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The OPERA experiment was designed to study νμ → ντ oscillations in the appearance mode in the
CERN to Gran Sasso Neutrino beam (CNGS). In this Letter, we report the final analysis of the full data
sample collected between 2008 and 2012, corresponding to 17.97 × 1019 protons on target. Selection
criteria looser than in previous analyses have produced ten ντ candidate events, thus reducing the statistical
uncertainty in the measurement of the oscillation parameters and of ντ properties. A multivariate approach
for event identification has been applied to the candidate events and the discovery of ντ appearance is
confirmed with an improved significance level of 6.1σ. jΔm2

32j has been measured, in appearance mode,
with an accuracy of 20%. The measurement of the ντ charged-current cross section, for the first time with a
negligible contamination from ν̄τ, and the first direct evidence for the ντ lepton number are also reported.

DOI: 10.1103/PhysRevLett.120.211801

Introduction.—The OPERA experiment was designed to
conclusively prove νμ → ντ oscillations in appearance
mode. The challenge of the experiment to detect the
short-lived τ lepton (cτ ¼ 87 μm), produced in the
charged-current (CC) ντ interactions, was accomplished
with the nuclear emulsion technique, that provides sub-
micrometric spatial resolution.
The detector [1] was located in the underground Gran

Sasso Laboratory (LNGS), 730 km away from the neutrino
source and exposed to the CERN to Gran Sasso Neutrino
beam (CNGS) muon neutrino beam [2,3]. The average
neutrino energy was about 17 GeV, the ν̄μ fraction was
2.1% in terms of expected CC interactions, the sum of νe
and ν̄e was below 1%, while the prompt ντ contamination
was negligible Oð10−7Þ.
The detector was a hybrid apparatus made of an

emulsion and lead target with a total mass of about
1.25 kt, complemented by electronic detectors. The general
structure consisted of two identical supermodules (SM).
Each SM was made of a target section, composed of 31
target walls, and a muon spectrometer. Each target wall was
an assembly of horizontal trays loaded with target units,
hereafter called bricks. Each brick consisted of 57 emulsion
films, 300 μm thick, interleaved with 56 lead plates, 1 mm
thick, with a ð12.7 × 10.2Þ cm2 cross section, a thickness
of 7.5 cm corresponding to about ten radiation lengths and
a mass of 8.3 kg. Downstream of each target wall, two
orthogonal planes of scintillator strips (target tracker
detector) recorded the position and the energy deposition

of charged particles [4]. Finally, a magnetic spectrometer
instrumented with resistive plate chambers and high-reso-
lution drift tubes was used to identify muons and measure
their charge and momentum [1]. Neutrino interactions and
decay topologies were detected in the bricks with micro-
metric accuracy. A pair of emulsion films was attached to
the downstream face of each brick, acting as an interface
between the brick and the electronic detectors [5]. Their
measurements allowed confirming the presence of tracks
recorded in the electronic detectors before unpacking and
developing the entire brick. A detailed description of the
OPERA detector can be found in [1].
Event selection and analysis: The appearance of the τ

lepton is identified by the detection of its characteristic
decay topologies, either in one prong (electron, muon, or
hadron) or in three hadron prongs. Kinematical selection
criteria are applied to reduce the background coming from
the processes that mimic the τ decay topologies, which are
(i) the decays of charmed particles produced in νμ CC
interactions; (ii) reinteractions of hadrons from νμ events in
lead; (iii) the large-angle scattering (LAS) of muons
produced in νμ CC interactions. Processes (i) and νμ CC
in (ii) represent a background source when the μ− at the
primary vertex is not identified.
A sample corresponding to 17.97 × 1019 protons on

target (POT) has been collected from 2008 to 2012 and
resulted in 19 505 neutrino interactions in the target fiducial
volume.
In 2015, five ντ candidates were observed following a

selection performed by cuts on specific kinematical and
topological parameters. The discovery of νμ → ντ oscil-
lations was assessed with a significance of 5.1σ [6].
This Letter reports an improved analysis of the full data

