scope of this Letter.) For the purpose of this Letter, we
focus on diffeomorphism-invariant contributions which are
quadratic in the curvature tensor and contain two inverse
powers of the Laplacian, F ð□Þ ¼ □

−2. This class contains
the two independent terms

ΓNL
R ¼ −

b2

96πGN

Z
d4x

ffiffiffi
g

p
R□−2R; ð3aÞ

ΓNL
C ¼ −

b̃2

96πGN

Z
d4x

ffiffiffi
g

p
Cμνρσ□

−2Cμνρσ: ð3bÞ

Using the Bianchi identity satisfied by the Riemann
tensor,

R
d4x

ffiffiffi
g

p
Rμν□−2Rμν can be rewritten in terms of

these combinations and higher-order curvature terms and,
thus, is not considered in the present construction. The
characteristic feature of the nonlocal terms (3) is that they
contribute mass terms to the propagators of scalar [Eq. (3a)]
and graviton fluctuations [Eq. (3b)] when expanded around
flat space. Thus, Eq. (3a) is the only diffeomorphism-
invariant combination giving rise to a mass-type contribu-
tion to the two-point function in a toroidal background
studied below. The task at hand is, then, to derive the values
of the parametersGN;Λ; b; b̃;…, in terms of the parameters
defining the fundamental theory. (For the implementation of
this strategy in effective field theory, see [28].) In general, the
latter set will vary from theory to theory. For CDT, they are
given by the bare Newton’s constant κ0 and the relative size
of spatial and timelike lines encoded in Δ [9].
Derivation of the matching template.—The foliation

structure, constituting an elementary building block in
the CDT program [29,30], suggests to write Γ using the
Arnowitt-Deser-Misner formalism, reviewed, e.g., in [31].
In this case, the spacetime metric gμν is decomposed into a
lapse function, a shift vector, and a metric σij measuring
distances on spatial slices Σ orthogonal to a normal vector
nμ. Curvature tensors constructed from gμν can be separated
into terms containing the intrinsic and extrinsic curvatures
defined with respect to the foliation. In particular, the
volume of the spatial slices,

V3ðtÞ≡
Z
Σ
d3x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
σðt; xÞ

p
; ð4Þ

where σ denotes the determinant of σij, is invariant with
respect to a change of coordinates on the spatial slice and
constitutes an observable once the foliation is fixed.
CDT simulations have been performed for spatial slices

Σ̄ possessing the topology of a three sphere [18] and also,
recently, for toroidal geometry [19–21]. Quite remarkably,
the resulting profiles for the expectation value of three
volumes V3ðΣ̄; tÞ as a function of the Euclidean time
parameter t ∈ ½0; 1Þ agrees with spacetime metrics of the
form

ḡμν ¼ diag½1; aðtÞ2σ̄ijðxÞ�; ð5Þ

where

torus∶ aðtÞ ¼ 1; σ̄ij ¼ δij;

3-sphere∶ aðtÞ ¼ sinðπtÞ; σ̄ijðxÞ ¼ σ̄S
3

ij ðxÞ; ð6Þ

with σ̄S
3

ij ðxÞ the standard metric of the three sphere. For
concreteness, we will focus mainly on the toroidal case and
only briefly comment on the analogous analysis for the
spherical case. In the former case, the measured volume
profile is essentially flat. Requiring that Σ̄ ¼ S1 × S1 × S1

is a solution to the equations of motion then fixes Λ ¼ 0.
The higher-derivative and nonlocal terms in the quantum
effective action do not contribute to the dynamics for
this case.
Motivated by the existence of a well-defined background

geometry, one can then study the autocorrelation of three-
volume fluctuations around the background,

V2ðt0; tÞ ¼ hδV3ðt0ÞδV3ðtÞi: ð7Þ

Based on the quantum effective action, the fluctuations in
the spatial metric are defined in the standard way, setting

σijðt; xÞ ¼ σ̄ij þ δσijðt; xÞ: ð8Þ

The fluctuations in the three volume can then be found by
expanding V3ðΣ; tÞ≡ R

d3x
ffiffiffi
σ

p
in powers of the fluctua-

tions. To leading order,

δV3ðtÞ ¼
1

2

Z
d3x

ffiffiffī
σ

p
σ̄ijδσij þOðδσ2Þ: ð9Þ

Introducing the fluctuation field σ̂ðt; xÞ≡ σ̄ijδσijðt; xÞ, the
correlator V2 is given by the integral over the propagator
Gσ̂ σ̂ðt0; x0; t; xÞ≡ hσ̂ðt0; x0Þσ̂ðt; xÞi
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V2ðt0; tÞ ¼
1

