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Exotic particles carrying baryon number and with a mass of the order of the nucleon mass have been
proposed for various reasons including baryogenesis, dark matter, mirror worlds, and the neutron lifetime
puzzle. We show that the existence of neutron stars with a mass greater than 0.7 M⊙ places severe
constraints on such particles, requiring them to be heavier than 1.2 GeV or to have strongly repulsive
self-interactions.
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Introduction.—Exotic states that carry baryon number
and have masses below a few GeV have been theorized in a
number of contexts, such as asymmetric dark matter [1,2],
mirror worlds [3], neutron-antineutron oscillations [4],
or nucleon decays [5]. In general, such states are highly
constrained, because they can drastically alter the proper-
ties of normal baryonic matter—in particular, if too light,
they can potentially render normal matter unstable. We
currently understand that matter is observationally stable,
because the standard model (accidentally) conserves
baryon number. This ensures that the proton, the lightest
baryon, does not decay (up to effects caused by higher-
dimensional operators that violate baryon number).
Now, consider the simple case of an electrically neutral

single new fermion χ that carries a unit baryon number
and carries no other conserved charge. Assuming that its
couplings to ordinary matter are not highly suppressed,
because of the conservation of baryon number and electric
charge, it must have a mass larger than the difference
between the proton and electron masses, mχ > mp−
me ¼ 937.76 MeV, in order to not destabilize the proton.
In fact, a slightly stronger lower bound on mχ comes from
the stability of the weakly bound 9Be nucleus: mχ >
937.90 MeV. If mχ > mn ¼ 939.57 MeV, a new neutron
decay channel can open up, n → χ þ � � �, where the ellipsis
includes other particles that allow the reaction to conserve
(linear and angular) momentum.

It is interesting to note that, if mχ < mp þme ¼
938.78 MeV, χ is itself kept stable by the conservation
of baryon number and electric charge. It could therefore be
a potential candidate for dark matter, which we know to be
electrically neutral and stable. It is compelling that in such a
situation the stability of normal matter and of dark matter is
ensured by the same symmetry: baryon number.
A potential new decay channel for the neutron has

recently received attention as a solution to the 4σ discrep-
ancy between values of the neutron lifetime measured using
two different techniques, the “bottle” and “beam” methods
[3,6,7]. The bottle method, which counts the number of
neutrons that remain in a trap as a function of the time
and is therefore sensitive to the total neutron width, gives
τbottlen ¼ 879.6� 0.6 s [8]. The beam method counts the
rate of protons emitted in a fixed volume by a beam of
neutrons, thus measuring only the β-decay rate of the
neutron, and results in τbeamn ¼ 888.0� 2.0 s [9]. These
two measurements can be reconciled by postulating a new
decay mode for the neutron, such as n → χ þ � � �, with a
branching fraction

Brn→χ ¼ 1 −
τbottlen

τbeamn
¼ ð0.9� 0.2Þ × 10−2: ð1Þ

However, a recent reevaluation of the prediction for the
neutron lifetime from post-2002 measurements of the neu-
tron gA concludes that any nonstandard branching for the
neutron is limited to less than 2.7 × 10−3 at 95% C.L. [10].
In this Letter, we note that a new state that carries baryon

number and has a mass close to the neutron’s can
drastically affect the properties of nuclear matter at den-
sities seen in the interiors of neutron stars. In neutron stars,
the neutron chemical potential can be significantly larger
thanmn, reaching values of ≃2 GeV in the heaviest neutron
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stars [11]. Thus, any exotic particle that carries baryon
number and has a mass ≲2 GeV will have a large
abundance if in chemical equilibrium. Because they replace
neutrons, their presence will soften the equation of state of
dense matter by reducing the neutron Fermi energy and
pressure while contributing to an increase in the energy
density. This will, in turn, reduce the maximum mass of
neutron stars from those obtained using standard equations
of state for nuclear matter. As we shall show below, even a
modest reduction in the pressure at a high density can
dramatically lower the maximum mass to a value that is
significantly smaller than the observed heaviest neutron
stars with masses ≃2 M⊙ [12,13].
The remainder of this Letter is organized as follows. In

