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We present the first limits on inelastic electron-scattering dark matter and dark photon absorption using a
prototype SuperCDMS detector having a charge resolution of 0.1 electron-hole pairs (CDMS HVeV, a
0.93 g CDMS high-voltage device). These electron-recoil limits significantly improve experimental
constraints on dark matter particles with masses as low as 1 MeV=c2. We demonstrate a sensitivity to dark
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photons competitive with other leading approaches but using substantially less exposure (0.49 g d). These
results demonstrate the scientific potential of phonon-mediated semiconductor detectors that are sensitive
to single electronic excitations.

DOI: 10.1103/PhysRevLett.121.051301

Introduction.—Over the past few years, the LHC and
direct detection experiments have ruled out a substantial
portion of the most natural parameter space for weakly
interacting massive particle (WIMP) dark matter (DM),
motivating new searches for DM over a broader mass range
(Ref. [1] and references therein). In particular, sub-GeV=c2

DM that couples to standard model (SM) particles through a
new force mediator is a well-motivated alternative to the
WIMP hypothesis [2–4]. eV=c2-scale bosonic darkmatter in
the form of dark photons [5–7] andMeV=c2-scale fermionic
dark matter which forms the lightest particle in a new force
sector [8,9] are both capable of reproducing the dark matter
relic density while evading current constraints [10–12].
The unconstrained parameter space in these models can

be probed by new gram-scale detectors with single-charge
resolution [10–13]. Dark photon signatures may be probed
through kinetic mixing with the SM photon and subsequent
absorption by the detector [13]. Low-mass DM interactions
that excite electrons from bound to unbound states can
efficiently transfer large fractions of the total DM kinetic
energy to these electrons, making inelastic electron-recoil
DM (ERDM) searches compelling [12]. The inelastic
ERDM scattering rate depends strongly on both the size
of the target material’s band gap and the detection thresh-
old. Consequently, a semiconductor detector with sensi-
tivity to single electron-hole (e−hþ) pairs [14,15] can be
competitive with other experimental technologies [16,17],
even with a very modest exposure in an above-ground
facility.
In this Letter, we present results from our first sub-

GeV=c2 ERDM and dark photon searches with 0.49 g d of
exposure of the CDMS HVeV detector [14] [a gram-scale
CDMS high-voltage (HV) [18] prototype with eV-scale
resolution]. We discuss the performance of this device,
including the charge leakage measured during long expo-
sures, and the path forward to future experiments with both
silicon (Si) and germanium (Ge) detectors.
Experimental setup.—This search employed a 1 × 1 ×

0.4 cm3 high-purity Si crystal (0.93 g) instrumented on one
side with two channels of quasiparticle-trap-assisted
electrothermal-feedback transition-edge sensors (QETs),
biased at −42 mV, and on the other side with a 20%
coverage electrode consisting of an aluminum–amorphous-
silicon bilayer [14], biased relative to the ground. The
QETs, which measure the total energy of phonons pro-
duced in the substrate, had an energy resolution of σph ∼
14 eV at the nominal base temperature of 33–36 mK [14] (a
significant advance for Si calorimetry comparable to that

recently achieved in sapphire [19]). Single-charge resolu-
tion was achieved by drifting e−hþ pairs across 140 V to
amplify the small charge signal into a large phonon signal
via the Neganov-Trofimov-Luke (NTL) effect [20,21]. The
bias voltage did not increase the baseline phonon noise,
resulting in an effective charge resolution of σeh ¼
ðσph=qVÞ ≈ 0.1 e−hþ pairs, where q is the quantum of
charge and V the bias voltage. In Si, where the creation
energy per e−hþ pair is ϵeh ¼ 3.8 eV, this is equivalent to
∼0.4 eV in electronic recoil energy, though it is a discrete
energy scale [see Eq. (2)] and e−hþ pairs can be generated
down to the band gap energy Egap ¼ 1.2 eV [22].
A pulsed monochromatic 650 nm laser (∼1.91 eV

