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We propose a scenario to retrodict the top and bottom mass and the Abelian gauge coupling from first
principles in a microscopic model including quantum gravity. In our approximation, antiscreening
quantum-gravity fluctuations induce an asymptotically safe fixed point for the Abelian hypercharge leading
to a uniquely fixed infrared value that is observationally viable for a particular choice of microscopic
gravitational parameters. The unequal quantum numbers of the top and bottom quark lead to different
fixed-point values for the top and bottom Yukawa couplings under the impact of gauge and gravity
fluctuations. This results in a dynamically generated mass difference between the two quarks. To work
quantitatively, the preferred ratio of electric charges of bottom and top in our approximation lies in close
vicinity to the standard-model value of Qb=Qt ¼ −1=2.
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The top quark is substantially heavier than all the other
quarks, with a pole mass ofMt ≈ 173 GeV [1] significantly
larger than the pole mass of the second-heaviest quark, the
bottom atMb ≈ 4.9 GeV [2]. In the standard model, neither
the two values nor their difference can be derived. The
masses are determined by the Yukawa couplings yt, yb to
the Higgs boson, once it acquires a vacuum expectation
value. The low-energy values of yt, yb are free parameters
in the standard model fixed by comparing to experiment.
We propose a mechanism that could generate the mass
difference dynamically and uniquely determine the values
of both masses from first principles. The mechanism
follows from microscopic physics in the ultraviolet
(UV), where an interplay of quantum gravity and gauge
boson dynamics generates asymptotic safety [3,4], i.e., an
interacting renormalization group (RG) fixed point at trans-
Planckian scales. This fixed point prevents Landau-pole-
type behavior in the running couplings, rendering the
standard model UV complete. The fixed point determines
the values of yt and yb in the UV. This mechanism
combines the fixed-point scenarios explored in
Refs. [5,6] (see also Ref. [7]), where the top pole mass
and Abelian gauge coupling are retrodicted separately.
Because of the two quarks’ unequal electric charges, yt and
yb assume uniquely determined, different values at
MPlanck ¼ 1019 GeV; cf. Fig. 1. This results in a retro-
diction of unequal top and bottom masses at the electro-
weak scale. The viability of this mechanism hinges on the

quantum numbers of the top and bottom quark: In our
approximation, significant deviations from the measured
charge ratio are incompatible with the observed masses.
We now explain the mechanism by following the RG

flow from the UV fixed point through the trans-Planckian
regime down to the electroweak scale.
Ultraviolet fixed point.—There are strong indications for

an asymptotically safe regime in quantum gravity, where
the running gravitational couplings reach a scale-invariant
regime that UV completes the theory [4,8–25]. Quantum-
gravity fluctuations impact the scale dependence of running
matter couplings [5–7,26–37]. For the gauge couplings of
the standard model, g3 for SU(3), g2 for SU(2), and gY for
the Abelian hypercharge, the one-loop beta functions and
coefficients read [38–40]

FIG. 1. RG trajectory of standard-model couplings for fg ¼
9.7 × 10−3 and fy ¼ 1.188 × 10−4 reaching gðkIRÞ ¼ 0.358,
ytðkIRÞ ¼ 0.965, and ybðkIRÞ ¼ 0.018 at kIR ¼ 173 GeV. We
also plot y2t − g2Y=3 (pink, wide dashed), which approaches y2b�
(dotted) in the far UV; cf. Eq. (5).
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βgi ¼ k∂kgiðkÞ¼ b0;ig3i =ð16π2Þ−fggi;
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QþY2
t Þ

6
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ð1Þ

Yt;b;Q are the hypercharges of the right-handed top and
bottom quark and the left-handed SU(2) quark doublet,
respectively. fg encodes the quantum-gravity contribution
that acts like an anomalous dimension for the gauge
couplings, and we assume that additional terms are sub-
leading. These additional contributions are proportional to
the product of gi and quantum-gravity-induced higher-
order couplings. The fixed-point values of the latter are of
the same order as fg; see the discussion in Refs. [30,35,36].
They enter the βgi through a loop diagram, leading to a
suppression by 1=16π2 in comparison to the direct con-
tribution in Eq. (1); see Ref. [36]. We work with the one-
loop beta functions to explain the mechanism, explicitly
checking that two-loop effects only lead to quantitative
changes. We focus on fg ≥ 0, as found in truncations of the
functional RG flow [41,42] under the impact of asymp-
totically safe quantum gravity [6,7,28–31]; see Refs. [43–
46] for reviews. In the asymptotically safe regime beyond
the Planck scale, fg ¼ const holds as a consequence of
gravitational fixed-point scaling. For the non-Abelian
gauge couplings, this reinforces the asymptotically free
fixed point at g3� ¼ 0 ¼ g2�. For the Abelian gauge
coupling, the positive one-loop coefficient generated by
screening quantum fluctuations of charged matter and the
antiscreening gravity contribution cancel at an interacting
fixed point [6,7,47],