4

Z
d3x0

ffiffiffī
σ

p Z
d3x

ffiffiffī
σ

p hσ̂ðt0; x0Þσ̂ðt; xÞi: ð10Þ

The computation of the two-point function proceeds
by expanding the quantum effective action to second order
in σ̂, Γquad ¼ ð1=32πGÞ R d4x

ffiffiffī
g

p
σ̂Γð2Þσ̂. The propagator

Gσ̂ σ̂ðt0; x0; t; xÞ can then be expressed in terms of the
eigenvalue spectrum fλ̄ng and normalized eigenfunctions
Φnðt; xÞ of the differential operator Γð2Þ,

G ¼ 16πGN

X
n

1

λ̄n
Φ�

nðt0; x0ÞΦnðt; xÞ: ð11Þ

For compact spaces and correlation functions involving
fluctuations which are averaged over Σ̄, the construction of
the two-point function can be simplified by the following
observation. On compact spaces, the eigenfunctions
Φnðt; xÞ can be expanded in a complete set of orthonormal
functions ψkðxÞ defined on Σ̄,

Φnðx; tÞ ¼
X
k

ϕn;kðtÞψkðxÞ: ð12Þ

The spatial integrals appearing in (10) then project
the expansion (12) on the spatially constant mode
ψ0ðxÞ≡ ½V3ðΣ̄Þ�−1=2. Hence,

V2ðt0; tÞ ¼ 4πGNV3ðΣ̄Þ
X0

n

1

λn
ϕ�
nðt0ÞϕnðtÞ; ð13Þ

where fλng is the eigenvalue spectrum of Γð2Þ restricted to
constant spatial modes. The prime indicates that the zero
mode should be excluded since it corresponds to an overall
rescaling of the volume.
The next step computes Γð2Þ by expanding the local and

nonlocal terms in Γ given by (1) and (2) to second order in
σ̂. Restricting to fluctuations which are constant on Σ̄, the
result reads

Γð2Þ ¼ 1

3

�
∂2
t − b2 þ 1

2
Λ
�
: ð14Þ

Notably, this expression does not contain b̃, indicating that
the correlator (10) does not carry information about the
nonlocal graviton mass term.
Constructing V2ðt0; tÞ on a toroidal background requires

the eigenvalues and eigenfunctions of Γð2Þ, solving (The
mode σ̂ comes with a wrong-sign kinetic term. Following
the CDT study [18], we consider the negative of the
corresponding operator in the sequel.)

−ϕ00
nðtÞ þ b2ϕnðtÞ ¼ λnϕnðtÞ: ð15Þ

The solution is readily given in terms of Fourier modes

ϕnðtÞ ¼ e2πint; λn ¼ ð2πnÞ2 þ b2; n ∈ Z: ð16Þ

Based on the spectrum (16), the propagator can be readily
calculated. Carrying out the sum gives

X0

n

1

λn
ϕ�
nðt0ÞϕnðtÞ

¼ e2πiðt0−tÞ

2bð4π2 þ b2Þ
�
ðb − 2πiÞ2F1

�
1; 1 −

ib
2π

; 2

−
ib
2π

����e2πiðt0−tÞ
�
− ðb → −bÞ

�
þ c:c: ð17Þ

For b2 < 4π2, the sum can be expanded in a convergent
power series in b2 whose coefficients contain polylogar-
ithms:

X0

n

1

λn
ϕ�
nðt0ÞϕnðtÞ

¼
X∞
n¼1

½Li2nðe2πiðt0−tÞÞ þ Li2nðe−2πiðt0−tÞÞ�
�
b2

4π2

�
n−1

:

ð18Þ

Thus, the limit b → 0 is continuous and finite. The
expansion for small time steps jt0 − tj ≪ 1 yields

X0

n

1

λn
ϕ�
nðt0ÞϕnðtÞ≈

bcothðb=2Þ−2

2b2
−
jt0− tj
2

þ���; ð19Þ

so that the height of the peak is determined by b.
Comparison with CDT data.—Now, we are in the

situation that we can compare to the data obtained from
CDT simulations on the torus for bare parameters [cf. the
discussion below Eq. (3)]

κ0 ¼ 2.2; Δ ¼ 0.6; ð20Þ

and configurations built fromN4 ¼ 160 000 simplices [19].
This point is located well within the de Sitter phase of the
CDT phase diagram [21]. Averaging over all times, we can
fit the correlator V2ðt; tþ ΔtÞ to extract the value of
Newton’s constant GN and the mass parameter b2. A least
squares fit gives

