
 

Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories
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We consider a general Einstein-scalar-Gauss-Bonnet theory with a coupling function fðϕÞ. We
demonstrate that black-hole solutions appear as a generic feature of this theory since a regular horizon
and an asymptotically flat solution may be easily constructed under mild assumptions for fðϕÞ. We show
that the existing no-hair theorems are easily evaded, and a large number of regular black-hole solutions with
scalar hair are then presented for a plethora of coupling functions fðϕÞ.
DOI: 10.1103/PhysRevLett.120.131102

Introduction.—The existence or not of black holes
associated with a nontrivial scalar field in the exterior
region has attracted the attention of researchers over a
period of many decades. Early on, a no-hair theorem [1]
appeared that excluded static black holes with a scalar field,
but this was soon outdated by the discovery of black holes
with Yang-Mills [2] or Skyrme fields [3]. The emergence of
additional solutions where the scalar field had a conformal
coupling to gravity [4] led to the formulation of a novel no-
hair theorem [5] (for a review, see [6]). Recently, this
argument was extended to the case of standard scalar-tensor
theories [7], and a new form was proposed that covers the
case of Galileon fields [8].
However, both novel forms of the no-hair theorem [5,8]

were shown to be evaded: the former in the context of the
Einstein-dilaton-Gauss-Bonnet theory [9] and the latter in a
special case of shift-symmetric Galileon theories [10–12].
A common feature of the above theories was the presence
of the quadratic Gauss-Bonnet (GB) term defined
as R2

GB ¼ RμνρσRμνρσ − 4RμνRμν þ R2, in terms of the
Riemann tensor Rμνρσ, the Ricci tensor Rμν, and the
Ricci scalar R. In both cases, basic requirements of
the no-hair theorems were invalidated, and this paved
the way for the construction of the counterexamples.
Here, we consider a general class of scalar-GB theories,

of which the cases [9,11] constitute particular examples.
We demonstrate that black-hole solutions, with a regular
horizon and an asymptotically flat limit, may in fact be
constructed for a large class of such theories under mild
only constraints on the coupling function fðϕÞ between the
scalar field and the GB term. We address the requirements
of both the old and novel no-hair theorems, and we show

that they are not applicable for this specific class of
theories. In accordance with the above, we then present
a large number of exact, regular black-hole solutions with
scalar hair for a variety of forms for the coupling function.
The Einstein-scalar-GB theory.—We first consider the

following action functional

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
∂μϕ∂μϕþ fðϕÞR2

GB

�
; ð1Þ

which describes a generalized gravitational theory contain-
ing the Ricci scalar curvature R, a scalar field ϕ, and the
quadratic Gauss-Bonnet term R2

GB. The latter, being a total
derivative in four dimensions, is coupled to ϕ through a
coupling function fðϕÞ. The form of the latter quantity may
be inspired from either string theory [13] or Horndeski
theory [14]. Note that, in this work, we employ units in
which G ¼ c ¼ 1.
By varying the action (1) with respect to the metric

tensor gμν and the scalar field ϕ, we derive the gravitational
field equations and the equation for the scalar field,
respectively. These have the covariant form

Gμν ¼ Tμν; ð2Þ

∇2ϕþ ḟðϕÞR2
GB ¼ 0; ð3Þ

where Gμν is the Einstein tensor, and a dot denotes the
derivative with respect to the scalar field. Also,

Tμν ¼ −
1

4
gμν∂ρϕ∂ρϕþ 1

2
∂μϕ∂νϕ

−
1

2
ðgρμgλν þ gλμgρνÞηκλαβR̃ργ

αβ∇γ∂κf; ð4Þ

where R̃ργ
αβ ¼ ηργστRσταβ ¼ ϵργστRσταβ/

ffiffiffiffiffiffi−gp
. Note that the

energy-momentum tensor Tμν receives contributions from
both the scalar field and the Gauss-Bonnet term.
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In the context of the above theory, we will seek spheri-
cally symmetric solutions, with a line element

ds2 ¼ −eAðrÞdt2 þ eBðrÞdr2 þ r2ðdθ2 þ sin2θdφ2Þ; ð5Þ

which describes regular, static, asymptotically flat black
holes. Our analysis will also investigate the general con-
straints that the coupling function fðϕÞ needs to obey in
order for these solutions to arise.
By employing the line element (5), Einstein’s equations

take the explicit form

4eBðeB þ rB0 − 1Þ ¼ ϕ02½r2eB þ 16f̈ðeB − 1Þ�
− 8ḟ½B0ϕ0ðeB − 3Þ − 2ϕ00ðeB − 1Þ�;

