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Consider the task of verifying that a given quantum device, designed to produce a particular entangled
state, does indeed produce that state. One natural approach would be to characterize the output state by
quantum state tomography, or alternatively, to perform some kind of Bell test, tailored to the state of
interest. We show here that neither approach is optimal among local verification strategies for 2-qubit
states. We find the optimal strategy in this case and show that quadratically fewer total measurements are
needed to verify to within a given fidelity than in published results for quantum state tomography, Bell test,
or fidelity estimation protocols. We also give efficient verification protocols for any stabilizer state.
Additionally, we show that requiring that the strategy be constructed from local, nonadaptive, and
noncollective measurements only incurs a constant-factor penalty over a strategy without these restrictions.
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Efficient and reliable quantum state preparation is a
necessary step for all quantum technologies. However,
characterization and verification of such devices is typically
a time-consuming and computationally difficult process.
For example, tomographic reconstruction of a state of eight
ions required taking ∼650 000measurements over 10 h and
a statistical analysis that took far longer [1]. Verification of
a few-qubit photonic state is similarly challenging [2,3].
This is also the case in tomography of continuous-variable
systems [4–6]. One may instead resort to nontomographic
methods to verify that a device reliably outputs a particular
state, but such methods typically either, (a) assume that the
output state is within some special family of states, for
example, in compressed sensing [7,8] or matrix product
state tomography [9], or (b) extract only partial information
about the state, such as when estimating entanglement
witnesses [10,11].
Here, we derive the optimal local verification strategy for

common entangled states and compare its performance to
bounds for nonadaptive quantum state tomography in [12]
and the fidelity estimation protocol in [13]. Specifically, we
demonstrate nonadaptive verification strategies for arbi-
trary 2-qubit states and stabilizer states of N qubits that
are constructed from local measurements and require
quadratically fewer copies to verify to within a given
fidelity than for these previous protocols. Moreover, the
requirement that the measurements be local incurs only a

constant-factor penalty over the best nonlocal strategy, even
if collective and adaptive measurements are allowed.
Premise.—Colloquially, a quantum state verification

protocol is a procedure for gaining confidence that the
output of some device is a particular state over any other.
However, for any scheme involving measurements on a
finite number of copies of the output state, one can always
find an alternative state within some sufficiently small
distance that is guaranteed to fool the verifier. Furthermore,
the outcomes of measurements are, in general, probabilistic
and a verification protocol collects a finite amount of data,
and so any statement about verification can only be made
up to some finite statistical confidence. The only mean-
ingful statement to make in this context is the statistical
inference that the state output from a device sits within a
ball of a certain small radius (given some metric) of the
correct state, with some statistical confidence. Thus, the
outcome of a state verification protocol is a statement like
“the device outputs copies of a state that has 99% fidelity
with the target, with 90% probability.” Note that this is
different from the setting of state tomography; a verification
protocol answers the question “Is the state jψi?” rather than
the more involved tomographic question “Which state do I
have?” Hence, unlike tomography, a verification protocol
may give no information about the true state if the
protocol fails.
We now outline the framework for verification protocols

that we consider. Take a verifier with access to some set of
allowed measurements and a device that produces states
σ1; σ2;…; σn, which are supposed to all be jψi, but may in
practice be different from jψi or each other. We have the
promise that either σi ¼ jψihψ j for all i or hψ jσijψi ≤ 1 − ϵ
for all i. The verifier must determine which is the case with
worst-case failure probability δ.
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The protocol proceeds as follows. For each σi, the
verifier randomly draws a binary-outcome projective meas-
urement fPj; 1 − Pjg from a prespecified set S with some
probability μij. Label the outcomes “pass” and “fail”; in a
pass instance, the verifier continues to state σiþ1, otherwise
the protocol ends and the verifier concludes that the state
was not jψi. If the protocol passes on all n states, then the
verifier concludes that the state was jψi. We impose the
constraint that every Pj ∈ S always accepts when
σi ¼ jψihψ j, ∀i (i.e., that jψi is in the pass eigenspace
of every projector Pj ∈ S). This may seem a prohibitively
strong constraint, but we later demonstrate that it is both
achievable for the sets of states we consider and is always
asymptotically favorable to the verifier.
The maximal probability that the verifier passes on