Sec. II, we describe a simple model of fermion dark matter
which is charged under baryon number. In Sec. III, we
show the results of a computation of the effects of such a
fermion on the mass-radius relation and maximum mass of
neutron stars. Possible extensions of these constraints,
future work, and ways to avoid the constraints are described
in the conclusions, Sec. IV.
Model.—We begin by considering a simple model with a

single neutral Dirac fermion χ that carries a unit baryon
number. As mentioned above, mχ > 937.90 MeV so as to
not destabilize 9Be. The relevant terms in the effective
Lagrangian involving the neutron are

Leff ¼ n̄ði∂ −mnÞnþ χ̄ði∂ −mχÞχ − δðχ̄nþ n̄χÞ; ð2Þ

where δ is a coupling determined by the underlying theory.
A simple UV completion [4,14] of this involves integrating
out a scalar diquark coupled to u and d quarks as well as to
d and χ, generating the four-fermion operator

1

Λ2
χ̄udd: ð3Þ

Matching this onto the effective theory gives

δ ∼
0.01 GeV3

Λ2
: ð4Þ

In what follows, we assume that this coupling between n and
χ is small, in particular, jδj ≪ jΔmj, whereΔm≡mn −mχ .
This coupling leads to a mixing between n and χ, and the
mass terms are diagonalized by taking n → nþ θχ,
χ → χ − θn, where the mixing angle is θ ¼ δ=Δm.
Ifmχ < mn, a new decay mode for the neutron opens up,

n → χγ. In addition, ifmχ < mp þme ¼ 938.78 MeV, χ is
stable. The new decay mode for the neutron comes from the
neutron magnetic dipole moment operator, which, after the
mass matrix is diagonalized, contains the term

μnθχ̄σ
μνnFμν; ð5Þ

where μn ¼ −1.91e=ð2mpÞ ¼ −0.31 GeV−1 is the neutron
magnetic dipole moment. The partial width for n → χγ is

Γn→χγ ¼
μ2nθ

2m3
n

16π

�
1 −

m2
χ

m2
n

�
3

≃
μ2nθ

2Δm3

2π
: ð6Þ

Given a total width of Γn ¼ 1=τbottlen ¼ ð879.6 sÞ−1, the
branching ratio for the neutron to decay into χγ is

Brn→χγ ¼ 0.01

�
Δm

1 MeV

�
3
�

θ

7 × 10−10

�
2

¼ 0.01

�
Δm

1 MeV

��
δ

7 × 10−13 GeV

�
2

: ð7Þ

Thus, we see that, for mn −mχ∼1 MeV, a mixing angle
of the order of 10−9, or a n-χ coupling of about 10−12 GeV,
can explain the neutron lifetime anomaly. (We note here
why a model with Dirac χ where baryon number is
conserved is necessary. If instead χ were Majorana with
θ ¼ 10−9 and Δm ¼ 1 MeV, a ΔB ¼ 2 n-n̄ transition
amplitude of roughly θ2Δm ∼ 10−21 GeV would arise.
This is many orders of magnitude larger than the exper-
imental upper bound of 10−33 GeV.) This value of δ
corresponds to a scale for the four-fermion interaction in
Eq. (3) of Λ ∼ 105 GeV. We note here, however, that a very
recent search for the decay n → χγ using ultracold neutrons
sets a limit on this branching, for 937.90 MeV < mχ <
938.78 MeV, of roughly 10−3 [15].
Although δ ∼ 1012 GeV is a small coupling between the

neutron and χ, it can lead to the efficient conversion of
neutrons into χ’s in the high-density environments encoun-
tered inside neutron stars. In addition, because of the large
neutron chemical potential inside neutron stars, the con-
version n → χ can take place there even for mχ > mn,
where free neutron decays are kinematically blocked.
We investigate the effects of a χ-n coupling on neutron

stars in the next section.
Neutron stars.—The structure of neutron stars is deter-

