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Supergravities with gauged R symmetry and Minkowski vacua allow for spontaneous supersymmetry
breaking and, as such, provide a framework for building supergravity models of phenomenological
relevance. In this Letter, we initiate the study of double copy constructions for these supergravities. We
argue that, on general grounds, we expect their scattering amplitudes to be described by a double copy of
the type (spontaneously broken gauge theory)⊗ (gauge theory with broken supersymmetry). We present a
simple realization in which the resulting supergravity has Uð1ÞR gauge symmetry, spontaneously broken
N ¼ 2 supersymmetry, and massive gravitini. This is the first instance of a double copy construction of a
gauged supergravity and of a theory with spontaneously broken supersymmetry. The construction extends
in a straightforward manner to a large family of gauged Yang-Mills-Einstein supergravity theories with or
without spontaneous gauge-symmetry breaking.
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Gauged supergravities—supergravities in which part of
the R symmetry has been promoted to a gauge symmetry—
play a central role in the diverse landscape of super-
symmetric extensions of gravity. From a string-theory
perspective, such theories arise naturally in the context
of flux compactifications. Certain classes of gauged super-
gravities admit flat Minkowski vacua in which supersym-
metry is (spontaneously) broken and hence can be
employed in the search for phenomenologically viable
models. Classifying all possible supergravity gaugings in
various dimensions has been the object of a large body of
work (see reviews [1,2]), eventually leading to the formu-
lation of the embedding-tensor formalism [3–7] (see also
[8]), which resulted in the discovery of novel gaugings,
including a new family of SO(8) gauged supergravities in
four dimensions [9].
Recent advances in scattering amplitude calculations

have been playing a key role in revealing hidden properties
of gravity. Amplitudes in many supergravities admit a
simpler formulation in terms of gauge-theory building
blocks. A systematic framework for finding this description
is provided by the double copy construction introduced
in Refs. [10,11]. The double copy applies to tree- and

loop-level amplitudes [12–14], as well as classical solutions
[15–17], and extends earlier string-theory results [18].
Recent success in reformulating large families of
Maxwell-Einstein (ME) [19–23] and Yang-Mills-Einstein
(YME) supergravities [24–26] in the double copy language
has prompted the proposal that all theories of gravity could
be regarded as double copies of some sort [22] (see also
[27]). Generalizing these constructions to gauged ME and
YME supergravities constitutes a major step toward estab-
lishing this proposal and has the potential for incorporating
a large body of supergravity literature into the rapidly
developing field of amplitude calculations.
In this Letter, we propose a general strategy for express-

ing gauged supergravities as double copies. The main result
is that amplitudes with the correct properties can be
obtained from those of a theory with spontaneously broken
gauge symmetry and a gauge theory with broken super-
symmetry. We present an explicit example in which we
gauge a Uð1ÞR subgroup of the SUð2ÞR R symmetry in
theories belonging to the so-called generic Jordan family of
N ¼ 2 ME supergravities.
Gauged supergravity always involves a minimal cou-

pling between (some of the) gravitini and one or more
vector fields. Consequently, for Minkowski vacua, there
exist nonvanishing gravitini-vector amplitudes

M3ð1ψ̄ i; 2ψ j; 3AaÞ ¼ igRtaijv̄
μ
1=ε3v2μ þOðg0RÞ; ð1Þ

where gR is the gauge coupling constant, vlμðl ¼ 1; 2Þ are
the gravitini’s polarizations, and taij are the representation
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matrices of the gauged R symmetry subgroup, acting on the
two gravitini. We omitted terms involving field strengths
that do not explicitly depend on gR; these are unrelated to
the gauging. While seemingly innocuous, the amplitude (1)
is not invariant under a linearized supersymmetry trans-
formation, vlμ → vlμ þ klμϵ (the spinor ϵ obeys =klϵ ¼ 0 to
preserve the gamma tracelessness of vlμ). Hence, assuming
that the gauging procedure preserves the supersymmetry
of the Lagrangian, the amplitude above must belong to a
theory with spontaneously broken supersymmetry (pos-
sibly partially). Since local supersymmetry can no longer
be used to reduce the gravitino’s physical polarizations
down to two, a gravitino now has four distinct polarization
states corresponding to a massive spin-3=2 particle. Thus,
we need to consider a double copy construction valid for
massive gravitini.
Gauged supergravities as double copies.—The double

copy construction of [11] starts from gauge-theory ampli-
tudes organized in terms of cubic graphs whose edges are
labeled by representations of the gauge group. The color
factor ci of each graph is obtained by dressing each vertex
with the corresponding group-invariant symbol; the kin-
ematic numerator ni of each graph includes the dependence
on external polarizations as well as loop and internal
momenta. If (a) two gauge theories have common mass
spectra and conjugate gauge-group representations (so that
gravity states can be associated with gauge-invariant
bilinears of gauge-theory states [28]) and (b) the kinematic
numerators (ni and ñi) obey the same algebraic identities
as the color factors (manifesting color-kinematics duality),
then