βgY jgY¼gY� ¼ 0; g2Y� ¼
16π2

b0;Y
fg: ð2Þ

Quantum-gravity contributions to the running of the
Yukawa couplings supplement the one-loop beta functions
[48]

βytðbÞ ¼
ytðbÞ
16π2

�
3y2bðtÞ
2
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−
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4
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− fyytðbÞ −
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16π2
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For the quantum-gravity contribution, fy ¼ const holds in
the asymptotically safe trans-Planckian regime [5,33–37]
generating an interacting fixed point at yt;b;� ≠ 0 through
the interplay with Abelian fluctuations: At the fixed point at
g2� ¼ 0 ¼ g3� and gY� in Eq. (2), we obtain

y2t=b� ¼
8

3
π2
�
fy þ

3fgð2Y2
Q þ 3Y2

t=b − Y2
b=tÞ

2b0;Y

�
: ð4Þ

Specifying to standard-model charges Yt ¼ 2=3, Yb ¼
−1=3, and YQ ¼ 1=6 yields a fixed-point equation that
is the key relation of our scenario

y2t� − y2b� ¼
1

3
g2Y�: ð5Þ

This relation enforces yt� ≠ yb� in the far UV because
gY� ≠ 0. The difference in fixed-point values ytðbÞ� has an
intuitive physical interpretation: The interacting fixed point
for the Yukawa couplings is generated through a balance of
quantum fluctuations of matter with gauge and gravity
fluctuations. The two fixed-point values ytðbÞ� must be
unequal since Abelian gauge boson fluctuations couple
more strongly to the top than to the bottom quark, as the top
has a larger hypercharge, i.e., Y2

t > Y2
b. To compensate the

combined impact of gravity and gauge boson fluctuations
and generate a fixed point, the top Yukawa coupling must
be larger, yt� > yb�.
The beta functions in Eqs. (1) and (3) admit further fixed-

point solutions, e.g., gY� ¼ 0, yb� ¼ 0, yt� > 0 explored in
Ref. [5]; cf. light-green-shaded region in Fig. 2. Here,
we focus on the most predictive fixed-point solution
[cf. Eqs. (2) and (4)] leading to retrodictions of the top
mass Mt, the bottom mass Mb, and the Abelian hyper-
charge coupling gY at the electroweak scale.
RG flow at trans-Planckian scales.—Starting from

Eq. (5), the couplings deviate from their fixed-point values
during the RG flow towards the infrared (IR). For real
fixed-point values, Eq. (5) implies yt� > yb�, and the RG
flow conserves this inequality: The ratio ytðkÞ=ybðkÞ
cannot become smaller than 1 if yt�=yb� > 1 in the UV.
The flow of the ratio is given by

βyt=yb ¼
1

16π2
yt
yb

½3ðy2t − y2bÞ − g2Y �: ð6Þ

For ytðkÞ=ybðkÞ → 1 from above, the beta function
becomes negative due to the contribution of the Abelian

FIG. 2. IR values of retrodicted couplings gYðkIRÞ, ytðkIRÞ, and
ybðkIRÞ at kIR ¼ 173 GeV as a function of the two independent
quantum-gravity contributions fg and fy.
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gauge coupling. Hence, the ratio ytðkÞ=ybðkÞ is driven
away from 1 towards larger values. Once created by the
fixed-point structure, the relation ytðkÞ − ybðkÞ > 0 is thus
preserved down to the IR; cf. Fig. 1.
Specifically, the trajectories in Fig. 1 arise as follows.