mined by the equation of state (EOS) of dense matter which
specifies the relationship between pressure P and energy
density ϵ. For a given EOS, PðϵÞ, the Tolman-Oppenheimer-
Volkoff (TOV) equations of general relativistic hydrostatic
structure can be solved numerically to obtain themass-radius
curves [16,17]. Although there remain large uncertainties
associated with the EOS at a supranuclear density, the EOS
up to nuclear saturation density ns ≃ 0.16 fm−3 can be
calculated using nuclearHamiltonians and the nonrelativistic
quantum many-body theory to obtain PnucðϵnucÞ [18–20].
Furthermore, absent phase transitions to new states ofmatter,
modern nuclear EOSs are able to estimate uncertainties
associated with the extrapolation to high density, since they
account for two- and three-body nuclear forces consistently
and are based on a systematic operator expansion rooted
in the effective field theory [21]. Representative nuclear

PHYSICAL REVIEW LETTERS 121, 061802 (2018)

061802-2



EOSs are shown as dot-dashed curves in Fig. 1. The curve
labeled APR, calculated by Akmal, Pandharipande, and
Ravenhal [18], has been widely used to describe neutron
stars. The curves labelled “soft” and “stiff” are the extreme
possibilities consistent with our current understanding of
uncertainties associated with the nuclear interactions up to
1.5ns [19,20]. The EOS labeled soft uses a nuclear EOSwith
a low pressure compatible with neutron matter calculations
and is extrapolated to a high density to ensure that produces a
neutron star with a mass just shy of 2 M⊙. The curve labeled
stiff is obtained by using the largest pressure up to 1.5ns
compatible with neutron matter calculations, and at a higher
density we use the maximally stiff EOS with PðϵÞ ¼ P0 þ
ðϵ − ϵ0Þ, whereP0 and ϵ0 are thepressure and energydensity,
respectively, predicted by the nuclear EOS at 1.5ns. We
believe that the soft and stiff EOSs bracket the extreme
possibilities subject to constraints from nuclear physics and
observations of themassive neutron stars withMNS ≃ 2 M⊙.
In what follows, we shall use these EOSs to demonstrate
that, despite the uncertainty at a supranuclear density, the
observation of neutron stars with mass MNS ≃ 2 M⊙ rules
out the existence of a weakly interacting dark matter
candidate which carries baryon number and has a mass in
the range 937.90 MeV < mχ < 938.78 MeV. In fact, we
shall find that any such weakly interacting particlewith mass
mχ ≲ 1.2 GeV can be robustly excluded.
In Fig. 2, we show the mass-radius curve for neutron

stars predicted by the standard nuclear EOS as dash-dotted
curves. The curves terminate at the maximum mass. For the
maximally stiff EOS, the speed of sound in the high-density
region cs ¼ c, and this construction produces the largest
maximum mass of neutron stars compatible with nuclear
physics.

Any exotic neutron decay channel n → χ þ � � � which
makes even a small contribution to the neutron width, of
the order of the inverse lifetime of a neutron star, will be
fast enough to ensure that χ is equilibrium inside the star.
The typical age tNS of old observed neutron stars is
tNS ≈ 106–108 years. In a dense medium, due to strong
interactions, the dispersion relation of the neutron can be
written as ωnðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

n

p
þ Σr þ iΣi, where Σr and

Σi are the real and imaginary parts, respectively, of its
self-energy. The mixing angle is suppressed at a finite
density and is given by

θ̃ ¼ δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ̃m2 þ Σ2

i

q ; ð8Þ

where gΔm ¼ Δmþ Σr. Since Σr and Σi are expected to be
of the order of 10–100 MeVat the densities attained inside
neutron stars [22], it is reasonable to expect the ratio θ̃=θ
to be in the range 0.01–0.1. The rate of production of χ ’s
in the neutron star interior due to neutron decay, defined
in Eq. (6), is suppressed by the factor ðθ̃=θÞ2 but enhanced
by ðgΔm=ΔmÞ3 when gΔm > Δm. For gΔm ≈ 10 MeV, the
neutron decay lifetime is < 108 yr when δ > 10−19 GeV,
and it is safe to assume that, for the phenomenologically
interesting values of δ ≃ 10−14 − 10−12 GeV, χ will come
into equilibrium on a timescale t ≪ tNS. (We delegate to
future work a detailed calculation of the production rate
for such small values of δ which may be interesting in other
contexts).
Because χ carries baryon number, in equilibrium its

chemical potential μχ ¼ μB, where μB is the baryon
chemical potential. Given a nuclear EOS, the baryon
chemical potential is obtained using the thermodynamic
relation μB ¼ ðPnuc þ ϵnucÞ=nB, where nB is the baryon
number density. If χ is a Dirac fermion with spin 1=2 and its

