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Self-bound quantum droplets are a newly discovered phase in the context of ultracold atoms. In this
Letter, we report their experimental realization following the original proposal by Petrov [Phys. Rev. Lett.
115, 155302 (2015)], using an attractive bosonic mixture. In this system, spherical droplets form due to the
balance of competing attractive and repulsive forces, provided by the mean-field energy close to the
collapse threshold and the first-order correction due to quantum fluctuations. Thanks to an optical levitating
potential with negligible residual confinement, we observe self-bound droplets in free space, and we
characterize the conditions for their formation as well as their size and composition. This work sets the
stage for future studies on quantum droplets, from the measurement of their peculiar excitation spectrum to
the exploration of their superfluid nature.
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Ultracold atoms are commonly known and studied in
their gas phase. They are confined on a finite volume by
external potentials, but they readily expand as they are
released from their container. A recent theoretical proposal
[1] has surprisingly pointed out that a Bose-Bose mixture of
diluted weakly interacting atomic gases can form liquidlike
droplets, which are self-bound in free space and whose
equilibrium densities are independent of the atom number.
When the attraction between the two atomic species
becomes larger than the single-species average repulsion,
the mixture is expected to collapse according to the mean-
field (MF) theory [2]. In this regime, instead, an effective
repulsion provided by the first beyond-mean-field correc-
tion to the energy, the so-called Lee-Huang-Yang (LHY)
term [3], arises to arrest collapse and stabilize the system.
The equilibrium between the two competing forces leads to
the formation of a self-bound droplet, while the isotropic
nature of the van der Waals interactions shapes its spherical
geometry. This new quantum state of matter is expected to
display a number of interesting features. The most peculiar
among them is related to its excitation spectrum. In a
specific region of the droplet phase diagram, the particle
emission threshold is predicted to lie below any possible

excitation mode [1]. Any excess of energy is thus expelled
by losing particles, leading to an effective self-evaporation
and keeping the droplet at zero temperature.
The stabilization mechanism generated by the LHY

correction has been recognized as responsible also for the
formation of a different class of self-bound quantum
systems, i.e., dipolar droplets [4–10]. While attractive
mixtures create spherical droplets, in dipolar gases droplets
are elongated along the dipole direction and, thus, strongly
anisotropic. The different geometry, together with the
different kinds of interactions governing the stabilization,
leads to important differences in the properties of the two
objects and enriches the range of phenomena that can be
explored [11–13]. Recently, self-bound droplets have been
observed also in bosonic mixtures, however, only in con-
fined geometries [14,15]. These experiments confirmed the
prediction of a liquidlike phase in attractive mixtures, but
they also found some deviations from the theory [14–17].
The experimental investigation of mixture droplets in free
space is then of primary interest, since it allows a direct
verification of the model in Ref. [1] and it paves the way to
studying the unique properties of spherical droplets. The
phenomenon of self-evaporation is indeed predicted to
vanish in the presence of a strong anisotropy, as in the
dipolar case [18] or in strongly confined mixture droplets.
In this Letter, we study experimentally the formation of

quantum droplets in a homonuclear bosonic mixture in free
space. Exploiting magnetic Feshbach resonances, we tune
the interatomic scattering lengths to reach the interaction
regime where the mixture is predicted to be self-bound. We
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implement an optical levitating potential with negligible
residual confinement along all directions, which allows us
to have long interrogation times and access the droplet
properties in free space. We probe the mixture phase
diagram, proving the existence of a self-bound phase
and identifying the critical conditions for its formation.
We analyze the dynamics observed in the droplet formation
and evolution and compare it to numerical simulations. We
finally measure the droplet size and composition as a
function of the attractive MF interaction, and we find a
good agreement with the predictions from Ref. [1].
We create self-bound droplets using two hyperfine states

of 39K, namely, jF ¼ 1; mF ¼ 0i (state 1) and jF ¼ 1; mF ¼
−1i (state 2). Feshbach resonances allow us to tune the
mutual contact interactions as represented in Fig. 1(a) as a
function of the magnetic field B [19]. The intraspecies
scattering lengths a11 and a22 are both positive, while the
interspeciesa12 is negative.We define an effective scattering
length for the mixture δa ¼ a12 þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