copy i is

Prob½Pass on copy i� ¼ max
σ

hψ jσjψi≤1−ϵ
trðΩiσÞ; ð1Þ

where Ωi ¼
P

jμ
i
jPj. However, the verifier seeks to mini-

mize this quantity for eachΩi and hence it suffices to take a
fixed set of probabilities and projectors fμj; Pjg, indepen-
dent of i. Then the verifier-adversary optimization is

min
Ω

max
σ

hψ jσjψi≤1−ϵ
trðΩσÞ ≔ 1 − Δϵ; ð2Þ

where Ω ¼ P
jμjPj. We call Ω a “strategy.” Δϵ is the

expected probability that the state σ fails a single meas-
urement. Then the maximal worst-case probability that the
verifier fails to detect that we are in the “bad” case that
hψ jσijψi ≤ 1 − ϵ for all i is ð1 − ΔϵÞn, so to achieve
confidence 1 − δ, it is sufficient to take

n ≥
ln δ−1

ln½ð1 − ΔϵÞ−1�
≈

1

Δϵ
ln δ−1: ð3Þ

Protocols of this form satisfy some useful operational
properties: (i) Nonadaptivity: the strategy is fixed from the
outset and depends only on the mathematical description of
jψi, rather than the choices of any prior measurements or
their measurement outcomes. (ii) Future proofing: the
strategy is independent of the infidelity ϵ and gives a
viable strategy for any choice of ϵ. Thus, an experimentalist
is able to arbitrarily decrease the infidelity ϵ within which
verification succeeds by simply taking more total mea-
surements following the strategy prescription, rather than
modifying the prescription itself. The experimentalist is
free to choose an arbitrary ϵ > 0 and be guaranteed that the
strategy still works in verifying jψi.
One may consider more general nonadaptive verification

protocols given S and fσig, where measurements do not
output pass with certainty given input jψi, and the overall
determination of whether to accept or reject is based on a
more complicated estimator built from the relative fre-
quency of pass and fail outcomes. However, we show in the

Supplemental Material [14] that these strategies require,
asymptotically, quadratically more measurements in ϵ than
those where jψi is always accepted. We will also see that
the protocol outlined above achieves the same scaling with
ϵ and δ as the globally optimal strategy, up to a constant
factor, and so any other strategy (even based on nonlocal,
adaptive, or collective measurements) would yield only, at
most, constant-factor improvements.
Given no constraints on the verifier’s measurement

prescription, the optimal strategy is to just project onto
jψi. In this case, the fewest number of measurements
needed to verify to confidence 1 − δ and fidelity 1 − ϵ is
nopt ¼ f−1=½ln ð1 − ϵÞg lnð1=δÞ ≈ ð1=ϵÞ lnð1=δÞ (see the
Supplemental Material [14]). However, in general, the
projector jψihψ j will be nonlocal, which has the disadvant-
age of being harder to implement experimentally. This is
particularly problematic in quantum optics, for example,
where deterministic, unambiguous discrimination of a
complete set of Bell states is impossible [15–17]. Thus,
for each copy, there is a fixed probability of the measure-
ment returning a “null” outcome; hence, regardless of the
optimality of the verification strategy, merely the proba-
bility of its successful operation decreases exponentially
with the number of measurements. Instead, we seek optimal
measurement strategies that satisfy some natural properties
that make them both physically realizable and useful to a
real-world verifier. We impose the following properties:
(i) Locality: S contains only measurements corresponding
to local observables, acting on a single copy of the output
state; (ii) Projective measurement: S contains only binary-
outcome, projective measurements, rather than more elabo-
rate positive operator valued measures; and (iii) Trust: the
physical operation of each measurement device is faithful
to its mathematical description—it behaves as expected,
without experimental error.
Thus, for multipartite states, we only consider strategies

where each party locally performs a projective measure-
ment on a single copy, and the parties accept or reject based
on their collective measurement outcomes. We also high-
light the trust requirement to distinguish from self-testing
protocols [18–20].
Given this prescription and the set of physically moti-

vated restrictions, we now derive the optimal verification
strategy for some important classes of states. To illustrate
our approach, we start with the case of a Bell state before
generalizing to larger classes of states.
Bell state verification.—Consider the case of verifying

the Bell state jΦþi ¼ ð1= ffiffiffi
2

p Þðj00i þ j11iÞ. If we maintain
a strategy where all measurements accept jΦþi with
certainty, then it must be the case that ΩjΦþi ¼ jΦþi.
The optimization problem for the verifier-adversary pair is
then given by Δϵ,