FIG. 1. Hybrid EOS and underlying nuclear EOS. The standard
nuclear matter is shown as dash-dotted curves. The stiff EOS
makes a second-order transition to a causal EOS at nB ¼ 1.5ns.
This is the stiffest possible EOS and predicts a maximum mass of
≃3.3 M⊙ (Fig. 2). Adding a dark baryon with mχ¼ 938 MeV
results in solid curves, which are dominated by χ’s Fermi gas
EOS for ϵ ≳ 0.1 MeV=fm3. Dotted lines show a hybrid EOS with
mχ ¼ 1.2 GeV. All curves are truncated at maximum central
densities inside stable neutron stars.

FIG. 2. The mass-radius relationship generated using the EOS
in Fig. 1. Even for the extremely stiff EOS, the maximum mass of
hybrid stars containing noninteracting dark neutrons does not
exceed 0.8 M⊙. The measured masses of the two most massive
neutron stars J0348þ 0432 and J1614 − 2230 are also shown.
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interactions are weak, its Fermi momentum and energy
density are given by

kFχ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2B −m2

χ

q
; ð9Þ

ϵχ ¼
1

π2

Z
kFχ

0

dkk2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

χ

q
; ð10Þ

respectively. The dark neutron number density nχ ¼
k3Fχ=3π

2 and its pressure Pχ ¼ −ϵχ þ μBnχ . The total
pressure Ptot ¼ Pnuc þ Pχ and energy density ϵtot ¼ ϵnuc þ
ϵχ are easily obtained, and the TOV equations are solved
again to determine the mass-radius relation for hybrid stars
containing an admixture of χ particles. The net result is a
softer EOS where the pressure is lower at a given energy
density, because, as we mentioned earlier, χ replaces
neutrons and reduces their Fermi momentum and pressure.
Results for mχ ¼ 938 MeV are shown in Fig. 2 as solid
curves which terminate at the maximummass. We allow the
nuclear EOS to vary from maximally stiff to soft and also
show the results for the APR EOS. The striking feature is
the large reduction in the maximum mass. This reduction is
quite insensitive to the nuclear EOS. Even for the max-
imally stiff EOS, the presence of noninteracting dark
neutrons reduces the maximum mass to values well below
observed neutron star masses. Thus, a dark neutron with
mχ ≃ 938 MeV and weak interactions is robustly excluded.
For larger mχ, we can still obtain useful bounds as long as
mχ is smaller than the baryon chemical potential attained in
the core. For mχ ¼ 1.2 GeV, we find, as expected, that the
appearance of dark neutrons is delayed to a supranuclear
density, but, as soon as they appear, they destabilize the
star. This can be inferred by the behavior of the mass-radius
relation labeled mχ ¼ 1.2 GeV and denoted by points
represented as crosses. For the APR EOS the maximum
mass is about 1.6 M⊙, and for the maximally stiff EOS it is
about 2.2 M⊙.
Although interactions between χ’s and nucleons are

necessarily weak, interactions between χ’s could be strong.
[In the model leading to the four-fermion interaction of
Eq. (3), χ-nucleon interactions come from the four-fermion
interaction χ̄χd̄d=Λ2. With Λ≳105GeV for δ≲10−12GeV,
this interaction is highly suppressed compared to nuclear
strength interactions.] If χ is charged under a U(1) with
coupling strength g to a new gauge boson with a mass mV ,
repulsion between between χ’s modifies the EOS. In the
mean field approximation, both the pressure and energy
density are increased by