GN ¼ 0.14a2CDT; lPL ¼ 0.37aCDT; b¼ 6.93=aCDT:

ð21Þ

Here, aCDT is the lattice spacing and lPL ≡ ffiffiffiffiffiffiffi
GN

p
is the

Planck length (PL). We display the lattice data (blue dots)
and our fit (red line) in Fig. 1, and find a very good
agreement between the two.
The relation between the lattice spacing and the physical

radius r of the torus can be obtained by fitting the
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eigenvalues of the covariance matrix to the analytic form
(16). Since the higher eigenvalues are less precise, we only
fit the lowest three eigenvalues. Demanding that the
resulting Newton’s constant agrees with the one from
the fit, gives a relation between the physical radius and
the lattice spacing

r ¼ 3.09aCDT: ð22Þ

The value of b can also be calculated from the lattice data
directly by resorting to an action for the volume fluctua-
tions inspired by a minisuperspace computation

bCDT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ̄u
γð1þ γÞ

s
V̄3: ð23Þ

Here, Γ̄ is related to the kinetic term, u to the potential term,
and γ is a critical exponent. For the data point (20), we take
Γ̄ ¼ 26.3, u ¼ 1.30 × 10−6 (“first average then invert”),
V̄3 ¼ 2000, and γ ¼ 1.16 given in [19], and find

bCDT ¼ ð7.39� 0.84� 0.14ΔΓ̄Þ=aCDT; ð24Þ

which is consistent with the fit value within numerical
precision. No numerical error ΔΓ̄ has been given in [19],
and we leave it unspecified here.
Naturally, one would expect that the local part of the

quantum effective action also contains higher-derivative
terms like

R
d4x

ffiffiffi
g

p
R2 containing four (or more) spacetime

derivatives. On the toroidal background, the Hessian Γð2Þ

then acquires an additional term proportional to ∂4
t .

Including this contribution in the fitting procedure shows
that the related coefficient is negligible though.
Adapting the construction (13) to backgrounds where

Σ̄ ¼ S3 leads to the eigenproblem studied in [18]. The
authors have shown there that the resulting fluctuation

spectrum agrees very well with the numerical data. For the
configuration (20) a comparison of the lowest eigenvalue of
the covariance matrix with the continuum version yields

GN ¼ 0.23a2CDT; lPL ¼ 0.48aCDT: ð25Þ

The relation between the lattice spacing and the physical
radius r ¼ 3.1aCDT is taken from [18] and agrees with the
relation on the torus at the same bare parameters. Thus, our
continuum approach also reproduces the Monte Carlo
results obtained for spherical topology.
Background independence of the quantum effective

action suggests that the values for GN obtained in different
simulations should agree. The comparison of the Newton’s
constant found for the toroidal (21) and spherical topology
(25) indicates different values though. This puzzle is
resolved by the observation that the couplings GN obtained
from the volume correlations on the torus and spherical
background are actually not the same: for nonvanishing
background curvature, higher-order curvature terms con-
tribute to the ∂2

t terms appearing in Γð2Þ, so that the GN
obtained in (25) is actually a function of the Newton’s
constant defined in (1) and higher-derivative couplings.
Likewise, the fact that the data obtained for Σ̄ ¼ S3 suggest
b ¼ 0 is not in contradiction with the toroidal results since
the correlator of volume fluctuations evaluated on a back-
ground with nonzero curvature is not sensitive to this
coupling. Instead, it probes nontrivial endomorphism terms
regulating the inverse Laplacians on a constant curvature
background [27], which come with their own couplings.
Information from complementary correlators.—The

two-point autocorrelation function (7) gives access to
some couplings appearing in the quantum effective action.
A more complete picture can be developed by either
studying correlation functions of different geometrical
quantities or higher-order n-point functions.
Higher-order n-point functions: A natural generaliza-

tion of (7) is higher-order correlators involving the fluc-
tuations of spatial volumes at n time steps

Vnðt1;…; tnÞ≡ hδV3ðt1Þ…δV3ðtnÞi: ð26Þ

These correlators can be constructed systematically by
taking derivatives of V2 with respect to a suitable source.
The three-point correlator V3, for instance, then involves
the three-point vertex contracted with three propagators. On
a flat, toroidal background, Vnðt1;…; tnÞ carries informa-
tion on couplings associated with terms built from n powers
of the Riemann tensor (and its contractions).
Two-point functions involving curvatures: Comple-

mentarily, one may study the autocorrelation of curvature
fluctuations involving the extrinsic or intrinsic curvature.
Focusing on one concrete example, we introduce the
averaged intrinsic curvature