Δϵ ¼ max
Ω

min
σ

hψ jσjψi≤1−ϵ
tr½ΩðjΦþihΦþj − σÞ�: ð4Þ
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However, we show in the Supplemental Material [14] that it
is never beneficial for the adversary to (a) choose a nonpure
σ, or (b) to pick a σ such that hψ jσjψi < 1 − ϵ. Rewrite
σ ¼ jψϵihψϵj, where jψϵi ¼

ffiffiffiffiffiffiffiffiffiffi
1 − ϵ

p jΦþi þ ffiffiffi
ϵ

p jψ⊥i for
some state jψ⊥i such that hΦþjψ⊥i ¼ 0. Then,

Δϵ ¼ max
Ω

min
jψ⊥i

ϵðhΦþjΩjΦþi − hψ⊥jΩjψ⊥iÞ

− 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵð1 − ϵÞ

p
RehΦþjΩjψ⊥i: ð5Þ

Given that ΩjΦþi ¼ jΦþi, we can simplify by noting
that hΦþjΩjΦþi ¼ 1 and hΦþjΩjψ⊥i ¼ 0. Thus,

Δϵ ¼ max
Ω

min
jψ⊥i

ϵð1 − hψ⊥jΩjψ⊥iÞ

¼ ϵð1 −min
Ω

max
jψ⊥i

hψ⊥jΩjψ⊥iÞ; ð6Þ

where the verifier controls Ω and the adversary controls
jψ⊥i. Given that jΦþi is itself an eigenstate ofΩ, the worst-
case scenario for the verifier is for the adversary to choose
jψ⊥i as the eigenstate ofΩwith the next largest eigenvalue.
If we diagonalize Ω, we can write Ω ¼ jΦþihΦþjþP

3
j¼1 νjjψ⊥

j ihψ⊥
j j, where hΦþjψ⊥

j i ¼ 0 ∀j. The adversary
picks the state jψ⊥

maxiwith corresponding eigenvalue νmax¼
maxjνj. Now, consider the trace ofΩ: if trðΩÞ < 2, then the
strategy must be a convex combination of local projectors,
at least one of which is rank 1. However, the only rank 1
projector that satisfies PþjΦþi ¼ jΦþi is Pþ ¼ jΦþihΦþj,
which is nonlocal, and therefore trðΩÞ ≥ 2. Combining this
with the expression for Ω above gives trðΩÞ ¼ 1þP

jνj ≥ 2. It is always beneficial to the verifier to saturate
this inequality, as any extra weight on the subspace
orthogonal to jΦþi can only increase the chance of being
fooled by the adversary. Thus, the verifier is left with the
optimization

min νmax ¼ minmax
k

νk;
X

k

νk ¼ 1: ð7Þ

This expression is optimized for νj ¼ 1=3, j ¼ 1, 2, 3. In
this case, Ω ¼ 1=3 on the subspace orthogonal to the state
jΦþi. Then we can rewrite Ω as

Ω ¼ 1

3
ðPþ

XX þ Pþ
−YY þ Pþ

ZZÞ; ð8Þ

where Pþ
XX is the projector onto the positive eigensubspace

of the tensor product of Pauli matrices XX (and likewise for
−YY and ZZ). The operational interpretation of this optimal
strategy is then explicit: for each copyof the state, theverifier
randomly chooses a measurement setting from the set
fXX;−YY; ZZg all with probability 1=3, and accepts only
on receipt of outcome “þ1” on all n measurements. Note
that we could expand Ω differently, for example, by
conjugating each term in the above expression by any local
operator that leaves jΦþi alone; the decomposition above is
only one of a family of optimal strategies. As for scaling, we