ΔPχ ¼ Δϵχ ¼
1

2

g2

m2
V
n2χ : ð11Þ

For strong coupling with g ≃ 1 and smallmV corresponding
to a Compton wavelength of the gauge boson that is larger

than the interparticle distance, this interaction energy
will dominate. Under these conditions, the number density
of nχ ≈m2

VðμB −mχÞ=g2 in equilibrium will be greatly
reduced, and its impact on the dense matter EOS will
be negligible. For mχ ≃mN, we find that when g >
1.1ðmV=100 MeVÞ the stiff EOS predicts a maximum
mass >2 M⊙, while for the APR EOS we require g >
2.4ðmV=100 MeVÞ to accommodate this maximum mass.
Another possibility is that dark neutrons have interactions
that mimic interactions between ordinary neutrons. In such a
mirror scenario, we find that the maximum mass of neutron
stars is 1.6 M⊙ for the APR EOS and 2.4 M⊙ for the
maximally stiff EOS construction.
Conclusions.—States that carry baryon number andhave a

mass close to the nucleons have been studied in several
scenarios. The extreme environments encountered in the
interiors of neutron stars can readily produce such states.
However, because these new states do not, in general, have
the same interactions that neutrons do, they can lead to
radically different EOSs in neutron stars. In particular, new
states will reduce the maximum possible neutron star mass
which is consistent with a given nuclear EOS.
Simple scenarios where the dark baryons have a mass

similar to that of the nucleon and are not charged under a
new force do not allow for neutron stars with mass above
∼0.7–0.8 M⊙. This bound is in stark conflict with obser-
vation. Charging such dark baryons under a new forcewith a
very light gauge mediator will result in interactions much
larger than standard nuclear interactions and can greatly
suppress their presence in dense matter. This can mitigate
their effect on the EOS enough to allow for neutron stars as
heavyas havebeenobserved,∼2 M⊙.However, if such a new
force is similar to nuclear forces as expected in a “mirror
world” setup, where the dark neutron has the same self-
interactions as does the visible neutron, themaximummass is
still significantly reduced, and one requires a very stiff high-
density EOS to produce 2 M⊙ neutron stars. Interestingly, in
the case where the dark baryons are stable dark matter, with
mχ≃938 MeV, nuclear strength self-interactions have been
implicated to explain dark matter small-scale structure
puzzles (see, e.g., [23] and references therein).
Extensions of this work can easily be shown to constrain

other possible new weakly interacting particles. For in-
stance, in the “hylogenesis” baryogenesis scenario [2],
there are two kinds of baryon-number-carrying dark matter
particles, called “Y” and “Φ,” which also carry another
conserved charge for stability but which have an allowed
reaction nþ γ ↔ Y þΦ. The stability of matter places a
lower bound of 937.90 MeVonmY þmΦ. The existence of
observed neutron stars will place a more stringent bound
on mY þmΦ, which will be similar to the lower bound of
1.2 GeV we found on mχ . Another type of new particle
which would be constrained would be a new weak
interacting neutral integer spin boson, called “ξ,” with
baryon number 1 and interactions with ordinary matter
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which are not highly suppressed. As long as the lepton
number is conserved, both ξ and the proton are stable.
The stability of nuclei with atomic number A and charge Z
against decays of type ðA; ZÞ → ðA − 2; ZÞ þ 2ξ will place
a lower bound of the order of the nucleon mass on mξ.
Neutron stars, however, will constrain ξ to be heavier than
the minimum chemical potential for neutrons in a two-
solar-mass neutron star, or else neutrons could convert to ξ
particles and destabilize the star.
As noted earlier, avoidance of such constraints is

possible if the dark matter or dark baryon carries suffi-
ciently repulsive self-interactions. If the self-repulsion of
the new state is large enough, most of the mass of the star
will remain in the form of neutrons, and the effect on the
maximum mass will be small.
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Note added in proof.—Recently, two groups [24] reached
similar conclusions about the maximal mass of neutron
stars in the case of neutrons converting into noninteracting
dark baryons. Strong self-interactions among the dark
baryons as suggested above to evade neutron star limits
were further explored in Ref. [25].
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