Since fg ¼ const in the trans-Planckian regime,
gYðk > MPlanckÞ ¼ gY� holds. This results from the com-
petition of the two distinct contributions in Eq. (1): The
screening matter contribution encoded in b0;Yg3Y > 0 drives
any small deviation gYðkÞ ¼ gY� þ δ with δ > 0 back to
δ ¼ 0 under the RG flow to the IR. Conversely, the
antiscreening gravity contribution encoded in −fggY < 0
drives any small deviation gYðkÞ ¼ gY� − δwith δ > 0 back
to δ ¼ 0. In other words, the fixed point is IR attractive;
cf. thick dashed green line in Fig. 1.
This is in contrast to the behavior of the non-Abelian

gauge couplings, where the gravity contribution triggers a
power-law running in the trans-Planckian regime. Since
both the gravity contribution and the matter contribution to
the beta functions βg2;3 are antiscreening, the free fixed
point is IR repulsive. Hence, deviations from it are allowed
in the trans-Planckian regime, and g2;3 grow under the
RG flow to the IR until they reach the experimentally
determined values at IR scales.
This dynamics for the gauge couplings leads to a more

intricate behavior of the Yukawa couplings: Although the
fixed point in Eq. (4) is IR attractive, the Yukawa couplings
run as soon as g2;3 deviate from zero significantly;
cf. Fig. 1. Their running is determined by a critical
trajectory ytðbÞðkÞ ¼ ytðbÞ(g2ðkÞ; g3ðkÞ) on which they
exhibit a slight growth towards the IR. The non-Abelian
gauge contribution to the flow of the Yukawa couplings is
negative. This counteracts the screening effect of matter
fluctuations. Thus, tiny deviations ytðkÞ ¼ yt� þ δ with
δ > 0 are no longer driven back exactly to yt� for
g2;3ðkÞ > 0. The critical trajectory is IR attractive; i.e.,
starting from their fixed-point values, the Yukawa cou-
plings are fixed uniquely at MPlanck.
RG flow between the Planck and the electroweak scale.—

At the Planck scale, quantum-gravity effects switch off
dynamically as fg, fy are proportional to the Newton
coupling measured in units of k. In asymptotic safety, it
is constant at trans-Planckian scales but falls off as k−2

below MPlanck, making quantum-gravity effects negligible
there; cf. Refs. [8,10]. To model this behavior, we imple-
ment a sharp transition to fg ¼ 0 ¼ fy for k ≤ MPlanck.
Below MPlanck, we follow the one-loop running in the
standard model, attracted by a partial IR fixed point
[49–51]. At the electroweak scale, where the Higgs boson
acquires a vacuum expectation value, the two Yukawa
couplings determine the top and bottom mass. The inequal-
ity ytðkÞ > ybðkÞ generated by the properties of the trans-
Planckian regime is preserved under the standard-model
flow, as Eq. (6) still holds. The difference in fixed-point
values between yt and yb thus generates a mass difference
between Mt and Mb.

So far, we have explained how a mass difference
between the two quarks could result from their unequal
quantum numbers as a consequence of an asymptotically
safe fixed point. We now test the quantitative viability of
this mechanism in our approximation by using approx-
imately observationally viable values. To accommodate
gYðkIR ¼ 173 GeVÞ ¼ 0.358 in accordance with observa-
tions, fg ¼ 9.7 × 10−3 is required. Together with the values
g2ðkIRÞ ¼ 0.647 79 and g3ðkIRÞ ¼ 1.1666 (see, e.g.,
Ref. [52]), this also fixes the running of the non-Abelian
gauge couplings at all scales. Then, fy ¼ 1.188 × 10−4 is
required to obtain ybðk ¼ 4.2 GeVÞ ¼ 0.024. This trans-
lates into a bottom pole mass [2] of Mb ¼ 4.9 GeV. Given
this input, the mechanism presented here generates
ytðk ¼ 168 GeVÞ ¼ 0.967 corresponding to a top pole
mass [2] ofMt ¼ 178 GeV. All three retrodicted quantities
Mt, Mb, and gY come out rather close to their observed
values with the input of two free parameters fy and fg. The
above values fy, fg lie in the vicinity of fixed-point values
obtained in an approximation for quantum gravity mini-
mally coupled to matter fields of the standard model [16]. A
quantitatively precise calculation of fy, fg is subject to
future studies. These studies must include higher-order
curvature operators as in Refs. [36,37] and nonminimal
matter-curvature couplings as in Refs. [13,34,53] to deter-
mine the gravitational fixed-point values which directly set
fg and fy.
As the UV fixed point is generated from a balance