MðLÞ
n ¼ iLþ1

�
κ

2

�
2Lþn−2 X

i∈cubic

Z
dLDl
ð2πÞLD

1

Si

niñiQ
αi
dαi

ð2Þ

gives the corresponding n-point L-loop supergravity ampli-
tude. Here κ is the gravitational coupling, Si are symmetry
factors, 1=dαi are (possibly massive) propagators, and D is
the spacetime dimension. For gauge-theory amplitudes that
lack manifest color-kinematics duality, generalized double
copy constructions have been proposed [29].
The freedom of choosing the two gauge theories is

critical for having a double copy description for large
families of (super)gravities. Given the number of explicit
constructions to date, it has been suggested that all gravity
theories may have this property [22]. For our purpose, we
must choose two gauge theories whose spectra and inter-
actions allow for a factorized form of the amplitude in
Eq. (1). The product between aW-W-scalar interaction and
a minimal fermion-vector interaction leads to the expected
gravity states and interactions, reproducing the absence of
explicit momenta in Eq. (1). Together with the presence of
massive gravitini, this implies that the fermions of the other
gauge theory must be massive. We therefore propose that
gauged supergravities around Minkowski vacua can be

presented as double copies of a spontaneously broken
gauge theory and a gauge theory whose supersymmetry is
explicitly broken by fermion masses. Schematically, the
double copy is

ðgauged supergravityÞ ¼ ðHiggs YMÞ ⊗ ðSYMÞ: ð3Þ
A simple realization.—To illustrate the proposed con-

struction, we take as the left gauge theory (GTL) a scalar-
coupled SUðN þMÞ Yang-Mills (YM) theory with 4D
Lagrangian

L0¼
1

g2
Tr

�
−
1

4
FμνFμν−

1

2
Dμϕ

aDμϕaþ1

4
½ϕa;ϕb�2

�
; ð4Þ

with a; b ¼ 1;…; n. As discussed above, the gauge sym-
metry is spontaneously broken; we choose a scalar vacuum
expectation value (VEV) ϕa → ϕa þ hϕai of the form

hϕai ¼ Va × diag

�
1

N
1N;−

1

M
1M

�
; ð5Þ

where Va is constant. The subgroup G ¼ SUðMÞ ×
SUðNÞ × Uð1Þ remains unbroken and the spectrum is

GTL∶ fA�;ϕagG ⊕ fWμ̂;φsgR ⊕ fW̄μ̂; φ̄sgR̄; ð6Þ
where G denotes the adjoint representations of G, and R
and R̄ are the bifundamental ðN; M̄Þ and ðN̄;MÞ repre-
sentations. All fields transforming in the R, R̄ representa-
tions have the same mass m. The index s ¼ 2;…; n runs
over the massive scalars, while μ̂ runs over the three
physical polarizations of the massive W’s. It was shown
in Ref. [25] that this theory obeys color-kinematics duality.
The right gauge theory (GTR) has explicitly broken

supersymmetry and Lagrangian

LN¼2 ¼
1

g2
Tr
�
−
1

4
FμνFμν −

1

2
DμφαDμφα þ

1

4
½φα;φβ�2

þ i
2
χ̄ΓμDμ χ þ

1

2
χ̄Γα½φα þ hφαi; χ�

�
; ð7Þ

where χ is a six-dimensional Weyl fermion and α, β ¼ 5, 6
(this compact notation reflects the six-dimensional origin of
the theory). This theory preserves color-kinematics duality
because it can be realized as the orbifold of a spontan-
eously broken pure N ¼ 2 supersymmetric Yang-Mills
(SYM) theory. Indeed, we begin with the SUðN þMÞ
N ¼ 2 SYM theory and spontaneously break the gauge
group toG¼SUðNÞ×SUðMÞ×Uð1Þ by introducing a VEV

hφαi ¼ Ṽα × diag

�
1

N
1N;−

1

M
1M

�
; ð8Þ

which is chosen to have the same magnitude as the one in
the left gauge theory, ðVaÞ2 ¼ ðṼαÞ2, so that the two
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theories have common mass spectra. Conjugation by the
matrix γ ¼ diagð1N;−1MÞ is a symmetry of the Lagrangian
and so is the sign flip of the fermion fields. We may
therefore orbifold by their composition