a11a22
p

, which becomes
negative for B < Bc, setting the threshold for collapse in the
usual MF picture [2]. The stabilization effect of the LHY
correction predicted in Ref. [1] appears exactly here.
Contrary to the case of a single species [20], in a mixture
of Bose-Einstein condensates (BECs) the MF and LHY
terms have a different dependence on the interparticle
scattering lengths.While theMF energyEMF is proportional
to jδaj and thus vanishes close to Bc, the LHY correction
ELHY scales with a11 and a22 [21], thus becoming compa-
rable to theMF term in this regime.Moreover, the two terms
have a different dependence on the density n, since EMF ∝
n2 while ELHY ∝ n5=2. This means that, when the MF
contribution becomes negative, leading to an uncontrolled

increase of density and eventually to collapse, the positive
LHY term, having a steeper dependence on n, arrests the
collapse and stabilizes the system. In this regime, the
mixture can be found in two different phases depending
on the total atom numberN. WhenN is larger than a critical
number Nc, the mixture forms a self-bound liquidlike
droplet [1,29]. Below that threshold, the kinetic energy
overcomes the MF attraction, and the system goes back into
an expanding gas phase, labeled as LHY gas in the phase
diagram in Fig. 1(b).
We prepare a BEC of 39K atoms in state 2, in a crossed

dipole trap, created by three red-detuned laser beams,
with trapping frequencies ωx ¼ 2π × 195ð10Þ Hz, ωy ¼
2π × 180ð10Þ Hz, and ωz ¼ 2π × 220ð10Þ Hz, along the
axes sketched in Fig. 1(c). A homogeneous magnetic field
B is used to tune the scattering lengths as in Fig. 1(a).
Starting with a BEC with up to 4 × 105 atoms, we ramp
linearly B in 20 ms to a desired target value, and then we
apply a radio-frequency (rf) pulse of 10 μs to transfer
∼50% of the atoms in state 1. In order to observe the
subsequent evolution for sufficiently long times, remaining
within the field of view of our imaging system, gravity
compensation is required. The vertical position of a red-
detuned elliptical laser beam is modulated in time with an
acousto-optical modulator at a frequency of 4 kHz, such
that the averaged potential experienced by the atoms
provides a gradient opposite to gravity [red beam in
the inset in Fig. 1(c)]. A large waist on the horizontal
direction (y) and a suitable time modulation along the
vertical direction (z) guarantee negligible residual curva-
tures on all directions [21]. At the end of the rf pulse, we
switch off the dipole traps and switch on the levitating
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FIG. 1. (a) Intra- and interspecies scattering lengths between the hyperfine states j1; 0i (state 1) and j1;−1i (state 2) of 39K, tuned by an
external magnetic field B via Feshbach resonances. The resultingMF energy of the mixture is proportional to the effective scattering length
δa, which becomes negative atBc ¼ 56.85 G. (b) Phase diagram for themixture as a function of the atomnumberN and of themagnetic field
B. (c) Evolution of the cloud in free space for three different points of the phase diagram in (b). The upper rows show the difference between
the evolution of the density profiles in the gas and droplet phases. Inset: Schematic representation of the geometry of the experiment.
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potential to observe the expansion of the mixture. After a
variable waiting time, we record the density profile of the
cloud via absorption imaging along the y direction, with
optical resolution δres ¼ 0.8þ0.1

−0.2 μm [21]. We fit it with a
two-dimensional Gaussian and measure the size along x
and z as the half-width at 1=

ffiffiffi
e

p
. In order to probe the

different phases expected for the mixture, we study the
expansion of the cloud in three different points of the phase
diagram in Fig. 1(b). In Fig. 1(c), we report the average size
σ ¼ ffiffiffiffiffiffiffiffiffi