sample, which is 3.6% higher with respect to [6]. The
number of fully analyzed events is shown in Table I for
each year of data taking. Events are classified as 1μ if a
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track is tagged as a muon by the electronic detectors [7], as
0μ otherwise. The analysis described below is performed
on all 0μ events and on 1μ events with a muon momentum
below 15 GeV=c.
The new analysis is based on a multivariate approach for

event identification, fully exploiting the expected features
of ντ events, rather than on the sheer selection of candidate
events by independent cuts on topological or kinematical
parameters, as in previous analyses. It is performed on
candidate events preselected with looser cuts than those
applied in the previous cut-based approach [6,8–11].
Looser cuts increase the number of ντ candidates, thus
leading to a measurement of the oscillation parameters and
of the ντ cross section with a reduced statistical uncertainty.
Given the higher discrimination power of the multivariate
analysis that fully exploits the features of each event, the
significance of the ντ appearance is increased.
Analysis strategy.—The first stage of the analysis is to

select events showing a decay topology. These events are
categorized into four channels (τ → 1h, τ → 3h, τ → μ,
τ → e) according to the identification of daughter particles.
Then, kinematical cuts are applied to refine the selection
and to reject background events in each channel. Finally, a
multivariate approach is exploited to separate the signal
from the background and to evaluate a single-variable
discriminant for the hypothesis test and parameter estima-
tion in the statistical analysis for the extraction of results, as
described in the next section.
The rectangular cuts on the topological and kinematical

variables, shown in Table II, are looser than those used in
previous papers [6,8–11]. Current criteria correspond to the
minimal requirements to identify the topologies showing
two vertices. The Monte Carlo simulation has been
validated in the whole region of the exploited parameter

space, by comparing its results with the measured νμ CC
interactions when producing hadron reinteractions [12],
charmed hadron decays [13], and LAS muons [14]. The
momentum of hadrons has been estimated by the multiple
Coulomb scattering method [15], while the muon momen-
tum is measured by the magnetic spectrometer with a
resolution of about 20% [1].
Decay topologies are identified by the following minimal

requirements: the average 3D angle between the parent and
its daughters ðθkinkÞ has to be larger than 0.02 rad and the
distance between the decay vertex and the downstream face
of the lead plate containing the primary vertex ðzdecÞ has to
be shorter than 2600 μm. The latter cut extends the analysis
of the single-prong hadronic and muonic decay modes also
to the events where the decay vertex occurs in the same
lead plate as the primary neutrino interaction. To define the
decay vertex position with sufficient precision, the total
momentum of the visible tracks coming out of the secon-
dary vertex (p2ry) has to be at least 1 GeV=c, thus
minimizing the effect of multiple Coulomb scattering, with
an upper limit of 15 GeV=c only for the τ → μ channel, in
order to reduce the charmed hadron background. Moreover,
for one-prong decays, the cut on the daughter transverse
momentum with respect to the parent direction (pT

2ry) was
tuned to reduce the hadron reinteraction and LAS back-
grounds. Last, for the τ → μ channel, only events where the
muon daughter has negative or unknown charge [16] are
considered.
The tracks related to events passing the selection criteria

of Table II have been measured within an angular accep-
tance up to tan θ < 1 (θ being the angle of the track with
the z axis) for kinematical measurements. In addition, a
specific search for large angle tracks, up to tan θ < 3, has
been performed, in order to reject events with nuclear
fragments emitted at the secondary vertex, a signature of
the hadronic reinteraction background.
After candidate selection, a multivariate analysis is

applied, based on a boosted decision tree (BDT) algorithm
implemented using the Toolkit for Multivariate Data
Analysis [17]. For each channel, the BDT was trained
with Monte Carlo events selected according to the topology
and the kinematical cuts of Table II. As input for the BDT
analysis, additional kinematical variables have been used.
As described in [9], they are the missing transverse
momentum with respect to the incoming neutrino direction
(pT

miss), the transverse opening angle between the τ candi-
date and the hadronic system (ϕlH), and the invariant mass
of the parent particle (m). In addition, for the τ → μ
channel, the charge measurement status [16] of the daugh-
ter muon (negative or unknown) is also used.
Expected events: The expected number of ντ events has

been evaluated using the simulated CNGS flux [18,19],
normalized to the number of observed νμ CC interactions as
explained in [9], assuming a maximal mixing sin22θ23 ¼ 1,
Δm2

23 ¼ 2.50 × 10−3 eV2 [20] and the ντ cross section as in

TABLE I. Number of events used in this analysis, grouped into
0μ and 1μ.