Aμ ↦ γAμγ
−1; χ ↦ −γχγ−1; φ ↦ γφγ−1: ð9Þ

Since, as shown in [20,25], each of these operations
preserves color-kinematics duality, so must the resulting
theory. Its Lagrangian is that of Eq. (7) and its spectrum is

GTR∶ fA�;φαgG ⊕ fχgR̄ ⊕ fχ̄gR: ð10Þ

Gauging Uð1ÞR in N ¼ 2 supergravities.—General ME
supergravity theories with N ¼ 2 supersymmetry in five
dimensions were constructed in Refs. [30,31]. Their gaug-
ings were studied in Refs. [32,33]; gaugings that require
dualization of some of the vector fields to tensor fields were
constructed later [34,35]. Four-dimensional ME supergrav-
ities and their gaugings were studied in Refs. [36–40] (see
[2] for further references). The fields of 5DME supergravity
(MESG) with n vector multiplets are

MESG∶ femμ ;Ψi
μ; AI

μ; λia;φxg; ð11Þ

where I ¼ 0; 1;…; n; a; x ¼ 1;…; n, and i, j ¼ 1, 2 are R
symmetry indices [30]. ME theories are completely specified
by the cubic polynomial VðξIÞ≡ ð2=3Þ3=2CIJKξ

IξJξK ,
where ξI are coordinates of a (nþ 1)-dimensional ambient
space and CIJK is a constant symmetric tensor. The scalar
fields parametrize the VðξÞ ¼ 1 hypersurface in this ambient

space. The metric a
∘
IJ of the kinetic energy term of the vector

fields is given by the restriction of the ambient-space metric
to this hypersurface; it is written in terms of the vielbeine

(hI, haI ) as a
∘
IJ ¼ hIhJ þ haI h

a
J (see Ref. [30] for explicit

expressions). Thus, as is relevant for the amplitude perspec-
tive, theories in the ME class are uniquely specified by their
spectra and three-point interactions.
In this Letter, we will focus on the ME supergravities

belonging to the generic Jordan family with symmetric
target spaces in five and four spacetime dimensions. They
have n > 1 vector multiplets and are defined by the cubic
polynomial VðξÞ¼ ffiffiffi

2
p

ξ0½ðξ1Þ2− ðξ⃗ · ξ⃗Þ�. Their double copy
construction is given in Ref. [24].
As shown in Refs. [32,35], it is possible to gauge a

Uð1ÞR subgroup of the R symmetry group SUð2ÞR for all
ME supergravity theories. The resulting actions admit
Minkowski vacua with spontaneously broken supersym-
metry. Thus, we expect them to admit a double copy
construction as explained above. The relevant Lagrangians
are obtained by covariantizing derivatives on the fermions
with respect to the Uð1ÞR gauge field VIAI

μ defined by an
(nþ 1)-dimensional constant vector VI,

DμΨi
ν ≡∇μΨi

ν þ gRVIAI
μδ

ijΨνj;

Dμλ
ia ≡∇μλ

ia þ gRVIAI
μδ

ijλaj ; ð12Þ

and adding the following terms to the 5D Lagrangian,

δL ¼ −
i

ffiffiffi
6

p

8
gRΨ̄i

μΓμνΨj
νδijP0 −

1ffiffiffi
2

p gRλ̄iaΓμΨj
μδijPa

þ i

2
ffiffiffi
6

p gRλ̄iaλjbδijPab − g2RP
ðRÞ: ð13Þ

The coefficient functions P0, Pa, and Pab are given in terms
of VI as

PaðφÞ ¼
ffiffiffi
2

p
hIaVI; P0ðφÞ ¼ 2hIVI;

PabðφÞ ¼
1

2
δabP0 þ 2

ffiffiffi
2

p
TabcPc; ð14Þ

with Tabc ¼ CIJKhIahJbh
K
c . The scalar potential PðRÞðφÞ is

given by [32,35]

PðRÞðφÞ ¼ −ðP0Þ2 þ PaPa ¼ −4CIJKVIVJhK; ð15Þ

where the indices of the constant tensor CIJK are raised

by the inverse metric a
∘ IJ. For the generic Jordan family

CIJK ¼ CIJK.
The deformation breaks the R symmetry down to a

Uð1ÞR subgroup. Minkowski vacua correspond to gauging
with vanishing potentials, PðRÞðφÞ ¼ 0; they break super-
symmetry spontaneously [32,35]. Up to rotations and
overall rescaling, the simplest choice of VI leading to

theories with this property is Vð�Þ
I ¼ ð0; 1;�1; 0;…; 0Þ

[41]. This choice breaks the global symmetry group down
to the Euclidean group Eðn−2Þ for (n − 2) internal dimen-
sions. To study the spectrum of the theory, it is convenient
to redefine the massive gravitini as