σxσz
p

as a function of time t. The mixtures prepared
with δa > 0 (orange diamonds) or δa < 0 and N < Nc
(light blue triangles) show the typical gas behavior: When
released from the dipole trap, they expand at a finite
velocity. For δa < 0 and N > Nc (blue circles), instead,
the size of the cloud remains essentially constant, proving
the formation of a self-bound droplet.
To characterize the droplet phase, we also perform mea-

surements of the total atom number and of the relative
population in states 1 and 2.After a variable time, we perform
a Stern-Gerlach separation of the two components, by

applying amagnetic field gradient along the vertical direction
z, so that we can count separately N1 and N2. In Fig. 2, we
report the evolution of the size σ, measured as in Fig. 1(c), of
the total atom numberN ¼ N1 þ N2 and of the ratioN1=N2,
for B ¼ 56.54ð1Þ G. The data in Fig. 2(a) show that the
mixture is in the self-bound regimeonly up to a critical time tc,
while afterwards it expands as a gas. This behavior can be
understood by looking atNðtÞ in Fig. 2(b). The atom number
drops quite rapidly in the first 7ms, so that the system follows
the phase-diagram trajectory sketched in the inset in Fig. 2(b):
At a given time, the atom number reachesNc, and the system
undergoes a droplet-to-gas transition,where the cloud starts to
expand and the atom number stabilizes to a constant value. In
order to understand the loss dynamics observed in Fig. 2(b),
we have to consider two main effects. The first one is three-
body (3B) recombination, which causes strong losses mainly
in state 1, where the measured 3B loss rate is K111=3! ¼
9 × 10−28 cm6=s, with an uncertainty up to a factor of 2 [21].
The second one is related to a stabilization mechanism of the
mixture: The droplet forms with a specific population
imbalance, N1=N2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22=a11

p
[1]. It can bear only a

deviation from that value which corresponds to an increase
of the atom number in one of the two components
δNi=Ni ∼ jδaj=aii, i ¼ 1, 2 [1]. Any excess of atoms beyond
this threshold is not bound to the droplet and expands as a gas.
Combining these two mechanisms, we can interpret the
behavior observed in Figs. 2(b) and 2(c). In the first 2 ms,
the ratioN1=N2 decreases,meaning that themixture ismainly
losing atoms in state 1, due to the stronger 3B losses in that
component. When the mixture reaches the equilibrium
population imbalance, the ratio N1=N2 stabilizes, meaning
that 3B losses in state 1 are accompanied by a release of atoms
in state 2 into an unbound fraction. This is also compatible
with the bimodal density profiles we observe both in the
expansion in Fig. 2(a) and in the Stern-Gerlachmeasurements
in Figs. 2(b) and 2(c). We can indeed distinguish a dense
central cloud, corresponding to the droplet, surrounded by
low-density tails corresponding to the unbound expanding
atoms.We thus fit the profiles with the sum of twoGaussians.
The data reported in Fig. 2 correspond to the size and atom
numbers of the central part [inset in Fig. 2(a)]. Note that the
low-density tails are not visible for short t, so that they cannot
be associated to an initial thermal cloud. In the Stern-Gerlach
measurements, they are mainly visible in state 2, compatibly
with our understanding of the loss dynamics.
In Fig. 2(a), we observe a dynamical evolution of the size

also during the droplet phase before tc. The mixture is
indeed prepared out of equilibrium, the initial size being
larger than the droplet nominal size. In addition to that,N is
decreasing due to losses, so that σ needs to decrease to
preserve the droplet equilibrium density [1]. To understand
the timescales of this dynamics and verify if what we
observe is compatible with the predictions of the
model from Ref. [1], we perform a numerical simulation.
We integrate numerically a system of two generalized

(c)

(b)

(a)

FIG. 2. Time evolution of σ (a), N (b), and N1=N2 (c) in the
droplet phase at B ¼ 56.54ð1Þ G. The inset in (a) reports the
density profile of the droplet after some expansion time, together
with the fitted bimodal function described in the text. In the inset
in (b), we draw a sketch of the trajectory followed by the system
in the mixture phase diagram during the time evolution, due to
losses. The dashed line in (a) is the average of σ on the plateau
identified by the rectangle. The dashed line in (b) is the critical
atom number Nc, measured as the average of N for t > tc. In (c),
the solid line represents the theoretical equilibrium value
N1=N2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22=a11

