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A microscopic model is established for financial Brownian motion from the direct observation of the
dynamics of high-frequency traders (HFTs) in a foreign exchange market. Furthermore, a theoretical
framework parallel to molecular kinetic theory is developed for the systematic description of the financial
market from microscopic dynamics of HFTs. We report first on a microscopic empirical law of traders’
trend-following behavior by tracking the trajectories of all individuals, which quantifies the collective
motion of HFTs but has not been captured in conventional order-book models. We next introduce the
corresponding microscopic model of HFTs and present its theoretical solution paralleling molecular kinetic
theory: Boltzmann-like and Langevin-like equations are derived from the microscopic dynamics via the
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Our model is the first microscopic model that has
been directly validated through data analysis of the microscopic dynamics, exhibiting quantitative
agreements with mesoscopic and macroscopic empirical results.
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Introduction.—In physics, the study of colloidal
Brownian motion has a long history beginning with
Einstein’s famous work [1]; the understanding of its
mechanism has been systematically developed in kinetic
theory [2,3]. Specifically, from microscopic Newtonian
dynamics, the Boltzmann and Langevin equations are
derived for the mesoscopic and macroscopic dynamics,
respectively. This framework is a rigid foundation for
various nonequilibrium systems (e.g., active matter, granu-
lar gas, Feynman ratchets, and traffic flow [4–10]), and its
direct experimental foundation has been revisited because
of recent technological breakthroughs [11,12].
In light of this success, it is natural to apply this

framework beyond physics to social science [13], such
as finance. Indeed, the concept of random walks was
historically invented for price dynamics by Bachelier
earlier than Einstein [14], and its similarities to physical
Brownian motion (e.g., the fluctuation-dissipation relation)
are intensively studied by recent high-frequency data
analysis [15]. As an idea in statistical physics, the dynamics
of financial markets are expected to be clarified from first
principles by extending kinetic theory.

Although this idea is attractive, the kinetic description
has not been established for financial Brownian motion.
Why has not this idea been realized yet? In our view, the
biggest problem is the absence of established microscopic
models; there exist empirical validations of mesoscopic
[15–21] and macroscopic models [22–28], whereas no
microscopic model has been validated by direct empirical
analysis. Indeed, previous microscopic models [29–33]
were purely theoretical and have no quantitative evidence
microscopically. To overcome this crucial problem as an
empirical science, two missing links have to be connected:
(i) establishment of the microscopic model by direct
observation of traders’ dynamics [Fig. 1(a)] and (ii) con-
struction of a kinetic theory to show its consistency with
mesoscopic and macroscopic findings [i.e., the order-book
and price dynamics, Figs. 1(b), 1(c)].
In this Letter, we present the corresponding solutions by

direct observation of high-frequency trader (HFT) dynam-
ics in a foreign exchange (FX) market: (i) a microscopic
model of HFTs is established by direct microscopic
evidence, and (ii) corresponding kinetic theory is developed
to show its consistency with mesoscopic and macroscopic
evidence. We analyzed order-book data with anonymized
trader identifiers (IDs) to track trajectories of all individuals.
We found an empirical law concerning trend following
among HFTs, which has not been captured by previous
order-book models. Remarkably, this property induces the
collective motion of the order book and naturally leads the
layered order-book structure [15]. We then introduce a
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corresponding microscopic model of trend-following HFTs.
Starting from their “equations of motion,” Boltzmann-like
and Langevin-like equations are derived for the order-book
and price dynamics. A quantitative agreement is finally
shown with our empirical all findings. Our work opens the
door to systematic descriptions of finance based on micro-
scopic evidence.
Observed microscopic dynamics.—We analyzed the