ξiμ ¼ Ψi
μ −

iffiffiffiffiffi
12

p Γμλ
ia Pa

P0

þ
ffiffiffi
2

p

gRP0

Dμ

�
Paλ

a
i

P0

�
: ð16Þ

After this operation, the Goldstino field ηi ¼ λiaPa=P0

no longer appears in the Lagrangian, having become the
longitudinal component of the gravitino which is now
massive (this is analogous to the unitary gauge in sponta-
neously broken YM theories). Mass matrices for gravitini
and remaining spin-1=2 fields can be written as

Mξ
ij ¼

ffiffiffi
6

p

4
gRP0δij; Mλ

abij ¼
gRffiffiffi
6

p
�
Pab −

5

2

PaPb

P0

�
δij:

ð17Þ

Taking into account that the nonvanishing coefficient
matrices at the scalar base point are P0jcI ¼ 2

ffiffiffiffiffiffiffiffi
2=3

p
,
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P1jcI ¼ −
ffiffiffiffiffiffiffiffi
2=3

p ¼ P11jcI , P2jcI ¼∓ ffiffiffi
2

p
, P12jcI ¼ �2

ffiffiffi
2

p
,

P22jcI ¼
ffiffiffi
6

p
, and PssjcI ¼ −1 (s ¼ 3;…; n), it immedi-

ately follows that the masses of the two gravitini and one
pair of spin-1=2 fermions are m ¼ gR. The remaining
nonzero fermion masses are equal to −gR.
A direct comparison of double copy amplitudes with

supergravity calculations requires that we properly identify
the mass dependence (i.e., the dependence on gR in
supergravity). Apart from its explicit appearance in the
Lagrangian, in both gauge theory and supergravity, the
mass is also hidden in the massive particle wave functions.
To expose it, we shall use spinor-helicity notation and
reduce the supergravity Lagrangian to four dimensions. For
the 5D spinors rewritten as Dirac spinors, the reduction is
straightforward. The reduction of a massive gravitino yields
the 4D gravitino ξμ and a further spin-1=2 field ξ. The
precise decomposition of the 5D gravitino is chosen such
that the 4D quadratic terms are canonically normalized.
To obtain diagonal kinetic terms for the bosons in the 4D

Lagrangian, we dualize the vector A−1
μ from dimensional

reduction of the graviton, and redefine fields as

0
BB@

A−1
μ

A0
μ

A1
μ

1
CCA → −

1

4

0
B@

−1 1
ffiffiffi
2

p

2 −2 2
ffiffiffi
2

p

2
ffiffiffi
2

p
2

ffiffiffi
2

p
0

1
CA
0
BB@

A−1
μ

A0
μ

A1
μ

1
CCA: ð18Þ

After this operation, A−1
μ is the 4D graviphoton and the

vector identifying the Uð1ÞR gauge boson is expressed as

Vð�Þ
A ¼ ðV−1; V

ð�Þ
I Þ ¼

�
−

1ffiffiffi
2

p ;−
1ffiffiffi
2

p ; 0;�1; 0;…; 0

�
:

ð19Þ

Supergravity amplitudes can now be straightforwardly
computed from the Lagrangian and matched with the ones
from the double copy method. We focus in particular on the
amplitudes involving the Uð1ÞR gauge field and two
gravitini, which have the form in Eq. (1), where taij is
replaced by the identity (note that the polarization vector-
spinors vlμ need to be transverse and gamma traceless).
Such amplitudes can be reproduced with the following
double copy field map for the fermions

ξμ ¼ Wμ ⊗ χ −Wν ⊗
�
γμ
3
−
ipμ

3m

�
γνχ;

ξ ¼ Wν ⊗ γνχ; ðUλÞs ¼ φs ⊗ χ: ð20Þ

The combination on the first line is manifestly transverse
and gamma traceless. U is a unitary matrix diagonalizing
the spin-1=2 mass terms and the index s ¼ 2; 3;…; n runs
over all spin-1=2 fields except the Goldstino. Since the
Uð1ÞR gauging affects only the fermionic terms in the

Lagrangian, the double copy origin of the vector fields will
be the same as for the ungauged construction [24]

A−1þ ¼ Aþ ⊗ z; z ¼ ðφ6 þ iφ5Þ=
ffiffiffi
2

p
;