of the leading quantum-gravity contribution with the one-
loop matter contribution and lies at small standard-model
couplings, its existence is expected to be stable under the
extension to higher-loop orders in the standard-model
sector. Including two-loop terms in the standard-model
running [54–59], fg ¼ 9.8 × 10−3 yields gYðkIRÞ ¼ 0.358,
and fy ¼ 1.1266 × 10−4 gives a bottom pole mass of
Mb ¼ 4.9 GeV. This retrodicts a top pole mass of
Mt ¼ 182 GeV.
Analyzing an extended setting going beyond the third

generation could provide a future test of the present model.
Extending our study to the quarks of the second generation
requires us to account for the Cabibbo-Kobayashi-
Maskawa mixing matrix. Inspecting the beta functions
for the strange and charm Yukawa couplings under the
simplifying assumption of a diagonal mixing matrix at yt�,
yb�, and gY� yields a fixed point at vanishing Yukawa
couplings for charm and strange which is IR attractive in
the strange and thus retrodictsMs=Mt ≃ 0. Testing whether
the tiny ratio Ms=Mt ≈ 5 × 10−4 is compatible with our
setting requires us to go beyond the above simplifying
assumptions in more complete studies but should provide
a critical future test of the present proposal. In the charm,
this fixed point is IR repulsive, rendering the charm
asymptotically free. Therefore, Mc=Mt is not retrodicted.
Specifically, Mc=Mt ≈ 7 × 10−3 can be accommodated in
our setting.
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Exploring the gravitational parameter space.—We now
explore fg and fy away from the specific values used
above. This exploits the link between electroweak and
Planck-scale physics in order to constrain the microscopic
gravitational parameter space by the requirement to match
IR observables in the spirit of Ref. [36].
In our approximation, the low-energy value of gY only

depends on fg. Hence, lines of constant fg in Fig. 2
correspond to lines of fixed gYðkIR ¼ 173 GeVÞ. In con-
trast, yt=bðkIRÞ depend on fy as well as on fg through the
gauge contributions in Eq. (3). Thus, lines of constant
yt=bðkIRÞ are not simply lines of constant fy.
Figure 2 visualizes that the existence of an intersection area

of the three approximately observationally viable contours
defined by 0 < ybðkIRÞ < 0.1, 0.94 < ytðkIRÞ < 1, and
0.35 < gYðkIRÞ < 0.36 is a nontrivial result. An intersection
does not occur for arbitrary combinations of values. For
instance, gyðkIRÞ > 0.4 and 0.94 < ytðkIRÞ < 1 are incom-
patible with a nonzero bottom mass in our approximation.
Thus, in our approximation, values close to the observed ones
appear to be singled out by asymptotic safety.
The fixed point in Eq. (5) shows that y2b� depends on the

difference of the squares of yt� and gY�. Accordingly, small
variations of these two numbers away from y2t� ¼ g2Y�=3
result in a fast growth of the value of ybðkIRÞ. Because of
the different U(1) hypercharges of top and bottom, the
line Mb ¼ Mt cannot be reached, and a difference Mt −
Mb > 0 always persists. On the other hand, a very large
difference Mt −Mb ≃Mt requires a choice of the gravity
parameters in a relatively small region of the gravitational
parameter space, such that the system sits close to the
phase-transition line to vanishing bottom mass. In our
approximation, this region translates into close-to standard-
model values for gYðkIRÞ and Mt; cf. Fig. 3.
In summary, we have uncovered a nontrivial UV fixed

point for the standard-model couplings gY� ≠ 0 and
ytðbÞ� ≠ 0 induced by asymptotically safe gravity that
generically results in a mass difference between the top
and bottom quarks, i.e., Mt > Mb. This fixed point retro-
dicts ðgYðkIRÞ;Mt;MbÞ in terms of two gravitational

parameters ðfg; fyÞ. In our study, the retrodiction is in
approximate agreement with the observed IR values;
cf. Fig. 2.
Three observations.—(1) Universality of gravity con-