photons) provided periodic in-run calibrations, with a
repetition rate of 1 Hz and an average number of photons
absorbed per pulse, λ, of approximately 2. Data were
acquired by triggering on a laser coincident logic signal
for diagnostic studies or a shaped pulse—sum of the two
QET channels through a shaping amplifier—for the science
exposure. The trigger threshold for the shaped detector
pulses was set to 0.5 e−hþ pairs based on prerun calibration
data. This resulted in a trigger efficiency of > 95% for one
e−hþ pair. Independent of the trigger source, the data
recorded for each event consisted of the two unshaped QET
responses, the laser coincidence signal, the shaped QET
pulse, and the dilution refrigerator (DR) temperature.
In Ref. [14], we argued that subgap infrared (SGIR)

photons excited neutralized impurities within the bulk of
the crystal, producing unpaired excitations that would drift
across only a fraction of the potential drop and thus have a
noninteger signal amplitude. For the data presented here,
SGIR was mitigated with changes to the optical fiber
coupled to the pulsed laser source and the introduction of
IR filters, rated to reduce transmitted IR at 800 nm by
∼99.8% and attenuate transmission at longer wavelengths
by several orders of magnitude.
Data were acquired over 6 d with 36 hr of raw exposure

comprising the selected data set: 27 hr at −140 V and 9 hr
atþ140 V. Only the negative-bias data were considered for
this analysis, with some of the raw exposure removed
because of sporadic periods of high electrical noise and
drifts in the base temperature above 36 mK. Variations in
the DR temperature led to gain variations, resulting in a
variable threshold between 0.2 and 0.5 e−hþ pairs. This
temperature-correlated gain variation was corrected based
on the known DR temperature, as described in the follow-
ing section.
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Data reconstruction and calibration.—The full data set
was separated into series of 10 000 events. For each series,
noise spectra and phonon pulse templates were computed
from the first and second halves of the digitized traces,
respectively, with the trigger point located in the second
half of the trace. The pulse amplitude and start time were
estimated using the optimal filter formalism (e.g.,
Ref. [23]). We reconstructed amplitudes for individual
channels and their sum in order to quantify signal position
dependence and channel noise covariance. We observed
time variation in the noise spectra and the pulse amplitude
but not in the shape of the templates. Thus, a single
averaged pulse template was generated from laser calibra-
tion events taken over the entire science exposure.
The laser calibration showed that the detector energy

response was nonlinear, requiring a quadratic correction to
convert from the pulse height to an absolute energy scale as
discussed in Ref. [14]. Additionally, the change in the
overall energy scale caused by temperature variations was
corrected by aligning the laser spectral peaks with equal
e−hþ pair quanta. The temperature correction was observed
to be linear in energy throughout our analysis region of
0–10 e−hþ pairs. Finally, we compared laser events with
events from periods with an elevated surface leakage near
the outer edge of the detector to determine the relative
calibration gain factor between the inner and outer QET
channels. This resulted in a 30% increase in the outer
channel amplitude. The calibrated total energy is thus
position and temperature independent.
The calibrated detector was characterized by varying the

crystal bias voltage and laser intensity while triggering on
the laser coincidence signal. Figure 1 shows the reduced
fill-in between laser peaks as compared to the previous
result in Ref. [14] due to the reduced SGIR. There is still a
population of fill-in events, which is well fit by an impact-
ionization model with 3% ionization probability across the
4 mm crystal thickness [24]. As with Ref. [14], the bias
scans showed linear signal scaling and constant power
noise with increasing voltage (demonstrating ideal NTL
amplification [20,21,25]).
Charge leakage.—Large electric fields used for signal