high-frequency FX data between the U.S. dollar (USD)
and the Japanese Yen (JPY) on Electronic Broking Services
for a week in June 2016. The currency unit used in this
study is 0.001 yen, called the tenth pip (tpip). Here we
particularly focused on the dynamics of HFTs [34],
frequently submitting or canceling orders according to
algorithms (see Supplemental Material [35]). The typical
trajectories of bid and ask quoted prices are illustrated in
Figs. 2(a)–2(c) for the top 3 HFTs. They modify their
quoted prices by successive submission and cancellation at
high speed typically within seconds; almost 99% of their
submissions were finally canceled without transactions (see
Supplemental Material [35]). With the two-sided quotes
they also play the role of liquidity providers [40,41]
according to the market rule, keeping the balance between
the bid and ask order book. Buy-sell spreads, the difference
between the best bid and ask prices for a single HFT, were
observed to fluctuate around certain time constants (see the
insets for their distributions).
We then report the empirical microscopic law for the

trend-following strategy of individual traders. The bid and
ask quoted prices of the top ith HFT are denoted by bi and
ai (see Supplemental Material [35]). We investigated the
average movement of the trader’s quoted midprice zi ≡
ðbi þ aiÞ=2 between transactions conditional on the pre-
vious market transacted price movement [Fig. 2(d)]. Here

we introduce the tick time T as an integer time incremented
by every transaction. The mean transaction interval is
9.3 sec during this week. Because typical HFTs frequently
modify their price between transactions, we here study
HFTs’ trend following at one-tick precision. For the top 20
HFTs (Fig. 3), we found that the average and variance of
movement ΔziðTÞ≡ ziðT þ 1Þ − ziðTÞ obeyed

hΔziiΔp ≈ ci tanh
Δp
Δp�

i
; VΔp½Δzi� ≈ σ2i ; ð1Þ

where the conditional average h…iΔp is taken when the last
price change is ΔpðT−1Þ≡pðTÞ−pðT−1Þ and Δzi ≠ 0
(see Supplemental Material [35]) and the conditional
variance is defined by VΔp½Δzi�≡ hðΔzi − hΔziiΔpÞ2iΔp.
Here, pðTÞ is the market transacted price at the T tick, and
ci, Δp�

i ; σ
2
i are characteristic constants unique to the trader

and independent of Δp. Their typical values were found to
be ci ≈ 6.0 tpip, Δp�

i ≈ 7.5 tpip, and σi ≈ 14.5 tpip. Our
finding (1) implies that the reaction of traders is linear for
small trends but saturates for large trends, and quantifies the
collective motion of HFTs. Remarkably, a similar behavior
was reported from a price movement data analysis at one-
month precision [42].
Microscopic model.—Here we introduce a minimal

microscopic model of HFTs incorporating the above
characters. We make four assumptions: (i) The number
of traders is sufficiently large; (ii) traders always quote both
bid and ask prices (for the ith trader, bi and ai) simulta-
neously with a unit volume; (iii) buy-sell spreads are time
constants unique to traders with distribution ρðLÞ. The
trader dynamics are then characterized by the midprice
zi ≡ ðbi þ aiÞ=2; and (iv) trend-following random walks
are assumed in the microscopic dynamics [Figs. 4(a)–4(c)],
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dziðtÞ
dt

¼ c tanh
ΔpðtÞ
Δp� þ σηRi ðtÞ; ð2Þ

with strength for trend following c, previous price move-
ment Δp, and white Gaussian noise σηRi with variance σ2.
Here, c, Δp�, and σ are assumed shared for all traders for
simplicity. In this model, HFTs frequently modify their
quoted price by successive submission and cancellation.
Indeed, this model can be reformulated as a Poisson price
modification process with high cancellation rate (see
Supplemental Material [35]). After transaction ajðtÞ ¼
biðtÞ [Fig. 4(b)], the updated market price and its corre-
sponding movement are recorded as

pðtþ 0Þ ¼ biðtÞ; Δpðtþ 0Þ ¼ biðtÞ − pðtÞ; ð3Þ

and a requotation jump occurs [Fig. 4(c)],

ziðtþ 0Þ ¼ ziðtÞ −
Li

2
; zjðtþ 0Þ ¼ zjðtÞ þ

Lj

2
: ð4Þ

Here, tþ 0 implies the time after transaction. A unique
character of this model is the order-book collective motion
due to trend following [Fig. 4(d)]. ForΔp > 0, the bid (ask)
volume change tends to be positive (negative) near the best
price [Fig. 4(e)], consistently with the layered order-book
structure [15].

