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Using the complexity ¼ action framework, we compute the late time growth of complexity for charged
black holes in Lovelock gravity. Our calculation is facilitated by the fact that the null boundaries of the
Wheeler-DeWitt patch do not contribute at late times and essential contributions coming from the joints are
now understood. The late time growth rate reduces to a difference of internal energies associated with the
inner and outer horizons, and in the limit where the mass is much larger than the charge, we reproduce the
celebrated result of 2M=π with corrections proportional to the highest Lovelock coupling in even
(boundary) dimensions. We find in some cases a minimum mass below which complexity remains
effectively constant, even if the black hole contains a nondegenerate horizon.
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The anti–de Sitter/conformal field theory (AdS/CFT)
duality [1] has brought surprising insight to the nature of
quantum gravity. The entanglement properties of the CFT
suggest an emergence of the bulkgeometry [2],with theRyu-
Takayanagi prescription for the entanglement entropy (EE)
being the most explored example [3–5]. From the seminal
works ofBekenstein [6,7] andHawking and coworkers [8,9],
the thermodynamic properties of black hole geometries have
raised intriguing questions about the possible microscopic
structure of black holes. Understanding how these quantities
are encoded in the dual CFT is presently an active area of
study [10–22].
Recently, it has been observed that entanglement entropy

may not be the appropriate observable to probe the interior
degrees of freedom of black holes [23]. Based on intuition
brought by tensor network models in holography [24,25], it
was proposed that the complexity of the CFT state should
encode information about the semiclassical geometry in the
interior [26,27], motivated originally by the AMPS paradox
[28]. Roughly speaking, complexity measures how hard it
is to construct certain states in the theory from simple
unentangled states and a few universal gates (see [29–37]
for consideration on properties of complexity in the
boundary theory). There are two related proposals con-
jectured to capture the complexity of the ground states of
CFTs in holography: in this Letter, we focus on the
“complexity ¼ action” (CA) proposal [38,39], as it permits

a conceptually straightforward generalization to include
gravitational higher-curvature corrections (for exploration
on “complexity ¼ volume,” see [26,29,30,40,41]). The CA
proposal states that the complexity of the state is given by
the Lorentzian action evaluated on the Wheeler-DeWitt
(WDW) patch

CA ¼ IWDW

π
; ð1Þ

which is the union of all spacelike hypersurfaces anchored
at boundary times tL and tR, as shown in Fig. 1.
Complexity is conjectured to continue increasing long

after local thermal equilibrium is reached. The late time rate

FIG. 1. The causal structure for a charged AdS black hole, with
outer and inner horizons. The blue shaded region denotes the
WDW patch, anchored at the boundary times tL ¼ tR ¼ t=2. At
late times, the null boundaries of the WDW patch approach the
inner and outer horizons.
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of change is approximately 2M=π in CA for a large class of
uncharged black holes in Einstein gravity (EG) [38,39,42],
suggesting a connection to Lloyd’s bound on the rate of
computation [43] and that black holes are the fastest
scramblers in nature [38,39,48]. (Note, however, that it
has been pointed out that the Lloyd bound can be violated
in certain circumstances [40,44–47].)
While the properties of complexity in EG are now well

understood in many situations, relatively little is known
about its behavior in higher-derivative gravity [49,50]. In the
context of AdS/CFT, higher-order curvature corrections in
the bulk are dual to finiteN and finite coupling effects in the
CFT [51–54]. The most relevant aspect of these corrections
is that they allow us to explore more general holographic
CFTs than those defined by Einstein gravity [55–64]. In this
way, higher-order gravities allow us to identify universal
relations valid for arbitrary theories, including, for example,
general results about the EE [65–69]. Hence, one may
wonder if, in the case of complexity, higher-curvature
gravities could help us to see a possible hidden structure
that is obscured when working with EG alone. Another
interesting question is whether these theories could violate
Lloyd’s bound, analogously to how they violate the Kovtun-
Son-Starinets bound on the shear viscosity to entropy density
ratio η=s ≥ 1=ð4πÞ [54,56,70–75], which was thought to be
saturated in Einstein gravity holography [76].
One of the most suitable higher-curvature theories for

holographic applications is Lovelock gravity [55,56,62,71,
75,77–79], due to unique properties such as second-order
equations of motion [80,81] and the existence of a well-
posed action functional [82,83]. Moreover, some of the
Lovelock densities are actually predicted to appear in the
effective low energy action of string theory [84], so they
provide realistic corrections to the Einstein-Hilbert action.
In this Letter, we compute the complexity growth of