2008 2009 2010 2011 2012 Total

POT (1019) 1.74 3.53 4.09 4.75 3.86 17.97
0μ events 150 255 278 291 223 1197
1μ events
(pμ < 15 GeV=c)

543 1024 1001 1031 807 4406

Total events 693 1279 1279 1322 1030 5603

TABLE II. Selection cuts.

Variable τ → 1h τ → 3h τ → μ τ → e

zdec (mm) <2.6 <2.6 <2.6 <2.6
θkink (rad) >0.02 >0.02 >0.02 >0.02
p2ry (GeV=c) >1 >1 [1, 15] >1

pT
2ry (GeV=c) >0.15 >0.1 >0.1

Charge2ry Negative
or unknown
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the default implementation provided by GENIE v2.6 [21,22].
The expected number of signal and background events is
reported in Table III, together with the number of observed
ντ candidates for each channel. The background from π and
K decays remain negligible.
The total systematic uncertainty on the expected signal,

largely dominated from the limited knowledge of the ντ
cross section and the detection efficiency, is conservatively
set to 20%. Since signal expectation is calculated by using
data-driven estimates of location efficiencies, this value is
at first order insensitive to systematic effects on efficiencies
up to the primary vertex location level.
Using the measured sample of νμ CC interactions with

charm production, the uncertainty on the charm back-
ground has been estimated to be about 20% [13]. The
hadron reinteraction background has an estimated uncer-
tainty of 30% from measurements of test-beam pion
interactions in the OPERA bricks [12]. The systematic
uncertainty on LAS has been obtained by a comparison
between two different estimates, one based on a data-tuned
GEANT4 Monte Carlo simulation [14] and the other one on a
direct extrapolation of data in the literature [23] and it is set
at 50%.
The total expected signal is Nexp S ¼ ð6.8� 1.4Þ events,

whereas the total background expectation is Nexp B ¼
ð2.0� 0.4Þ events.

Observed events: Ten events (Nobs) passed all the
topological and kinematical cuts. The distribution of their
visible energy, i.e., the scalar sum of the momenta of
charged particles and gammas, is shown in Fig. 1, com-
pared to Monte Carlo simulation. Among the ten selected
ντ candidates, five ντ were already described in [6,8–11].
The other five ντ candidates are all events without muon in
the final state: three of them show a one-prong decay and
two a three-prong decay. Their kinematical variables are
summarized in Table IV, where the BDT response for each
event is also reported. The resulting BDT output distribu-
tions are shown in Fig. 2.
Results.—The statistical analysis of the data employs a

maximum-likelihood fit jointly across the four channels.
For each channel, the likelihood is constructed as the
product of a probability density function combining the
BDT responses of signal and background, a Poissonian
term P, and a Gaussian term G for the systematics of the
expected yield:

Lðμ; βcÞ ¼
Y4

c¼1

�
Pðncjμsc þ βcÞ

Ync

i¼1

fcðxciÞ
�

×
Y4

c¼1

Gðbcjβc; σbcÞ; ð1Þ

TABLE III. The expected number of signal and background events for the analyzed data sample, evaluated assuming
Δm2

23 ¼ 2.5 × 10−3 eV2, sin22θ23 ¼ 1, and the default implementation for the ντ cross section of GENIE v2.6.

Expected background

Channel Charm Hadron reinteraction Large μ scattering Total ντ expected Observed

τ → 1h 0.15� 0.03 1.28� 0.38 1.43� 0.39 2.96� 0.59 6
τ → 3h 0.44� 0.09 0.09� 0.03 0.52� 0.09 1.83� 0.37 3
τ → μ 0.008� 0.002 0.016� 0.008 0.024� 0.008 1.15� 0.23 1
τ → e 0.035� 0.007 0.035� 0.007 0.84� 0.17 0
Total 0.63� 0.10 1.37� 0.38 0.016� 0.008 2.0� 0.4 6.8� 1.4 10
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FIG. 1. Stacked plot of visible energy: data are compared with
the expectation. Monte Carlo simulation is normalized to the
expected number of events reported in Table III.
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where