p
, and the green area between the dashed

lines includes the allowed deviations δNi=Ni (see the text). The
error bars represent the statistical uncertainty and correspond to
one standard deviation.
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Gross-Pitaevskii equations, which include first-order quan-
tum corrections in the local chemical potential [9] via the
two-species LHY term discussed in Ref. [1] and 3B losses
in state 1 [21]. We observe the evolution of the mixture, and
we fit the density profiles as in the experiment. As shown in
Fig. 3, in the first part of the evolution, up to ∼8 ms, we
find a very good agreement with the data. At larger times,
while in the experiment we observe a transition to the gas
phase, the mixture is still self-bound in the simulation.
A better agreement at large times is obtained by increasing
the value of K111 to twice its measured value (dotted line),
which is still compatible with the error bar in the meas-
urement of the loss rate [21]. We also compare the observed
evolution with the equilibrium droplet size predicted in the
theory of Ref. [1]. We calculate the droplet radius R=

ffiffiffi
2

p
defined in Ref. [1] as a function of the measured atom
number at each time (dashed line). The behavior of σðtÞ is
thus explained by a contraction of the mixture to its
equilibrium size plus an oscillation on top of that.
Interestingly, despite the limited lifetime, the contraction
dynamics is fast enough to allow us to observe the droplet
close to its equilibrium configuration. We can then directly
compare our experimental data with the predictions
from Ref. [1].
We repeat the measurements of Fig. 2 for different values

of B. From the expansions as in Fig. 2(a), we measure the
size of the droplet as the average of σ in the observed
plateau between the initial contraction and the final
expansion [rectangle in Fig. 2(a)] [21]. In Fig. 4(a), we
compare our results with the theoretical expectations for σ
in the atom number range corresponding to the plateau, i.e.,
Nc ≲ N ≲ 2Nc. We also plot the measured aspect ratio
σx=σz, showing that the droplet is isotropic. In Figs. 4(b)
and 4(c), we plot the critical atom numbers Nc and ratios
N1=N2, measured as the average of N and N1=N2

for t > tc. We compare Nc with the predicted values for

the metastable (dashed line) and stable (solid line)
self-bound solutions as defined in Ref. [1] [Fig. 4(b)]. In
Fig. 4(c), N1=N2 is compared with the theoretical value
N1=N2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22=a11

p
, considering also the allowed devia-

tions δNi=Ni introduced above. The agreement of the
experimental data with the theory is visibly good for all
the measured parameters over the entire magnetic field
range we explored.
In conclusion, we have observed self-bound droplets in

an atomic Bose-Bose mixture in free space. By measuring
the size and the critical atom number as a function of the
MF attraction, we have provided a confirmation of the
theoretical model in Ref. [1]. The realization of spherical
droplets paves the way to studies on their most peculiar
property, self-evaporation, with the aim to probe the regime
of its occurrence [1] and to characterize how the system
dissipates energy by expelling atoms. It will also be
interesting to study the droplet in reduced dimensionality
[30,31] and its response to a coherent intercomponent
coupling [32] or to investigate differences and analogies
with other self-bound quantum fluids like helium clusters
[33,34], probing the superfluid behavior [35–37] and
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FIG. 3. Evolution of the size σ for B ¼ 56.54ð1Þ G compared
with the results of the numerical simulations for N ¼
250ð50Þ × 103, K111=3! ¼ 9 × 10−28 cm6=s (colored area) and
N ¼ 250 × 103, K111=3! ¼ 18 × 10−28 cm6=s (dotted line). The
dashed line is the equilibrium size calculated according to Ref. [1]
for the measured N in Fig. 2(b).

(a)
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FIG. 4. Measured values of σ (a), Nc (b), and N1=N2 (c) as a
function of the magnetic field B. In (a), we also report σx=σz
(diamonds). The colored area in (a) corresponds to the theoretical
prediction for σ for Nc ≲ N ≲ 2Nc. The curves in (b) correspond
to the predicted critical atom number for the metastable (dashed)
and stable (solid) self-bound solutions. In (c), the theoretical
curves are obtained as in Fig. 2(c). The vertical error bars
correspond to the statistical uncertainty. The horizontal ones
are due to the uncertainty in the magnetic field calibration. All
error bars correspond to one standard deviation.
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comparing the excitation spectra [38]. Finally, our work
triggers the possibility to investigate the formation of self-
bound droplets in different atomic mixtures, possibly with
reduced 3B loss rates and longer lifetimes [39–43].
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