amplification can autoionize impurities within the crystal
and cause charge carriers to tunnel into the crystal at the
surface, which, along with SGIR, produce background
events within the region of interest for DM searches.
Consequently, we carefully studied the total charge leakage
rate as a function of the bias voltage. In these diagnostic
studies, the acquisition system was configured to trigger on
the laser coincidence signal, with the laser pulsed at 100 Hz
and λ ≈ 2. The Si crystal bias was varied in a staggered
manner, increasing by 20 V and then decreasing by 10 V.
Data were acquired at both the increasing and decreasing
steps after allowing the detector to stabilize for 1 min. This
staggering enabled the study of a 10 V prebias on the
charge leakage of the detector. The energy spectrum of the

charge leakage was determined by scanning the first half of
each trace for pulses using the optimal filter. The resulting
charge leakage spectrum is thus independent of the physical
trigger threshold.
The measured event rate above 0.8 e−hþ pairs as a

function of the crystal bias, largely dominated by non-
quantized SGIR at lower voltages, is shown in Fig. 2. The
event rate was ∼2 Hz up to �140 V (�120 V) for
prebiased (nonprebiased) data. This event rate is 10 ×
smaller than achieved previously, demonstrating the effi-
cacy of our SGIR mitigations. Above this voltage, the
quantized leakage rate increased, indicative of increased
surface tunneling at the electrodes (as opposed to auto-
ionization in the bulk). Full breakdown occurred around
180 V, corresponding to a field strength of ∼450 V=cm in
the crystal bulk and in excess of ∼1 kV= cm near the
electrode plane.
For the science exposure, the detector was prebiased to

−160 V for 5 min and then biased to −140 V for a minute
prior to data collection to allow the detector to settle. The
prebias was performed after each data series was acquired
to ensure low charge leakage throughout the acquisition. As
shown in Fig. 2, the event rate varied between 0.2 and 3 Hz
above 0.8 e−hþ pairs.
Data selection.—From the initial 27.4 hr of raw exposure

at a detector bias voltage of −140 V, a science exposure of

FIG. 1. Laser calibration data showing a resolution of ∼0.07
e−hþ pairs for a short laser-triggered acquisition at 150 V. In the
series shown in this figure, a lower DR temperature allowed for a
30% improvement in energy resolution as compared to the
average value during the science exposure. Both the between-
peak event rate and the energy resolution are significantly
improved compared to the previous result in Ref. [14]. For this
calibration series, the mean photon number (λ) was 1.0 to increase
statistics near zero in the short acquisition, while the science
exposure used λ ≈ 2 to cover the full energy range of interest. The
model curve is a maximum likelihood fit of photon distribution
and charge transport parameters, with results described in the text
and Ref. [14].

PHYSICAL REVIEW LETTERS 121, 051301 (2018)

051301-3



16.1 hr was selected based on detector performance and
consistent background event rate. The live time and trigger
efficiency were computed using the laser repetition rate and
the total expected number of laser events based on the
Poisson distribution of the observed laser peaks. The time
associated with the observed laser events was deducted
from the live time. This method allowed us to account for
time variation in the energy-dependent trigger efficiency
due to changes in the noise environment. We verified that
this method was consistent with live-time calculations
using time stamps from calibration data. An exposure of
12.6 hr passed the initial, trigger-, and leakage-burst cuts,
yielding a science exposure of 0.49 g d for the 0.93 g
detector.
The cut efficiency for the live time and goodness of fit

cut (a basic χ2 test) as a function of the number of e−hþ
pairs, neh, can be seen in Fig. 3, along with the laser and
background spectra obtained after the application of the
quality and live-time cuts. All of our cuts were designed to
have very high efficiency and remove only events incon-
sistent with the detector response and, as such, are
conservative. A simple background model of bulk and
surface charge leakage with impact ionization, shown in

Fig. 3, is an excellent fit to the data below two e−hþ pairs.
More complex background models are expected to be
capable of fitting the events above two e−hþ pairs.
Constraints on new physics.—We used the final 0.49 g d

of exposure coupled with the cut-efficiency model in Fig. 3
to set limits on dark photons and ERDM. The dark photon
signal model assumes kinetic mixing between the dark
photon and the SM photon. The subsequent interaction of
the SM photon with the material was computed according
to tabulated photoelectric cross sections, giving the
approximate event rate [13]