fcðxciÞ ¼
μsc

μsc þ βc
PDFsigc þ βc

μsc þ βc
PDFbkgc ;

and c runs over the four channels, i over the nc observed
events in the cth channel, sc is the expected signal, bc and
σbc are the expected background in the cth channel and its
uncertainty as reported in Table III, βc is a floating
parameter which represents the true background, xci is
the BDT response, and PDFbkgc (PDFsigc ) the distribution of
xci for the background (signal) component in the cth
channel. The parameter μ is the ντ signal strength, i.e., a
scale factor on the number of events expected by the model
of neutrino interactions: μ ¼ 0 corresponds to the back-
ground-only hypothesis, and μ ¼ 1 corresponds to the
oscillated ντ signal, on top of the background, reported
in Table III. The effect of uncertainties on the expected
number of signal events (estimated ∼20% for each channel)
has been proved to be negligible for all the following
results.
Significance of ντ appearance: The significance of ντ

appearance is expressed in terms of a hypothesis test where
the background only (μ ¼ 0) is the null hypothesis and
the signal plus background (μ ≠ 0) is the alternative one.
In order to test which values of the signal strength μ are

consistent with data, the profile likelihood ratio λðμÞ ¼
L½μ; ˆ̂βcðμÞ�=Lðμ̂; β̂cÞ is used [24], where Lðμ̂; β̂cÞ is the

value of the likelihood at its maximum and ˆ̂βcðμÞ indicates
the profiled values of the nuisance parameter βc, maxi-
mizing L for the given μ. The results presented in this
Letter are obtained using the asymptotic approximation
[25], as implemented in the ROOSTATS package [26].
The null hypothesis is excluded with 6.1σ significance,

corresponding to a background fluctuation probability of
4 × 10−10. The best-fit signal strength is μ ¼ 1.1þ0.5

−0.4 , which
is consistent with the ντ appearance expected from neutrino
oscillation.

First measurement of jΔm2
32j in appearance mode: The

ντ signal strength μ is proportional to the oscillation
probability and the ντ cross section. Assuming maximal
mixing and ντ CC interaction cross section as in previous
section, the following interval of jΔm2

32j can be derived
using the Feldman-Cousins method [27]:

jΔm2
32j ¼ ð2.7þ0.7

−0.6Þ × 10−3 eV2 at 68%C:L: ð2Þ

This is the first result obtained in appearance mode and it is
consistent with the disappearance results from different
experiments, including the world average [24].
Measurement of the ντ CC cross section:Alternatively to

the above measurement of jΔm2
32j, one may fix jΔm2

32j at
the world average value ð2.50 × 10−3 eV2Þ and maximal
mixing sin22θ23 ¼ 1 and estimate the ντ CC cross section
on the lead target, made of 204Pb (1.4%), 206Pb (24.1%),
207Pb (22.1%), and 208Pb (52.4%) [28]. The total flux
integrated cross section is defined as [29]:

hσi ¼
R
ΦνμðEÞPνμ→ντðEÞσντðEÞdER

ΦνμðEÞPνμ→ντðEÞdE
; ð3Þ

where ΦνμðEÞ is the CNGS flux [19], Pνμ→ντ the oscillation
probability, σντðEÞ is the ντ cross section, and E is the
neutrino energy.
An estimate of σντ can be extracted from the observed

data by using the following equation:

hσimeas ¼
ðNobs − NexpBÞ=ðϵNTÞR
ΦνμðEÞPνμ→ντðEÞdE

; ð4Þ

where NT is the number of lead nuclei in the fiducial
volume of the target and ϵ ¼ 0.12 is the overall efficiency
of τ event reconstruction, averaged over the expected
distribution of ντ flux [30]. The result is

hσimeas ¼ ð5.1þ2.4
−2.0Þ × 10−36 cm2; ð5Þ

TABLE IV. Kinematical variables and BDT response for all ντ candidates.

