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The structure of generalized parton distributions is determined from light-front holographic QCD up to a
universal reparametrization function w(x) which incorporates Regge behavior at small x and inclusive
counting rules at x — 1. A simple ansatz for w(x) that fulfills these physics constraints with a single-
parameter results in precise descriptions of both the nucleon and the pion quark distribution functions in
comparison with global fits. The analytic structure of the amplitudes leads to a connection with the
Veneziano model and hence to a nontrivial connection with Regge theory and the hadron spectrum.
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Introduction.—Generalized parton distributions (GPDs)
[1-3] have emerged as a comprehensive tool to describe the
nucleon structure as probed in hard scattering processes.
GPDs link nucleon form factors (FFs) to longitudinal parton
distributions (PDFs), and their first moment provides the
angular momentum contribution of the nucleon constituents
to its total spin through Ji’s sum rule [2]. The GPDs also
encode information of the three-dimensional spatial structure
of the hadrons: the Fourier transform of the GPDs gives the
transverse spatial distribution of partons in correlation with
their longitudinal momentum fraction x [4].

Since a precise knowledge of PDFs is required for the
analysis and interpretation of the scattering experiments in
the LHC era, considerable efforts have been made to
determine PDFs and their uncertainties by global fitting
collaborations such as MMHT [5], CT [6], NNPDF [7], and
HERAPDF [8]. Lattice QCD calculations are using differ-
ent methods, such as path-integral formulation of the deep-
inelastic scattering hadronic tensor [9-11], the inversion
method [12,13], quasi-PDFs [14-18], pseudo-PDFs
[19,20], and lattice cross sections [21], to obtain the
x dependence of the PDFs. The current status and chal-
lenges for a meaningful comparison of lattice calculations
with the global fits of PDFs can be found in [22].
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There has been recent interest in the study of parton
distributions using the framework of light-front holo-
graphic QCD (LFHQCD), an approach to hadron structure
based on the holographic embedding of light-front dynam-
ics in a higher dimensional gravity theory, with the
constraints imposed by the underlying superconformal
algebraic structure [23-29]. This effective semiclassical
approach to relativistic bound-state equations in QCD
captures essential aspects of the confinement dynamics
that are not apparent from the QCD Lagrangian, such as the
emergence of a mass scale 1 = k2, a unique form of the
confinement potential, and a zero mass state in the chiral
limit: the pion and universal Regge trajectories for mesons
and baryons.

Various models of parton distributions based on
LFHQCD [30-51] use as a starting point the analytic form
of GPDs found in Ref. [52]. This simple analytic form
incorporates the correct high-energy counting rules of FFs
[53,54] and the GPD’s -momentum transfer dependence.
One can also obtain effective light-front wave functions
(LFWFs) [28,55] that are relevant for the computation of
FFs and PDFs, including polarization-dependent distribu-
tions [43,44,47]. LEFWFs are also used to study the skew-
ness & dependence of the GPDs [41,45,48,50,51] and other
parton distributions such as the Wigner distribution func-
tions [38,43]. The downside of the above phenomenologi-
cal extensions of the holographic model is the large number
of parameters required to describe simultaneously PDFs
and FFs for each flavor.

Motivated by our recent analysis of the nucleon FFs in
LFHQCD [56], we extend here our previous results for
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GPDs and LFWFs [52,55]. Shifting the FF poles to their
physical location [56] does not modify the exclusive
counting rules, but modifies the slope and intercept of
the Regge trajectory, and hence the analytic structure of the
GPDs that incorporates the Regge behavior. As a result, the
x dependence of PDFs and LFWFs is modified.
Furthermore, the GPDs are defined in the present context
up to a universal reparametrization function; therefore,
imposing further physically motivated constraints is
necessary.

Generalized parton distributions in LFHQCD.—In
LFHQCD, the FF for arbitrary twist 7 is expressed in
terms of Gamma functions [28,52], an expression that can
be recast in terms of the Euler Beta function B(u, v) as [29]

1 1 t
where
1
B(u,v) = / dyy* (1 =y, 2)

and B(u,v) = B(v,u) = [['(u)['(v)/T(u + v)] with N, =
Vx[l(z —1)/T(z —3)]. For fixed u and large v, we have

B(u,v) ~T'(u)v™": we thus recover, for large Q* = —t, the
hard scattering scaling behavior [53,54]
) 1\ 7!
r)~(5) )

In contrast with the GPD twist that is determined by the
quark-quark correlator, twist z in (1) and (3) refers to
the number of constituents in a given Fock component in
the Fock expansion of the hadron state. It controls the short
distance behavior of the hadronic state and thus the power-
law asymptotic behavior (3).