Kinetic formulation.—Wenext present an analytical solu-
tion to this model (2) according to kinetic theory [2,3].
Let us first introduce the relative distance ri ≡ zi − zc:m:
from the “center of mass” zc:m: ≡P

izi=N [Fig. 4(a)], where
the trend-following effect in Eq. (2) is absorbed into the
dynamics of zc:m:. The dynamics of ri become simpler
because trend-following effects disappear in this moving
frame (see Supplemental Material [35]). We next introduce
the one-body (two-body) probability distribution as ϕLðrÞ
[ϕLL0 ðr; r0Þ] conditional on traders’ buy-sell spreads. From
the microscopic model (2), the lowest-order hierarchy
equation is derived as ∂ϕL=∂t¼ðσ2=2Þð∂2ϕL=∂r2Þþ
N
P

s¼�1

R
dL0ρðL0Þ½JsLL0 ðrþsL=2Þ−JsLL0 � with JsLL0 ðrÞ≡

ðσ2=2Þj∂̃rr0 jϕLL0 ðr;r0Þjr−r0¼sðLþL0Þ=2 and j∂̃rr0 jf≡j∂f=∂rjþ
j∂f=∂r0j (see Supplemental Material [35]). By assuming
“molecular chaos,”

ϕLL0 ðr; r0Þ ≈ ϕLðrÞϕL0 ðr0Þ; ð5Þ

we derive the Boltzmann-like equation with collision
integrals for the order book,

∂ϕL

∂t ≈
σ2

2

∂2ϕL

∂r2
þN

X
s¼�1

Z
dL0ρðL0Þ½J̃sLL0 ðrþsL=2Þ− J̃sLL0 �; ð6Þ
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with J̃sLL0 ðrÞ≡ ðσ2=2Þj∂̃rr0 jfϕLðrÞϕL0 ðr0Þgjr−r0¼sðLþL0Þ=2.
Here, s ¼ þ1 (s ¼ −1) represents transactions as bidder
(asker). Because traders exhibit collective motion arising
from trend following, a Langevin-like equation is also
derived as the macroscopic description of the model (2),

ΔpðT þ 1Þ ¼ cτðTÞ tanhΔpðTÞ
Δp� þ ζðTÞ; ð7Þ

where τðTÞ and ζðTÞ are transaction time interval and
random noise at the Tth tick time, respectively. The first
trend-following term corresponds to the momentum inertia
in the conventional Langevin equation.
Equations (6) and (7) can be analytically assessed for

N → ∞. We first set the buy-sell spread distribution as

ρðLÞ ¼ L3

6L�4 e
−L=L�

; ð8Þ

with decay length L� ¼ 15.5� 0.2 tpip, empirically vali-
dated in our data set [Fig. 5(a) and Supplemental Material
[35]]. The solution to Eq. (6) for N → ∞ is given by
ϕLðrÞ ¼ ð4=L2ÞmaxfL=2 − jrj; 0g. The average order-
book profile fAðrÞ ¼

R
dLρðLÞϕLðr − L=2Þ is then given

for r > 0 by

fAðrÞ ¼
4e−

3r
2L�

3L�

��
2þ r

L�

�
sinh

r
2L� −

re−
r

2L�

2L�

�
: ð9Þ

The statistics of τðTÞ in the macroscopic model (7) is
derived from the mesoscopic model (6), and the tail of the
price movement is approximately given by