know that Δϵ ¼ ϵð1 − νmaxÞ ¼ ð2ϵ=3Þ, and the number of
measurements needed to verify the Bell state jΦþi is then
nopt ¼ fln ½3=ð3 − 2ϵÞ�g−1 lnð1=δÞ ≈ ð3=2ϵÞ lnð1=δÞ. Note
that this is only worse than the optimal nonlocal strategy
by a factor of 1.5.
In comparison, consider instead verifying a Bell state by

performing a Clauser-Horne-Shimony-Holt test. Then,
even in the case of trusted measurements, the total number
of measurements scales like Oð1=ϵ2Þ [21], which is
quadratically worse than the case of measuring the stabi-
lizers fXX;−YY; ZZg. This suboptimal scaling is shared
by the known bounds for nonadaptive quantum state
tomography with single-copy measurements in [12] and
fidelity estimation in [13]. See [22–24] for further dis-
cussion of this scaling in tomography. Additionally, 2-qubit
tomography potentially requires five times as many meas-
urement settings. We also note that a similar quadratic
improvement was derived in adaptive quantum state
tomography in [25], in the sample-optimal tomographic
scheme in [26], and in the quantum state certification
scheme in [27]; however, the schemes therein assume
access to either nonlocal or collective measurements.
Arbitrary states of two qubits.—The goal is unchanged

for other pure states of two qubits: we seek strategies that
accept the target state with certainty and hence achieve the
asymptotic advantage outlined for Bell states above. It is
not clear a priori that such a strategy exists for general
states, in a way that is as straightforward as the previous
construction. However, we show that for any 2-qubit state
not only does such a strategy exist, but we can optimize
within the family of allowable strategies and give an
analytic expression with optimal constant factors.
We first remark that we can restrict to states of the form

jψθi ¼ sin θj00i þ cos θj11i without loss of generality, as
any state is locally equivalent to a state of this form, for
some θ. Specifically, given any 2-qubit state jψi with
optimal strategyΩopt, a locally equivalent state ðU ⊗ VÞjψi
has optimal strategy ðU ⊗ VÞΩoptðU ⊗ VÞ†. The proof of
this statement can be found in the Supplemental Material
[14]. Given the restriction to this family of states, we can
now write down an optimal verification protocol.
Theorem 1.—Any optimal strategy for verifying a state

of the form jψθi ¼ sin θj00i þ cos θj11i for 0 < θ <
ðπ=2Þ, θ ≠ ðπ=4Þ that accepts jψθi with certainty and
satisfies the properties of locality, trust, and projective
measurement can be expressed as a strategy involving four
measurement settings,

Ωopt ¼ αðθÞPþ
ZZ

þ 1− αðθÞ
3

X3

k¼1

½1− ðjuki⊗ jvkiÞðhukj⊗ hvkjÞ�;

for αðθÞ ¼ 2− sinð2θÞ
4þ sinð2θÞ ; ð9Þ
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where Pþ
ZZ is the projector onto the positive eigenspace of

the Pauli operator ZZ, and the sets of states fjukig and
fjvkig are written explicitly in the Supplemental Material
[14]. The number of measurements needed to verify to
within infidelity ϵ and with power 1 − δ satisfies

nopt ≈ ð2þ sin θ cos θÞϵ−1 ln δ−1: ð10Þ

The proof of this Theorem is included in the
Supplemental Material [14]. Note that the special cases
for jψθi where θ ¼ 0, θ ¼ ðπ=2Þ, and θ ¼ ðπ=4Þ are
omitted from this theorem. In these cases, jψθi admits a
wider choice of measurements that accept with certainty.
We have already treated the Bell state case θ ¼ ðπ=4Þ
above. In the other two cases, the state jψθi is product and
hence the globally optimal measurement, just projecting
onto jψθi, is a valid local strategy. We note that this leads to
a discontinuity in the number of measurements needed as a
function of θ, for fixed ϵ (as seen in Fig. 1). This arises
since our strategies are designed to have the optimal scaling
Oð1=ϵÞ for fixed θ, achieved by having strategies that
accept jψi with probability 1.
As for scaling, in Fig. 2, the number of measurements

required to verify a particular 2-qubit state of this form, for
three protocols, is shown. The optimal protocol derived
here gives a marked improvement over the previously
published bounds for both tomography [12] and fidelity
estimation [13] for the full range of ϵ, for the given values
of θ and δ. The asymptotic nature of the advantage for the
protocol described here implies that the gap between the
optimal scheme and tomography only grows as the require-
ment on ϵ becomes more stringent. Note also that the
optimal local strategy is only marginally worse than the
best possible strategy of just projecting onto jψi.