For integer 7 Eq. (1) generates the pole structure [52]

F Q%) =

@

0 1 -2

with M2 = 44(n+1),n =0,1,2,...,7 — 2, corresponding
to the p vector meson and its radial excitations [28]. Notice
that the Beta function in (1) can be rewritten as B(z — 1,
1 — a(r)) with Regge trajectory

t 1

f)=-—+=
slope o = 1/44 and intercept a(0) = 1. This is just the p
trajectory emerging from LFHQCD. The value of the
universal scale A is fixed from the p mass: ﬂ =Kk =

m,/V/2 = 0.548 GeV [28,57].

Notice that the form factor (1) can be expressed as a
Veneziano amplitude [58] B(1 — a(s), 1 — a(r)), where the
s-channel dependence is replaced by a fixed pole,
1 —a(s) » 7—1, allowed by unitarity constraints, since
no resonances are formed in the s channel [59-61]

It will be useful to rewrite (1) using the reparametrization
invariance of the Euler Beta function (2) and thus transform
the integral representation of the form factor (1) into the
invariant form

R =, A o/ () = w7, (6)

if w(x) is a monotonically increasing function with fixed
values at the integration limits given by the constraints

w(0) =0,

with x € [0, 1]. Any function w(x) that satisfies the con-
straints (7) will give the same result for the form factor.

Writing the flavor FF in terms of the valence GPD
Fi(t) = [} dxH(x,1) at zero skewness, HY(x,1)=
Hi(x,&=0,t), we obtain

1
H(x, 1) = —[1 - w(x)]72w(x) 2w/ (x) e /42) g1 /w(x)]

T

= q.(x) exp[tf (x)]. (8)
where the PDF ¢,(x) and the profile function f(x)

00 = 1w W, )
700 = e (1), (10)

are expressed in terms of the function w(x) fulfilling
conditions (7).

If, for x ~0, w(x) behaves as w(x)~x, we find the
t dependence

Hi(x, 1) ~x7"%q,(x), (11)
which is the Regge theory motivated ansatz for small x
given in Ref. [62] for o = 1/4A.

To study the behavior of w(x) at large x, we perform a
Taylor expansion near x = 1

1
w(x) =1-=(1-x)w(1) —1-5(1 —x)?wW' (1) +--. (12
Upon substitution of (12) in (9), we find that the leading

term in the expansion, which behaves as (1 —x)"2,
vanishes if w'(1) = 0. Hence, setting

w(1)=0 and w'(1)#0, (13)
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we find g,(x) ~ (1 —x)?*=3, which is precisely the Drell-

Yan inclusive counting rule at x — 1 [63—65], correspond-
ing to the form factor behavior at large Q* (3).

From Eq. (10), it follows that the conditions (13) are
equivalent to f/(1) =0 and f”(1) #0. Since log(x)~
1 —x for x ~ 1, a simple ansatz for f(x) consistent with
(7), (11), and (13) is

Flx) = % [(1 — %) log G) +a(l —x)ﬂ (14

with a being a flavor-independent parameter. From (10),

W()C) — xl—xe—a(l—x)z’

(15)
an expression that incorporates Regge behavior at small x
and inclusive counting rules at large x.

Nucleon GPDs.—The nucleon GPDs are extracted from
nucleon FF data [66—70] choosing specific x and ¢ depend-
ences of the GPDs for each flavor. One then finds the best
fit reproducing the measured FFs and the valence PDFs. In
our analysis of nucleon FFs [56], three free parameters are
required: these are r, interpreted as an SU(6) breaking
effect for the Dirac neutron FF, and y, and y,, which
account for the probabilities of higher Fock components
(meson cloud) and are significant only for the Pauli FFs.
The hadronic scale 1 is fixed by the p-Regge trajectory [28],
whereas the Pauli FFs are normalized to the experimental
values of the anomalous magnetic moments.