black holes in Lovelock theory using the CA proposal.
While CA presents no new conceptual challenges within
higher-curvature gravity, it is nontrivial to identify the
correct contributions to the action coming from the null
boundaries and the joints in the WDW patch. It is important
to identify these terms directly, since a limiting procedure
based on timelike or spacelike surfaces is generically
ambiguous [42]. We focus on charged black holes, since
in this case the WDW patch approaches the inner and outer
horizons at late time, allowing us to completely deduce the
time-dependent structure of the null boundary terms. The
contribution from the null joints was recently described
in [85], and by taking them into account we identify an
intriguing relation between the complexity growth at late
times and the thermodynamic properties of the black hole.
Let us start by describing the theory and solutions of

interest. The bulk action we consider is given by

Ibulk ¼
Z
M

ddþ1x
ffiffiffiffiffi
jgj

p �
Lgrav −

1

4g2
FμνFμν

�
; ð2Þ

where g is a constant, F ¼ dA is the Maxwell field strength,
and Lgrav is the Lovelock Lagrangian [80,81],

Lgrav ¼
1

16πG

�
dðd − 1Þ

L2
þ R

þ
Xbd=2c
n¼2

λn
ðd − 2nÞ!
ðd − 2Þ! ð−1ÞnL2n−2X2n

�
; ð3Þ

where the Euler densities X2n are given by

X 2n ¼
1

2n
δμ1…μ2n
ν1…ν2n R

ν1ν2
μ1μ2…Rν2n−1ν2n

μ2n−1μ2n ; ð4Þ

the generalized Kronecker symbol is defined as

δμ1μ2…μr
ν1ν2…νr ¼ r!δ½μ1ν1 δ

μ2
ν2…δμr�νr , and λn are arbitrary dimension-

less parameters.
Charged black holes in Lovelock gravity are known

(see, for example, [86–88]) and, in general, the solution
takes the form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΣ2
k;d−1; ð5Þ

A ¼ dt
g

2
ffiffiffiffiffiffiffiffiffi
2πG

p
ffiffiffiffiffiffiffiffiffiffiffi
d − 1

d − 2

r
q

rd−2
¼ ϕðrÞdt; ð6Þ

where dΣ2
k;d−1 characterizes the constant curvature trans-

verse geometry, with k ¼ þ1, 0, −1 denoting spherical,
planar, and hyperbolic, respectively. The function f sat-
isfies the algebraic equation

h

�
L2ðfðrÞ − kÞ

r2

�
¼ ωd−2L2

rd
−

q2L2

r2ðd−1Þ
; ð7Þ

with hðxÞ given by the polynomial function

hðxÞ ¼ 1 − xþ
Xbd=2c
n¼2

λnxn: ð8Þ

In these expressions, q and ω are two integration constants
that are related to the mass M and the charge Q
(Q ¼ g−2

R ⋆F) of the black hole according to

ωd−2 ¼ 16πGM
ðd − 1ÞΩk;d−1

; ð9Þ

q ¼ gQ
Ωk;d−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8πG

ðd − 1Þðd − 2Þ

s
; ð10Þ

where Ωk;d−1 is the (dimensionless) volume of the trans-
verse space. Strictly speaking, M and Q are the mass and
the charge only in the spherically symmetric case, k ¼ 1.
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In the noncompact cases, we should interpretQ=Ωk;d−1 as a
charge density and M=Ωk;d−1 as a mass density.
To facilitate comparison with existing literature, we

require that the causal structure of the charged black holes
matches those in Einstein gravity, shown in Fig. 1. While
this is always the case in Einstein gravity, in Lovelock
gravity, the couplings must obey certain constraints in order
to avoid a singularity before the inner horizon. For
example, in Gauss-Bonnet gravity, a sufficient condition
is to demand 0 ≤ λ2 < 1=4, or λ3 < −ðλ2Þ2=3 in the cubic
case. Within this constrained class of theories, we also note
that, for d even, there is a special behavior that happens
when the energy is smaller than