tributions: A key assumption of our study is the independ-
ence of the quantum-gravity contributions from internal
symmetries. Gravity is the only known force that couples
universally to all matter fields such that fg is independent of
the gauge group. A significant violation of this universality
leads to a quantitative failure of the above scenario.
Specifically, let the gravitational contribution to the running
of the non-Abelian gauge couplings be given by fg → fg;nA
in Eq. (1). The rate at which g2;3 grow above the Planck
scale is thereby increased (lowered) for fg;nA > ð<Þfg. This
affects how fast the Yukawa couplings increase in the trans-
Planckian regime. Only fg;nA ≈ fg results in an observa-
tionally viable range for ytðkIRÞ; cf. upper panel in Fig. 4.
Thus, the independence of the gravitational contribution
from the gauge group is suggested by the observed values
of ybðkIRÞ, ytðkIRÞ, and gYðkIRÞ.
(2) Setting the scale: A second central assumption

underlying our study is that the scale at which the
gravitational contributions switch off is the Planck scale.
We test whether another presently unknown universally

FIG. 3. Bottom Yukawa coupling ybðkIRÞ at kIR ¼ 173 GeV as
a function of the IR values of gYðkIRÞ and ytðkIRÞ.

FIG. 4. Top Yukawa coupling ytðkIRÞ at kIR ¼ 173 GeV as a
function of a nonuniversal gravity contribution fg;nA=fg (upper
panel) and of a modified Planck scale MPlanck (lower panel) for
fixed gYðkIRÞ ¼ 0.358 and Mb ¼ 4.9 GeV.

FIG. 5. Top Yukawa coupling ytðkIRÞ at kIR ¼ 173 GeV as
a function of the charge ratio Qb=Qt for fixed gYðkIRÞ ¼ 0.358
and Mb ¼ 4.9 GeV.
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coupled interaction could underlie the proposed mecha-
nism. Of course, its scale would not be tied to the Planck
scale. Varying the scale significantly away from 1019 GeV
results in a mismatch of Mb=Mt with the observed values;
cf. lower panel in Fig. 4. Given the electroweak scale,
which is an input of our calculation, the Planck mass can
thus be estimated by demanding that the model realizes a
mass ratio in the vicinity of the observed ratio ofMb=Mt in
our approximation.
(3) Selecting electric charges for top and bottom: The

top-bottom mass difference is rooted in distinct fixed-point
values in Eq. (5). Varying the quantum numbers of the top
and bottom from their values in the standard model results
in a modified running of gY , yt, and yb and an altered fixed-
point relation

y2b� ¼ y2t� − ðQ2
t −Q2

bÞg2Y�: ð7Þ

Here, we keep the top and bottom in a doublet of the
SU(2). The hypercharges of the doublet YQ and singlets
Yb=t are linked to the electric charges by Yt ¼ Qt,
Yb ¼ Qb ¼ Qt − 1, YQ ¼ Qt − 1

2
, where the last equality

ensures equal electric charges for the right- and left-handed
quarks. It turns out that for Qb=Qt < −1=2, Mt=Mb → 0,
whereas for Qb=Qt > −1=2, Mt=Mb → 1; cf. Fig. 5. The
reason lies in the dynamics of the green, cyan, and yellow
contours in Fig. 6: An increase in Qb=Qt triggers a growth
in fg, since b0;Y increases with Qb=Qt. Thus, the green
contour moves to the right as a function of Qb=Qt.
Simultaneously, the cyan and yellow contours move
towards each other as yb� → yt� for Qb=Qt → 1.
Accordingly, the three contours single out a value of
Qb=Qt at which they intersect in one location in the fg,
fy plane. This value agrees with the standard-model
value Qb=Qt ¼ −1=2.
Conclusions.—The asymptotic-safety paradigm could

provide a UV completion for quantum gravity coupled
to the standard model. At an asymptotically safe fixed
point, residual interactions in the microscopic regime can
imprint a nontrivial structure on the low-energy masses of

the model. Thereby, observations such as Mt ≫ Mb could
become an automatic consequence of the asymptotically
safe regime. Our study hints at the potential predictive
power of an asymptotically safe UV regime. The mecha-
nism we propose here links the measured ratio of electric
charges of top and bottom to their masses: If the charge
ratio deviates significantly from the standard-model value,
in our setting no choice of microscopic gravitational
parameters is available to correctly retrodict Mt, Mb,
and gY .
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