Pð≥ jΔpj; κÞ ≈ e−jΔpj=κ ðjΔpj → ∞Þ; ð10Þ

with decay length κ ≈ 2Δz�=3, average movement from
trend-following Δz� ≡ cτ�, average transaction interval
τ� ≈ 3L�2=Nσ2, and complementary cumulative distribu-
tion function (CDF) Pð≥ jΔpj; κÞ (see also Supplemental
Material [35] for numerical validation).
Mesoscopic and macroscopic data analysis.—We next

investigated whether our microscopic model is consistent
with our data set. The empirical daily profile was first
studied for the average ask order book for the best prices of
HFTs fAðrÞ [Fig. 5(b) and Supplemental Material [35]].
Surprisingly, we found a quantitative agreement with our
theory (9) without any fitting parameters, which strongly
supports the validity of our description.
The two-hourly segmented CDF for the price movement

is also evaluated in one-tick precision P2hð≥ jΔpj; κÞ
[Fig. 5(c)], which obeys an exponential law that is
qualitatively consistent with our theoretical prediction
(10). The value of the two-hourly decay length κ fluctuates
significantly during a week. To remove this nonstationary
feature, we introduced the two-hourly scaled CDF
P̃2hð≥ jΔp̃jÞ≡ P2hð≥ κjΔp̃j; κÞ=Z with scaling parameters
κ and Z [Fig. 5(d)], thereby incorporating the two-hourly
exponential law for the whole week.
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The price movements obey an exponential law for short
periods but simultaneously obey a power law over long
periods with exponent α ¼ 3.6� 0.13 [Fig. 5(e)]. This
apparent discrepancy originates from the power-law nature
of the decay length κ. Because κ approximately obeys a
power-law CDF Qð≥ κÞ ∼ κ−m over the week with m ¼
3.5� 0.13 [Fig. 5(f)], the one-week CDF Pwð≥ jΔpjÞ
asymptotically obeys the power law as a superposition
of the two-hourly segmented exponential CDF,

Pwð≥ jΔpjÞ ¼
Z

∞

0

dκQðκÞP2hð≥ jΔpj; κÞ ∝ jΔpj−m;

ð11Þ

with QðκÞ≡ −dQð≥ κÞ=dκ, consistently with empirical
exponent α ≈m. Our result is therefore consistent with the
previous reported power law [24–27] as a nonstationary
property of κ.
Since our trend-following HFT model exhibits the order-

book collective motion [Figs. 4(d) and 4(e)], this model can
reproduce the layered order-book structure [15] (see
Supplemental Material [35]). Let us define c−r ðcþr Þ and
a−r ðaþr Þ as the number of bid (ask) submissions and
cancellations between one tick at the relative distance r
from the market midprice. We also define the number
change N−

r ¼ c−r − a−r ðNþ
r ¼ cþr − aþr Þ at the distance r

for the bid (ask) side. Correlation coefficient C−
r ðCþ

r Þ is
plotted in Fig. 5(g) between N−

r ðNþ
r Þ and Δp, showing

positive and negative correlation in the inner (outer)
and outer (inner) layers, respectively. We further show a
linear correlation between the price movement Δp
and the total number change in the inner layer Ninner≡R
γc
−∞ drðN−

r − Nþ
r Þ. The trend-following HFT model is thus

qualitatively consistent with the previous findings [15] (see
also Supplemental Material for data analyses [35]), imply-
ing that the layered structure was the direct consequence of
the collective motion.
Discussion.—We have empirically studied the trend

following of HFTs, inducing the collective motion of the
order book. This property has not been captured in the
previous order-book model [16–21] and was critical in
reproducing our empirical findings. Indeed, none of our
empirical findings, the order-book profile, the exponential
price movement, and the layered order-book structure [15]
were reproduced by the previous order-book model under
realistic parameters in the absence of the collective motion
(see Supplemental Material [35]). We expect that intro-
duction of this collective motion to order-book models
would be the key to replicate these empirical findings.
Conclusion.—We have established both a microscopic

model and a kinetic theory for FX traders by direct
observation of the HFTs’ dynamics, quantitatively agreeing
with empirical results under minimal assumptions. In the
stream of econophysics, our model (2) is the first micro-
scopic model directly supported by microscopic dynamical

evidence and exhibiting agreement with mesoscopic and
macroscopic findings. We expect that a new stream arises
toward systematic descriptions of the financial market
based on microscopic evidence. Interested readers are
referred to Ref. [43] for more mathematical details.
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