FIG. 1. The correlator V2ðt; tþ ΔtÞ on the torus in arbitrary
units. Blue dots are the lattice data (averaged over all temporal
slices), the red line indicates the fitted analytical result.
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R3ðtÞ ¼
Z

d3x
ffiffiffi
σ

p ð3ÞR: ð27Þ

The analogue of (9) is then obtained by expandingR3ðtÞ in
terms of fluctuations

σ̃ðx; tÞ ¼ aðtÞσ̄μνðxÞδσμνðx; tÞ;

σ̃TLμν ðx; tÞ ¼ aðtÞδσμνðx; tÞ −
1

3
σ̄μνðxÞσ̃ðx; tÞ: ð28Þ

The superscript TL indicates that the given tensor is
traceless. Dropping integrals over total derivatives, fluctu-
ations of the averaged intrinsic curvature are related to the
fluctuation fields by

δR3ðtÞ ¼
Z

d3x
ffiffiffī
σ

p �
1

6
ð3ÞR̃σ̃ − ð3ÞS̃μνσ̃TLμν

�
; ð29Þ

where ð3ÞR̄ ¼ ð3ÞR̃=aðtÞ2 and ð3ÞS̄μν ¼ ð3ÞS̃μν=aðtÞ4 indicate
the background spatial Ricci scalar and trace-free spatial
Ricci tensor, respectively. The autocorrelation function can
then again be expressed in terms of the propagators of the
fluctuation fields,

hδR3ðt0ÞδR3ðtÞi

¼
Z

d3x
ffiffiffī
σ

p Z
d3y

ffiffiffī
σ

p �ð3ÞR̃2

36
Gσ̃ σ̃ −

1

3
ð3ÞR̃ð3ÞS̃μνðGσ̃σ̃TLÞμν

þ ð3ÞS̃μνð3ÞS̃ρσðGσ̃TLσ̃TLÞμνρσ
�
: ð30Þ

Notably, hδR3ðt0ÞδR3ðtÞi vanishes on a toroidal back-
ground since it is proportional to the background curvature.
This feature is owed to terminating the expansion (29) at
leading order in the fluctuation fields. Once terms quadratic
in the fluctuations are included, the correlator (30) involves
nonzero contributions related to the four-point vertex of the
fluctuation fields.
Conclusions.—We introduced a new research program to

reverse-engineer the quantum effective action for gravity
from correlation functions. This provides, for the first time,
a direct link between continuum and lattice in quantum
gravity beyond abstract quantities like critical exponents
[32,33] and spectral dimensions [34–37]. Where lattice
data were available, agreement with an Einstein-Hilbert
action, potentially amended by a particular nonlocal inter-
action or higher-order scalar curvature terms, was found.
A particularly intriguing result is that the lattice simu-

lations on the torus suggest the presence of a (nonlocal)
mass term. The authors of [19] argue that the occurrence of
this term is a genuine quantum gravity effect. Generically, it
is expected that quantum fluctuations of massless particles
induce these kind of nonlocal terms in the quantum
effective action. A prototypical example is provided by
quantum chromodynamics where such terms correctly

describe the nonperturbative gluon propagator in the
IR [38–41].
In general, it is conceivable that nonlocal gravitational

interactions provide a dynamical explanation of dark
energy, without the need for a fine-tuned cosmological
constant [42–44]. In particular, the nonlocal contribution
given in Eq. (3) forms a key part of the Maggiore-
Mancarella cosmological model [43,45], which has been
highly successful in describing the cosmological evolution
of the Universe. (For earlier Letter discussing the effect of
nonlocal terms in cosmology, see, also, [46].) It is in-
triguing that the nonclassical behavior seen on the lattice is
compatible with such a nonlocal quantum effect. Since
Eq. (4) is known to lead to unstable modes in the cosmic
perturbation spectrum [47], it would be highly interesting
to determine b̃ from the fundamental formulation. This is
beyond the present Letter though.
In this Letter, we analyzed the arguably simplest non-

trivial correlation function describing the autocorrelation of
three-volume fluctuations at two different times (7). The
systematic extension to correlation functions of higher
order or other structures is evident. Notably, a measurement
of the correlators (26) and (30) may actually be feasible
within the CDT program, thereby providing further infor-
mation on the quantum effective action. In particular,
correlation functions of the averaged intrinsic curvature
may be obtained by summing deficit angles or new
sophisticated methods to measure curvature on general
quantum spacetimes recently introduced in [48,49]. We
stress that the construction of reverse engineering the
quantum effective action from correlators is not limited
to CDT, but applies to any given theory of quantum gravity
in which the corresponding quantities can be computed.
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