R ¼ Vdet
ρDM
mV

ε2effðmV; σ̃Þσ1ðmVÞ; ð1Þ

where Vdet is the detector volume, ρDM=mV is the number
density of DM (for this Letter, we assume ρDM ∼
0.3 GeV=cm−3 [26]), mV is the dark photon mass, εeff is
the effective kinetic mixing angle, σ̃ is the complex
conductivity, and σ1ðmVÞ ¼ Re½σ̃ðmVÞ� is computed from
the photoelectric cross section σpe. The kinetic mixing
parameter ε follows from εeff after in-medium corrections
as described in Ref. [13], from which we also adopted the
nominal photoelectric cross sections [27].
In order to project an absorption event of known energy

into our measured signal space, we adopted an ionization

FIG. 2. Top: Event rate as a function of bias before and after
prebias. Bottom: Event rate during the science exposure as a
function of the time. Neutralization [14] was performed at hour
70 (solid line), and the polarity was reversed at hour 90 (dashed
line). Data points represent blocks with a fixed number of events
to ensure uniform vertical error bars, with large horizontal error
bars corresponding to runs separated by gaps in data taking.

FIG. 3. Top: Event rate for calibration (black) and science
exposure (magenta) with live time and quality cuts applied. Also
shown are an impact ionization background Monte Carlo model
(orange) and the signal distribution for an excluded dark photon
model (dotted line) assuming mV ¼ 9.4 eV and εeff ¼ 5 × 10−13

(ε ≈ 2εeff at 9.4 eV); the ERDM signals excluded have a similar
form. Bottom: Measured cut efficiency as a function of the
number of e−hþ pairs along with the efficiency model used in
sensitivity estimates. The dashed line in both plots shows the 50%
analysis efficiency at 0.7 e−hþ pairs.
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production model that is consistent with experimental
measurements [41–43] and has the following mean neh:

hnehðEγÞi ¼

8
>><

>>:

0 Eγ < Egap;

1 Egap < Eγ < ϵeh;

Eγ=ϵeh ϵeh < Eγ;

ð2Þ

where Egap ¼ 1.12 eV and ϵeh ¼ 3.8 eV [22]. The prob-
ability distributions in the first two cases are delta func-
tions. In the third case, we generated discrete distributions
with an arbitrary Fano factor F by interpolating between
binomial distributions with the same hnehi but different
integer number of trials. For the sensitivities shown, we use
the measured high energy F of 0.155 [44]. We also vary the
F used in the ionization model from its lowest mathemati-
cally possible value to 1 to estimate our sensitivity to
the unmeasured ionization distribution width at low
energies. Finally, we convolved the predicted e−hþ pair
spectrum with the experimental resolution of 0.1 e−hþ
pairs. An example of a dark photon signal (mV ¼ 9.4 eV,
εeff ¼ 5 × 10−13) with this ionization model applied is
superimposed on the measured spectrum in Fig. 3.
The signal induced by ERDM was calculated according

to the formalism in Ref. [12], in which scattering rates
accounting for band structure in Si are tabulated for signal
modeling. The differential scattering rate is given by the
function

dR
d lnER

¼ Vdet
ρDM
mDM

ρSi
2mSi

σ̄eα
m2

e

μ2DM
IcrystalðEe;FDMÞ; ð3Þ

where σ̄eα encodes the effective DM-SM coupling, FDM is
the momentum transfer (q) dependent DM form factor, μDM
is the reduced mass of the DM-electron system, and Icrystal
is the scattering integral over phase space in the crystal
(as defined in Ref. [12]). We integrated this differential
spectrum with Eq. (2) to get the expected quantized
spectrum, applying the same energy resolution smearing
as for the dark photon signal.
We determined 90% upper confidence limits from our