Stabilizer states.—Additionally, it is shown in the
Supplemental Material [14] that we can construct a strategy
with the same asymptotic advantage for any stabilizer state,
by drawing measurements from the stabilizer group (where
now we only claim optimality up to constant factors). The
derivation is analogous to that for the Bell state above, and
given that the Bell state is itself a stabilizer state, the
strategy above is a special case of the stabilizer strategy
discussed below. For a state of N qubits, a viable strategy
constructed from stabilizers must consist of at least the N
stabilizer generators of jψi. This is because a set of k < N
stabilizers stabilizes a subspace of dimension at least 2N−k,
and so, in this case, there always exists at least one
orthogonal state to jψi accessible to the adversary that
fools the verifier with certainty. In this minimal case, the
number of required measurements is ns:g:opt ≈ Nϵ−1 ln δ−1,
with this bound saturated by measuring all stabilizer
generators with equal weight. Conversely, constructing a
measurement strategy from the full set of 2N − 1 linearly
independent stabilizers requires a number of measurements
nstabopt ≈ ½ð2N − 1Þ=2ðN−1Þ�ϵ−1 ln δ−1, again with this bound
saturated by measuring each stabilizer with equal weight.
For growing N, the latter expression for the number of
measurements is bounded from above by 2ϵ−1 ln δ−1, which
implies that there is a local strategy for any stabilizer state,
of an arbitrary number of qubits, which requires, at most,
twice as many measurements as the optimal nonlocal
strategy. Note that this strategy may not be exactly optimal;
for example, the state j00i is also a stabilizer state, and in
this case, applying the measurement j00ih00j is both locally
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Opt. local strategy

FIG. 1. The number of measurements needed to verify the state
jψθi ¼ sin θj00i þ cos θj11i, as a function of θ, using the opti-
mal strategy. [See Eq. (10).] Here, 1 − ϵ ¼ 0.99 and 1 − δ ¼ 0.9.
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FIG. 2. A comparison of the total number of measurements
required to verify to fidelity 1 − ϵ for the strategy derived here
versus the known bounds for estimation up to fidelity 1 − ϵ using
nonadaptive tomography in [12], the fidelity estimation protocol
in [13], and the globally optimal strategy given by projecting onto
jψi. Here, 1 − δ ¼ 0.9 and θ ¼ ðπ=8Þ.
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implementable and provably optimal. Thus, the exactly
optimal strategy may depend more precisely on the
structure of the individual state itself. However, the
stabilizer strategy is only inferior by a small constant
factor. In comparison to the latter strategy constructed
from every stabilizer, the former strategy constructed from
only the N stabilizer generators of jψi has scaling that
grows linearly with N. Thus, there is ultimately a trade-off
between number of measurement settings and total number
of measurements required to verify within a fixed fidelity.
In principle, the recipe derived here to extract the optimal

strategy for a state of two qubits can be applied to any pure
state. However, we anticipate that deriving this strategy,
including correct constants, may be somewhat involved
(both analytically and numerically) for states of greater
numbers of qubits.
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Guehne for pointing out [29,30]. S. P. was supported by the
Bristol Quantum Engineering Centre for Doctoral Training,
EPSRC Grant No. EP/L015730/1. A. M. was supported by
EPSRC Early Career Fellowship EP/L021005/1. No new
data were created during this study.

Note added.—Recently, we became aware of [28] which,
among other results, applies a similar protocol to the Bell
state verification strategy in the context of entanglement
detection. We were also notified that the strategy in Eq. (9),
which we prove optimal for verification, has previously
been studied in two different contexts: in Ref. [29] as an
“optimal pseudomixture” of pure states, and in Ref. [30] as
a method for entanglement detection. Finally [31,32] have
been brought to our attention; these references give local
verification protocols for graphs and hypergraph states,
respectively.
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