Mmin ¼
ðd − 1ÞΩk;d−1

ð16πGÞ ð−kÞd=2Ld−2λd=2: ð11Þ

Depending on the values of the couplings, neutral solutions
with M < Mmin are either naked singularities—thus, there
are no black holes with mass below Mmin—or black holes
with an inner horizon, as in the charged case (see, e.g.,
[89–91] for details).
We denote by rþ and r− the event and inner horizon of

the charged black hole where fðr�Þ ¼ 0. The temperature
of the black hole is given in terms of the derivative of f as
f0ðrþÞ ¼ 4πTþ. On the other hand, the entropy is given by
Wald’s formula [92] or, equivalently, by the Jacobson-
Myers’ result [93] [see Eq. (27)], and it reads

Sþ ¼ rd−1þ Ωk;d−1

4G

�
1 −

Xbd=2c
n¼2

λn

�
−
kL2

r2þ

�
n−1 nðd − 1Þ

ðdþ 1 − 2nÞ
�
:

ð12Þ

It will be useful to introduce as well the quantities T− and
S−, defined in the analogous way at r−.
These eternal black hole geometries should be dual to

thermofield double (TFD) states, created by entangling
each copy of the boundary CFT as [10]

jTFDðtL; tRÞi ¼ Z−1=2
X
α;σ

e−iEαðtLþtRÞ

× e−ðEα−μQσÞ=ð2TÞjEα;−QσijEα; Qσi: ð13Þ

We show in Fig. 1 a schematic Penrose diagram for
charged black holes in asymptotic AdS spacetimes. In our

conventions, both tL and tR increase towards the upper part
of the diagram, so the boost symmetry in the state is
encoded in tR → tR þ Δt and tL → tL − Δt. Therefore, we
can focus on symmetric times tL ¼ tR ¼ t=2 without loss
of generality.
In Fig. 1, we recognize two coordinates that encode the

time dependence, which we denote r1m and r2m. We can
identify how they depend on the boundary time t by writing
a transcendental equation involving the tortoise coordinate
r�, defined with fðrÞ from eq. (5), such that

r�ðrÞ ¼ −
Z

∞

r

dr̃
fðr̃Þ ; lim

r→∞
r�ðrÞ ¼ 0: ð14Þ

The equations for r1m and r2m read

t
2
− r�ðr1mÞ ¼ 0;

t
2
þ r�ðr2mÞ ¼ 0: ð15Þ

As a consequence, the time derivative of these coordinates
takes a simple form,

dr1m
dt

¼ fðr1mÞ
2

;
dr2m
dt

¼ −
fðr2mÞ
2

: ð16Þ

Notice that, at late times, r1m approaches the inner horizon
r−, while r2m approaches the outer horizon rþ.
The action calculation on the WDW patch for black

holes with the causal structure depicted in Fig. 1 has three
possible contributions: a bulk integration, boundary con-
tributions, and joint terms at r1m and r2m,

I ¼ Ibulk þ Ibdry þ Ijoint: ð17Þ

Let us compute each of these terms.
First, we consider the contributions from the bulk action.

If we express the integrand in the bulk action as a generic
function of radius r, we have

Ibulk ¼
Z
WDW

ddþ1x
ffiffiffiffiffiffi
−g

p
L ¼

Z
WDW

dtdrIðrÞ; ð18Þ

where the function IðrÞwill depend on the theory of gravity
under consideration. For Lovelock gravity (2), it can be
expressed as a total derivative IðrÞ ¼ dIðrÞ=dr, where

IðrÞ ¼ Ωk;d−1

16πG

"
−
2ðd − 1Þq2

rd−2
þ ðd − 1Þωd−2 − rd−1f0ðrÞ

 
1 −

Xbd=2c
n¼2

λn

�ðfðrÞ − kÞL2

r2

�
n−1 nðd − 1Þ

ðdþ 1 − 2nÞ

!#
: ð19Þ

The integration uses the fact that the Euler densities are total derivatives when evaluated on (5) [94], and the field
equations (7) were used to simplify this result.
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Following [40], the bulk contribution to the action is the
sum of three integrals,

IIbulk ¼ 2

Z
rþ

r1m

IðrÞ
�
t
2
− r�ðrÞ

�
dr;

IIIbulk ¼ −4
Z

rmax

rþ
IðrÞ(r�ðrÞ)dr;