data without background subtraction using the optimum
interval method [45,46], with the modification that we
removed regions of the data > 2σ from the quantization
peaks. Given that both of the DM candidates studied in this
Letter produced quantized signals, this ensured that the
optimum interval method considered only the data likely to
resemble the signals studied. Figure 4 shows the optimum
interval limits for dark photon absorption and ERDM
coupling via light and heavy mediators. The salmon-
colored band around the exclusion limit represents the
sensitivity to details of the photoelectric cross section
(below 3 eV, visible for dark photons only) and the choice
of Fano factor.

Discussion.—Even with this conservative analysis, DM
parameter space in the mass range of 0.5–5 MeV=c2, that
was consistent with previously known experimental and
observational bounds, has been excluded. While the

FIG. 4. Top: Limits on dark photon kinetic mixing compared to
the results from DAMIC, XENON10, and XENON100 (see [16]
and references therein). Middle (bottom): Limit on DM interact-
ing with electrons via a heavy dark photon (FDM ¼ 1) [ultralight
dark photon (FDM ∝ 1=q2)] compared to the XENON10 results
[17]. The red line is the limit curve with a Fano factor of 0.155.
The salmon-colored region indicates the systematic uncertainties
due to varying the Fano factor in the ionization model between
the lowest mathematically possible value and 1, as well as from
uncertainties in the photoelectric cross section for dark photon
absorption. For signal models as well as additional astrophysical
constraints, see Ref. [1].
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XENON10 limits benefit from larger exposure above
5 MeV=c2, the 1.2 eV ionization energy in Si (compared
to an ionization energy of 12.1 eV in Xe) allows for
sensitivity to DMmasses≲500 keV=c2 for this experiment
which is kinematically inaccessible to Xe targets.
Furthermore, because of the minimal overburden at the
experimental site (60 cm of concrete plus atmosphere),
these limits are robust even for highly interacting DM
candidates as long as such DM remains present in the local
Galactic environment [47,48]. Models such as these have
been hypothesized to explain recent astronomical obser-
vations [49], and thus these surface-facility direct detection
limits may augment other astrophysical constraints once
DM survival probabilities and atmospheric absorption are
more fully quantified [50,51]. Recent results using smaller
exposures in Si CCDs, with sensitivity in this same mass
range, explore these surface limits further [52].
A subsequent analysis program with these data has

already begun with optimized event pileup estimators
and a likelihood analysis modeling of known background
sources. In particular, because a large number of leakage
events are nonquantized and consistent with the auto-
ionization or SGIR excitation of overcharged impurities
within the volume of the detector, the information between
the spectral peaks can be used to constrain a physical
leakage model. In addition, fill-in between the peaks at a
higher excitation number in both the laser calibration and
background data indicates that drifting excitations have
small non-negligible probabilities to be trapped-on or
impact-ionize impurities. Such processes can be well
modeled with laser calibration data and by noninteger
sidebands within the DM search data. This more detailed
analysis is expected to produce significantly stronger DM
search sensitivity than shown here. Additional calibrations,
such as further studies of position dependence in the
detector, will add to our understanding of the detector
response and improve these background models.
Further into the future, the operation of larger-volume

detectors in an underground environment as planned in the
SuperCDMS SNOLAB experiment [18] should both sub-
stantially boost the exposure of such experimental searches
and decrease the leakage rate. In particular, the new CDMS
HV detectors planned for SuperCDMS SNOLAB will
achieve the same NTL amplification with 8× smaller E
fields [18,53]. Because we expect impact-ionization and
surface-leakage processes to depend strongly on the E-field
magnitude [24], we expect the primary backgrounds in the
neh ≥ 2 signal region to be substantially decreased. These
types of improvements and reductions on the SGIR should
decrease leakage rates further, expanding the low-mass
reach of future searches.
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