Brick ID 72 693 29 570 23 543 92 217 130 577 77 152 27 972 26 670 136 759 4838

Channel τ → 1h τ → 3h τ → μ τ → 1h τ → 1h τ → 1h τ → 1h τ → 1h τ → 3h τ → 3h
zdec (μm) 435 1446 151 406 630 430 652 303 −648 407
pT
miss (GeV=c) 0.52 0.31 0.55 0.30 0.88 1.29 0.46 0.60 > 0.50

ϕlH (deg) 173 168 166 151 152 140 143 82 47
pT
2ry (GeV=c) 0.47 0.69 0.82 1.00 0.24 0.25 0.33

p2ry (GeV=c) 12 8.4 2.8 6.0 11 2.7 2.6 2.2 6.7 > 6.3
θkink (mrad) 41 87 245 137 90 90 98 146 231 83
m (GeV=c2) 0.80 1.2 > 0.94 1.2 > 0.94
γ at decay vtx 2 0 0 0 0 1 0 0 0 2
charge 2ry −1
BDT response 0.32 −0.05 0.37 0.12 0.35 0.18 −0.25 −0.10 −0.04 −0.03
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with the error dominated by the statistical uncertainty.
This result has to be compared with the expected value,
as provided by the default configuration of GENIE v2.6
[21,22]: hσGi ¼ ð4.29� 0.04Þ × 10−36 cm2. The error
associated with hσGi is the propagation of the flux
uncertainty due to the oscillation parameter errors.
Therefore, the result can be expressed as hσimeas ¼
ð1.2þ0.6

−0.5ÞhσGi. Figure 3 shows the measured value of the
ντ cross section (blue line) and the value obtained by
averaging the cross section implemented in GENIE, σG, over
the ντ spectrum (red dashed line). This figure shows also
σG as a function of the neutrino energy (red solid line) and
the oscillated ντ spectrum (gray solid line) with its 68%
central interval (gray band) and the mean neutrino energy
(pink dashed line).
This is the first measurement of the ντ CC cross section

with a negligible contamination of ν̄τ. No deviation from
GENIE expectations is observed.
ντ lepton number: The lepton number of ντ has never

been observed. In the muonic channel, the OPERA experi-
ment can distinguish neutrinos from antineutrinos looking
at the charge of the muon produced in τ decays, which was
measured to be negative at the 5.6σ level for the τ → μ
candidate [10,31].
The hypothesis that a τ− → μ− has been observed is

tested by specifying Eq. (1) to the τ → μ channel. A
dedicated BDT analysis has been performed for this
channel: on top of the charm and LAS background, we
have considered the additional contribution from the 2%
contamination in interactions of ν̄τ resulting from ν̄μ
oscillation. Interactions of ν̄τ are in the background
in the muonic channel if the μþ charge is either misidenti-
fied or not measured: this gives a background yield of
0.0024� 0.0005 events.
The result gives a significance of 3.7σ, which, assuming

lepton number conservation in the neutrino CC interaction
[32], can be considered to be the first direct evidence for the
ντ lepton number.

Conclusions.—This Letter reports OPERA’s final results
on νμ → ντ oscillations in appearance mode, obtained with
the complete data sample, corresponding to 5603 ν inter-
actions fully reconstructed.
Given the validation of the Monte Carlo simulation of

ντ events, based on different control data samples, a new
analysis strategywas developed, fully exploiting the features
expected for ντ events. A multivariate approach for the
identification of ντ events was applied to candidate events
selected by means of moderately tight topological and
kinematical cuts.
Ten ντ candidates were observed, with 2.0� 0.4 expected

background events. The discovery of νμ → ντ oscillations in
the appearance mode is confirmed with an improved sig-
nificance of 6.1σ.
Assuming sin22θ23 ¼ 1, the first measurement of jΔm2

32j
in appearancemode gives ð2.7þ0.7

−0.6Þ × 10−3 eV2, while the ντ
CCcross section on the leadOPERA target ismeasured to be
ð5.1þ2.4

−2.0Þ × 10−36 cm2, when jΔm2
32j ¼ 2.50 × 10−3 eV2.

Furthermore, a dedicated BDT analysis in the τ → μ
channel constitutes the first direct evidence for the ντ lepton
number with a significance of 3.7σ [32].
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