A0þ ¼ Aþ ⊗ z̄; �iA1
� ¼ ϕ1 ⊗ A�;

As
� ¼ ϕs ⊗ A�: ð21Þ

The factor of i arises because the double copy is most
naturally formulated in a symplectic frame with SO(n)
compact isometry, which differs from the one singled out
by dimensional reduction by the dualization of one vector
field. The gauge boson defined by (19) has the following
simple double copy realization

AVð�Þ
þ ¼ −Aþ ⊗ φ6 � ϕ2 ⊗ Aþ: ð22Þ

In order to match the amplitudes from the double copy
with the ones from the supergravity Lagrangian, we employ
the massive spinor-helicity formalism, writing massive
momenta as pi ¼ p⊥

i − ðm2=2pi · qÞq. Here q is a refer-
ence momentum and p⊥

i ; q are both massless. Polarizations
for massive spinors are written as vtþ ¼ ðji⊥�; mjqi=hi⊥qiÞ
and vt− ¼ ðmjq�=½i⊥q�; ji⊥iÞ. Explicit expressions for the
massive-vector polarizations can be found in [42] (see
also [43]). We consider massive gravitini with � polari-
zations and rewrite selected gravitini-vector amplitudes as
(I ¼ 0;…; n)

M3ð1ξ̄þ; 2ξ−; 3A−1þ Þ ¼ −
ffiffiffi
2

p
imΩV−1

h2⊥qi
h1⊥qi ;

M3ð1ξ̄þ; 2ξ−; 3AIþÞ ¼
ffiffiffi
2

p
imΩVI

½1⊥q�
½2⊥q� : ð23Þ

We note that, aside from the gravitino minimal coupling,
the first amplitude has a contribution coming from a cubic
interaction of the form 2iF−1

�μνξ̄
μP∓ξν, where P� denotes

the chirality projector and A−1
μ is the graviphoton. The

overall factor of Ω ¼ ½3⊥1⊥�3=ð½1⊥2⊥�½2⊥3⊥�Þ is equal to
the gauge-theory amplitude between two massive vectors
and one massless vector. The (nþ 2)-dimensional vector
VA defines the choice of Uð1ÞR gauge vector and is given
in (19). This result matches the one from the double copy,
provided that the gauge-theory VEVs are

Ṽα ¼ ð0; mÞ; Vð�Þa ¼ ð0;�m; 0;…; 0Þ: ð24Þ
The magnitude of the VEVs in the two gauge theories
determines the supergravity parameter gR or, alternatively,
the masses of gravitini and spin-1=2 fields. Similarly, the
direction of the gauge-theory VEVs is identified with the
supergravity vector VA which defines the Uð1ÞR gauge
field. From the point of view of the underlying gauge
theories, the vanishing of the first entry in each VEVarises
because the scalar fields ϕ1 and φ5 descend from the 5D
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gluons that have no VEV (the remaining zeros can be
understood from the SOðn − 1Þ symmetry of ϕs).
Conclusions.—We have presented an explicit realization

of an infinite family of supergravity theories with gauged
Uð1ÞR in the double copy framework and verified the
construction by analyzing how the spectrum and three-
point amplitudes are deformed by the parameter gR. For this
family, the double copy automatically ensures that all
fermionic fields have the same mass, in agreement with
the supergravity Lagrangian. On general grounds, the
double copy is expected to be robust beyond our explicit
checks since the two gauge theories that enter the double
copy construction of the generic Jordan family admit
massive deformations that preserve color-kinematics dual-
ity and break supersymmetry. Hence, the double copy
applied to any multiplicity and loop order should give
sensible (diffeomorphism-invariant [26]) amplitudes in
supergravities with spontaneously broken supersymmetry.
The double copy construction given in this Letter

extends straightforwardly to gauged YME supergravities
by gauging a compact subgroup of the little group of VI ,
which determines the Uð1ÞR gauge field. Our results
may be generalized in several other directions, such as
including hypermultiplets and partial supersymmetry
breaking, as well as extensions to N ≥ 4 gauged super-
gravities with partial or complete supersymmetry breaking.
The basic feature of the construction is expected to remain
unchanged: combining a spontaneously broken gauge
theory with a theory with broken supersymmetry yields
the amplitudes of a supergravity with massive gravitini (and
hence spontaneously broken supersymmetry). Finally, the
construction outlined here opens the door to a complete
classification of gauged supergravities with Minkowski
vacua and broken supersymmetry that admit double copy
realizations. Understanding these theories may provide
clues for extending the double copy structure to vacua
with an anti–de-Sitter spacetime.
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