ð6Þ

4eBðeB − rA0 − 1Þ ¼ −ϕ02r2eB þ 8ðeB − 3ÞḟA0ϕ0; ð7Þ

eB½rA02 − 2B0 þ A0ð2 − rB0Þ þ 2rA00�
¼ −ϕ02reB þ 8ϕ02f̈A0 þ 4ḟ½ϕ0ðA02 þ 2A00Þ
þ A0ð2ϕ00 − 3B0ϕ0Þ�; ð8Þ

while the scalar equation reads

2rϕ00 þ ð4þ rA0−rB0Þϕ0

þ4ḟe−B

r
½ðeB−3ÞA0B0− ðeB−1Þð2A00 þA02Þ� ¼ 0: ð9Þ

In the above, the prime denotes differentiation with respect
to r; throughout this work, we assume that the scalar field
shares the symmetries of the spacetime.
Equation (7) may take the form of a second-order

polynomial with respect to eB, which can then be solved
to give eB ¼ ð−β �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4γ

p
Þ/2, where

β ¼ r2ϕ02

4
− ð2ḟϕ0 þ rÞA0 − 1; γ ¼ 6ḟϕ0A0: ð10Þ

Then, eliminating B from the set of the remaining equa-
tions (6), (8), and (9), we may form a system of two
independent ordinary differential equations of second order
for the functions A and ϕ,

A00 ¼ P
S
; ϕ00 ¼ Q

S
; ð11Þ

where the functions P, Q, and S are lengthy expressions
of ðr;ϕ0; A0; ḟ; f̈Þ.
Wewill now demonstrate that our set of equations, with a

general coupling function fðϕÞ, allows for the construction
of a black-hole solution with a regular horizon, provided
that f satisfies certain constraints. For a spherically
symmetric spacetime, the presence of a horizon is realized

for eA → 0, as r → rh, or equivalently for A0 → ∞: the
latter will be used in our analysis as an assumption, but it
will be shown to follow from the former. On the other hand,
the regularity of the horizon amounts to demanding that ϕ,
ϕ0, and ϕ00 remain finite in the limit r → rh. Then, assuming
that A0 → ∞ while ϕ0 remains finite [15], Eqs. (11) take the
approximate forms

A00 ¼ −
r4 þ 4r3ϕ0ḟ þ 4r2ϕ02ḟ2 − 24ḟ2

r4 þ 2r3ϕ0ḟ − 48ḟ2
A02 þ � � � ; ð12Þ

ϕ00 ¼ −
ð2ϕ0ḟ þ rÞðr3ϕ0 þ 12ḟ þ 2r2ϕ02ḟÞ

r4 þ 2r3ϕ0ḟ − 48ḟ2
A0 þ � � � : ð13Þ

Focusing on the second of the above equations, we observe
that ϕ00 diverges at the horizon if fðϕÞ is either zero or left
unconstrained. However, ϕ00 may be rendered finite if either
one of the two expressions in the numerator of Eq. (13) is
zero close to the horizon.
If we assume that ð2ϕ0ḟ þ rÞ ¼ 0 close to the horizon,

then a careful inspection of our equations reveals that, in that
case, ϕ00 ≃

ffiffiffiffiffi
A0p
/ḟ. Thus, for ϕ00 to remain finite, we must

demand that ḟ → �∞, near the horizon. This may be easily
shown to lead to either a divergent or a trivial scalar field near
the horizon, for every elementary formoffðϕÞwehave tried.
Therefore, for the construction of a regular horizon in the
presenceof a nontrivial scalar field,we are led to consider the
second choice: r3ϕ0 þ 12ḟ þ 2r2ϕ02ḟ ¼ 0. This may be
easily solved to yield