IIIIbulk ¼ 2

Z
rþ

r2m

IðrÞ
�
−
t
2
− r�ðrÞ

�
dr: ð20Þ

Therefore, calculating the time derivative of the bulk term,
using the properties of r1m and r2m in Eqs. (15) and (16), the
answer depends on the differentiation with respect to time
in the integrand, and the bulk contribution to the time
derivative reads

dIbulk
dt

¼
Z

r2m

r1m

IðrÞdr ¼ IðrÞjr2mr1m: ð21Þ

Then, in the late time limit r2m → rþ, r1m → r−, and from
(19), we observe that this contribution takes the appealing
form

dIbulk
dt

����
t→∞

¼ ðM − TS − ϕQÞjrþr− ; ð22Þ

which is simply the difference of free energy one would
associate with each horizon.
Let us now consider the null boundary terms and show

that their time dependence vanishes. The null boundary
terms for EG were described in [42,95], but they are still
unknown in Lovelock gravity. However, on general
grounds, given a null segment N parametrized by λ and
with a transverse space metric σAB, the boundary contri-
bution will have the form

Inull ¼
Z
N
dλdxd−1

ffiffiffi
σ

p
Qþ

Z
∂N

dxd−1
ffiffiffi
σ

p
F ; ð23Þ

where, in analogy to the results in [85], we assume a
possible contribution from the boundary of N . This
contribution could be equivalently understood as adding
a total derivative toQ. HereQ and F are some polynomial
functions of intrinsic and extrinsic curvatures and of the
parameter κ defined as kα∇αkβ ¼ κkβ (see [96] for the
definition of the rest of the objects).
Now, let us ensure the time derivative of the null

boundary term vanishes. Normalizing the null normal
vectors on the WDW patch as, for instance, in [40], r will
be an affine parameter. Further, since the integrands will be
functions of r that we denote by QðrÞ (for the contribution
along N ) and GðrÞ (for the contribution along ∂N ), we
will have

dInull
dt

∝ QðrimÞ
drim
dt

þ dG
dr

����
r¼rim

drim
dt

: ð24Þ

Since these terms will be built from polynomials of intrinsic
and extrinsic quantities, they will be finite (or vanishing) as
rim → r�. Since the time derivatives of rim vanish in this
limit, we are then assured that the null boundaries make no
contributions to the time derivative at late times,

dInull
dt

����
t→∞

¼ 0: ð25Þ

Finally, we consider the contribution to the rate of
change of joints at r1m and r2m. The joint terms for
intersections of null boundaries were described in [85],
where it was found that they are given by

Ijoint ¼
1

2π

Z
C
dσaρJM; ð26Þ

where the parameter a is the same that appears in Einstein
gravity [42], and ρJM is the Jacobson-Myers entropy [93]
associated with the codimension 2 surface C,

ρJM ¼ 1

4G

�
1þ

Xbd=2c
n¼2

nλn
ðd − 2nÞ!
ðd − 2Þ! ð−1ÞnL2n−2X̂2ðn−1Þ

�
;

ð27Þ

where X̂ 2ðn−1Þ is the (n − 1)th Euler density of the induced
metric. For the case depicted in Fig. 1, the joint contribu-
tions take the form

Ijoint ¼
1

2π
½Sðr1mÞaðr1mÞ þ Sðr2mÞaðr2mÞ�; ð28Þ

where SðrÞ evaluates the entropy at the horizons. Following
the conventions of, for instance, [40,97], the function a at
joints like those of r1m and r2m is given by

aðrÞ ¼ − log

�jfðrÞj
α2

�
; ð29Þ

where α is an arbitrary constant in the normalization of the
null vector with respect to a boundary timelike vector, as
described in [42].
The time derivative of the joint contributions to the

action takes a compact and simple form at late times. For
instance, at r1m the time derivative of Sa takes the general
form

dðSaÞ
dt

����
r¼r1m

¼ 1

2
aðr1mÞfðr1mÞ

dSðrÞ
dr

����
r¼r1m

−
1

2
Sðr1mÞf0ðr1mÞ;

ð30Þ
where we used (16) and (29). The first contribution to the
right-hand side of Eq. (30) vanishes when r1m approaches
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r−, since the derivative of SðrÞ is finite and limr1m→r−aðr1mÞ
fðr1mÞ ¼ 0. On the other hand, f0ðr1mÞ=ð4πÞ approaches the
“temperature” T− of the horizon when evaluated at r−.
An analogous computation holds for r2m approaching rþ.
Then, the time derivative of the joint contribution takes the
simple form

dIjoint
dt

����
t→∞

¼ TSjrþr− : ð31Þ

Putting together the results (22) and (31), we have the
late time complexity growth rate,

π
dCA
dt

����
t→∞

≔ π _CA ¼ ϕ−Q − ϕþQ; ð32Þ

which holds for Lovelock theory of any order and in any
dimension.
Our result can be expressed in another useful form.