Helicity nonflip distributions: Using the results from [56]
for the Dirac flavor FFs, we write the spin nonflip valence
GPDs HY(x,t) = g(x)exp [tf(x)] with

) = (25) s + S (16)
0 = (1-5 Jams() 4 5 st ()

for the u and d PDFs normalized to the valence content of
the proton: [{ dxu,(x) =2 and [ dxd,(x) = 1. The PDF
g.(x) and the profile function f(x) are given by (9) and
(10), and w(x) is given by (15). Positivity of the PDFs
implies that » < 3/2, which is smaller than the value r =
2.08 found in [56]. We shall use the maximum value
r = 3/2, which does not change significantly our results
in [56].

The PDFs (16) and (17) are evolved to a higher
scale u with the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equation [71-73] in the MS scheme using
the HOPPET toolkit [74]. The initial scale is chosen at the
matching scale between LFHQCD and perturbative QCD
(pQCD) as yy = 1.0630.15 GeV [75] in the MS scheme at
next-to-next-to-leading order (NNLO). The strong cou-
pling constant a; at the scale of the Z-boson mass is set to

E5= NNPDF3.0 u
L V.
0.6 [ o MMHT2014
EEEE CT1
BN r1HQCD (NNLO)
041
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FIG. 1. Comparison for xg(x) in the proton from LFHQCD (red

bands) and global fits: MMHT2014 (blue bands) [5], CT14 [6]
(cyan bands), and NNPDF3.0 (gray bands) [77]. LFHQCD
results are evolved from the initial scale yy = 1.06+£0.15 GeV.

0.1182 [76], and the heavy quark thresholds are set with
MS quark masses as m,= 1.28 GeV and m,= 4.18 GeV
[76]. The PDFs are evolved to u> = 10 GeV? at NNLO to
compare with the global fits by the MMHT [5], CT [6], and
NNPDF [77] collaborations as shown in Fig. 1. The value
a = 0.531 £ 0.037 is determined from the first moment of
the GPD, [ dxxH?(x, 1 = 0) = A%(0) from the global data
fits with average values A%(0) =0.261 +0.005 and
A%(0) = 0.109 + 0.005. The model uncertainty (red band)
includes the uncertainties in a and y [78]. We also indicate
the difference between our results and global fits in Fig. 2.
The ¢ dependence of Hi(x,r) is illustrated in Fig. 3.
Since our PDFs scale as g(x) ~x~'/? for small x, the
Kuti-Weisskopf behavior for the nonsinglet structure
functions  F,,(x) = Fa,(x) ~ x[u,(x) — d,(x)] ~x/% s
satisfied [79,80].

Helicity-flip distributions: The spin-flip GPDs E (x, t) =
el(x)exp[tf(x)] follow from the flavor Pauli FFs in [56]
given in terms of twist-4 and twist-6 contributions

(18)

normalized to the flavor anomalous magnetic moment
Jo dxel(x) =y, with  y, =2y, +x,=1673 and
Xa = 2y +xp = —2.033. The factors y, and y, are

eZ(X) :Zq[(l - 7q)qr=4(x) + yqqr=6(x)}’

0.06 === NNPDF3.0  #55 CT14
— . MMHT2014 W LFHQCD
= 0.04f X
&

< 0.02
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FIG. 2. Difference between our PDF results and global fits.
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FIG. 3. Nucleon GPDs for different values of —t = Q% at
the scale yy = 1.0640.15 GeV. (Top) Spin nonflip HY(x,?).
(Bottom) Spin-flip Ef(x, ?).
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where the higher Fock probabilities y, ,, represent the large
distance pion contribution and have the values y, = 0.27
and y, = 0.38 [56]. Our results for E%(x, t) are displayed
in Fig. 3.

Pion GPD.—The expression for the pion GPD
HY(x,1) = q*/(x) exp [tf(x)] follows from the pion FF
in [81], where the contribution from higher Fock compo-
nents was determined from the analysis of the timelike
region [81]. Up to twist 4,

gi(x) = (1 = 7)geea () + 7qees(x).  (20)

where the PDFs are normalized to the valence quark

content of the pion [; dqu"_l(x) =1, and y=0.125

represents the meson cloud contribution determined in [28].