Introducing the dimensionless parameters y ≔ r−=rþ and
z ≔ L=rþ, we can write

_CA ¼ 2M
π

�ðhþ − ydh−Þð1 − yd−2Þ
hþ − y2ðd−1Þh−

�
; ð33Þ

with hþ ≔ hð−kz2Þ and h− ≔ hð−kz2=y2Þ. We can then
consider two limits of interest. First, we see that in the
extremal limit y → 1 and we get _CA → 0. Second, we can
consider the limit of vanishing charge, y → 0. Here we
must take note of the following result,

lim
y→0

ydh− ¼
�
0 for d odd

ð−kÞd=2λd=2zd for d even
ð34Þ

and so we obtain in the uncharged limit

_CA ¼ 2ðM −MminÞ
π

; ð35Þ

where it is understood that the correction to 2M is only
present for even d and k nonzero [98] [see (11) for the
expression of Mmin]. Strictly speaking, we should consider
this result to hold in a regime where the mass is much larger
than the charge, but the charge is still large enough that the
inner horizon is not “close” to the singularity.
The vanishing of _CA at extremality is in line with results

from Einstein gravity [38,39,42], while the appearance of
Mmin at small charge leads to new features. In cases where
Mmin ¼ 0, the growth rate comes closest to saturating
Lloyd’s bound as y → 0, as in Einstein gravity. However,
for Mmin ≠ 0, the growth rate may reach a maximum (less
than 2M=π) for nonzero y.
There are two possible scenarios in the neutral limit.

The first possibility is that when M ¼ Mmin the black hole
becomes zero size and then the correction in (35) ensures

that _CA ¼ 0 in that case. For M < Mmin there is no black
hole. The second possibility is that when M < Mmin the
black hole develops an internal horizon, and in that case
_CA ¼ 0 even if the black hole has nonvanishing temper-
ature. Note that this same result can be obtained directly
from the uncharged solution, due to the two horizon causal
structure, and so is true irrespective of the uncharged limit
presented above. Therefore, there is a minimum mass
below which black holes do not increase complexity.
Since it is usually claimed that black holes are the fastest
computers on nature, this result would suggest that there is
a minimum mass required to perform computation.
To summarize, we have carried out the first general

calculation within the complexity ¼ action framework,
taking higher-curvature corrections into account. In the
late time limit, we argued that, due to the WDW patch
approaching the inner and outer horizons of charged black
holes, the null boundary terms are unimportant and the
calculation requires only the bulk and joint terms, which are
now understood [85]. For spherical black holes in Gauss-
Bonnet gravity, our results agree with those in [49], though
we note that there they were computed using other methods,
taking the limit of spacelike and timelike boundaries.
The complexity growth rate reduced beautifully to

thermodynamic expressions,

π _CA ¼ ðFþ þ TþSþÞ − ðF− þ T−S−Þ ¼ Uþ −U−; ð36Þ
withF� as the free energy associated with each horizon and
U� as the internal energy [101]. This result is at once
surprising and suggestive. It shows that the results first
obtained in [38,39] are of incredibly broad scope, holding
their form even in the presence of higher-curvature (finite
N) corrections. Our calculation shows in a very transparent
way the origin of this result: the bulk contribution is always
the free energy and the joint contribution is always TS.
From this, one might expect that this expression is of
broader applicability than the situation considered here, and
may in fact hold for any two horizon configuration. At the
very least, this suggests a deep connection between the late
time growth of complexity and black hole thermodynamics
that merits further exploration, as for instance in [31].
In principle, our methods will also work directly in the

uncharged case. However, as noted in [39,49], there are
subtleties related to the way in which one regularizes the
hypersurface above the singularity—we will discuss this
further in forthcoming work [105]. In the charged case,
these problems are, in general, not present since the
singularity is hidden behind the inner horizon.
Lastly, let us note that, while we have taken an important

first step toward understanding the role of higher-curvature
theories in the framework of holographic complexity, there
remains much to explore. For example, we expect to see
corrections to the complexity of formation [106].
Furthermore, it would be interesting to explore the correc-
tions to the full time dependence of complexity. In [40] it

PHYSICAL REVIEW LETTERS 121, 121602 (2018)

121602-5



was found that the late time rate 2M=π is approached from
above, rather than from below as Lloyd’s bound would
suggest. Addressing these questions would require full
knowledge of the null boundary terms, which are still
unknown for Lovelock gravity.
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