The pion PDFs are evolved to u> = 27 GeV? at next-to-
leading order (NLO) to compare with the NLO global analysis
in [82,83] of the data [84]. The initial scale is set at py =
1.1+0.2 GeV from the matching procedure in Ref. [75] at
NLO. The result is shown in Fig. 4, and the ¢ dependence of
H(x, 1) is illustrated in Fig. 5. We have also included the
NNLO results in Fig. 4, to compare with future data analysis.

Our results are in good agreement with the data analysis
in Ref. [82] and consistent with the nucleon global fit
results through the GPD universality described here. There
is, however, a tension with the data analysis in [83] for
x > 0.6 and with the Dyson-Schwinger results in [85],
which incorporate the (1 — x)? pQCD falloff at large x from
hard gluon transfer to the spectator quarks. In contrast, our
nonperturbative results falloff as 1 —x from the leading

0.5
ES LFHQCD (NLO) = WRH2005
————— LFHQCD (NNLO) -=== ASV2010
0.4 i Conway et al.

p? = 27GeV?

zq(x)

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 4. Comparison for xg(x) in the pion from LFHQCD (red
band) with the NLO fits [82,83] (gray band and green curve) and
the LO extraction [84]. NNLO results are also included (light blue
band). LFHQCD results are evolved from the initial scale uy =
1.14+0.2 GeV at NLO and the initial scale uq = 1.06£0.15 GeV
at NNLO.

twist-2 term in (20). A softer falloff ~(1 — x)' in Fig. 4
follows from DGLAP evolution. Our analysis incorporates
the nonperturbative behavior of effective LFWFs in the
limit of zero quark masses. However, if we include a
nonzero quark mass in the LFWFs [28,86,87], the PDFs
will be further suppressed at x — 1.

Effective LFWFs.—Form factors in light-front quantiza-
tion can be written in terms of an effective single-particle
density [88]

F(QY) = A ' dip(x. Q). (21)

where  p(x, Q) = 2u [ dbbJo[bQ(1 = x)]lyer(x. b)
with transverse separation b = |b,|. From (8), we find

the effective LFWF

I q.(x) (1-x)?
viate o) =5 2 [0 e (L7 )
(22)
0.4 — t=—1GeV?
------ £ -GV

= 0.3k t=—10GeV
S
§/ 0.2}
i\;
5]

01t

00553 o1 o6 08 1

X

FIG. 5. Pion GPD for different values of —t = Q2 at the scale
1o = 1.1£0.2 GeV.
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in the transverse impact space representation with g, (x)
and f(x) given by (9) and (10). The normalization is
Jodx [d®b |y (x.by)|*=1, provided that [ dxg,(x)=1.
In the transverse momentum space,

ZoHa

1—x

_7(12]:();))2 ki), (23)

with normalization [} dx [(d?k | /167°) |y (x. Kk )|> = 1.

Conclusion and outlook.—The results presented here for
the GPDs provide a new nonperturbative structural frame-
work for the exclusive-inclusive connection, which is fully
consistent with the LFHQCD results for the hadron
spectrum. The PDFs are flavor-dependent and expressed
as a superposition of PDFs ¢,(x) of different twist. In
contrast, the GPD profile function f(x) is universal. Both
q(x) and f(x) can be expressed in terms of a universal
reparametrization function w(x), which incorporates Regge
behavior at small x and inclusive counting rules at large x.
A simple ansatz for w(x), which satisfies all the physics
constraints, leads to a precise description of parton dis-
tributions and form factors for the pion and nucleons in
terms of a single physically constrained parameter. In
contrast with the eigenfunctions of the holographic light-
front Hamiltonian [28], the effective LFWFs obtained here
incorporate the nonperturbative pole structure of the
amplitudes, Regge behavior, and exclusive and inclusive
counting rules. The LFWFs can be used to study other
parton distributions, such as the transverse momentum-
dependent parton distributions and the Wigner distribu-
tions. The analytic structure of FFs and GPDs leads to a
connection with the Veneziano amplitude, which incorpo-
rates the p Regge trajectory determined in LFHQCD. It
could give further insights in understanding the quark-
hadron duality and hadron structure. The falloff of the pion
PDF at large x is an unresolved issue [89].
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