ϕ0
h ¼

rh
4ḟh

0
@−1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

96ḟ2h
r4h

s 1
A; ð14Þ

where all quantities have been evaluated at rh. To ensure that
ϕ0
h is real, we must impose the following constraint on the

coupling function

ḟ2h <
r4h
96

: ð15Þ

Turning now to Eq. (12), and using the constraint (14),
we find that the coefficient of A02 simplifies to −1. Then,
upon integration with respect to r, we obtain A0 ¼
ðr − rhÞ−1 þOð1Þ, which, in accordance with our initial
assumption, diverges close to the horizon. Integrating once
more and putting everything together, we may write the
near-horizon solution as

eA ¼ a1ðr − rhÞ þ � � � ; ð16Þ

e−B ¼ b1ðr − rhÞ þ � � � ; ð17Þ

ϕ ¼ ϕh þ ϕ0
hðr − rhÞ þ ϕ00ðr − rhÞ2 þ � � � : ð18Þ
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The above describes a regular black-hole horizon in the
presence of a scalar field provided that ϕ0 and the coupling
function f satisfy the constraints (14) and (15).
We will now show that a general coupling function fðϕÞ

for the scalar field does not interfere with the requirement
for the existence of an asymptotically flat limit for the
spacetime (5). We will assume the following power-law
expressions for the metric functions and scalar field, in the
limit r → ∞,

eðA;BÞ ¼ 1þ
X∞
n¼1

ðpn; qnÞ
r

; ϕ ¼ ϕ∞ þ
X∞
n¼1

dn
r
: ð19Þ

Upon substitution in the field equations, we may determine
the arbitrary coefficients ðpn; qn; dnÞ. In fact, p1 and d1
remain arbitrary, and we associate them with the Arnowitt-
Deser-Misner mass and scalar charge, respectively: p1 ≡
−2M and d1 ¼ D. Then, the asymptotic solutions for the
metric functions and scalar field read

eA ¼ 1 −
2M
r

þMD2

12r3
þ 24MDḟ þM2D2

6r4
þ � � � ;

eB ¼ 1þ 2M
r

þ 16M2 −D2

4r2
þ 32M3 − 5MD2

4r3

þ 16Mð48M3 − 13MD2 − 24DḟÞ þ 3D4

48r4
þ � � � ;

ϕ ¼ ϕ∞ þD
r
þMD

r2
þ 32M2D −D3

24r3

þ 12M3D − 24M2ḟ −MD3

6r4
þ � � � : ð20Þ

It is in order Oð1/r4Þ that the explicit form of the coupling
function fðϕÞ first makes its appearance—indeed, the
higher-curvature GB term is expected to have a minor
contribution at large distances where the curvature is small.
It is in the near-horizon regime that the GB term mainly
works to support a nontrivial scalar field and thus a charge
D, which then modifies the metric compared to the
Schwarzschild case.
Let us now turn our attention to the no-hair theorems that

forbid the existence of black-hole solutions in the presence
of a scalar field, i.e., the existence of solutions that
smoothly connect the near-horizon and far-away asymp-
totic solutions found above. We will start with the “novel”
no-hair theorem developed by Bekenstein [5]. Assuming
positivity and conservation of energy, he demonstrated that
the asymptotic forms of the Tr

r component of the energy-
momentum tensor near the horizon and at infinity could
never be smoothly matched. That argument proved beyond
doubt that there were no black-hole solutions in the context
of a large class of minimally coupled-to-gravity scalar field
theories. Here, we will show that the coupling of the scalar
field to the quadratic GB term causes the complete evasion

of Bekenstein’s theorem. This may be in fact realized for a
large class of scalar field theories, with the previously
studied exponential [9] and linear [11] GB couplings
comprising special cases of our present argument.
The energy-momentum tensor Tμν satisfies the equation

of conservation DμT
μ
ν ¼ 0 due to the invariance of the

action (1) under coordinate transformations. Its r compo-
nent may take the explicit form

ðTr
rÞ0 ¼

A0

2
ðTt

t − Tr
rÞ þ

2

r
ðTθ

θ − Tr
rÞ; ð21Þ

where the relation Tθ
θ ¼ Tφ

φ has been used due to the
spherical symmetry. The nontrivial components of the
energy-momentum tensor Tμν for our theory (1) with a
generic coupling function f are

Tt
t ¼ −

e−2B

4r2
fϕ02½r2eB þ 16f̈ðeB − 1Þ�

− 8ḟ½B0ϕ0ðeB − 3Þ − 2ϕ00ðeB − 1Þ�g; ð22Þ

Tr
r ¼

e−Bϕ0

4

�
ϕ0 −

8e−BðeB − 3ÞḟA0

r2

�
; ð23Þ

Tθ
θ ¼ −

e−2B

4r
fϕ02ðreB − 8f̈A0Þ

− 4ḟ½ϕ0ðA02 þ 2A00Þ þ A0ð2ϕ00 − 3B0ϕ0Þ�g: ð24Þ

Wewill first investigate the profile of Tr
r at infinity: using

the asymptotic expansions (19), we easily find that
−Tt

t ≃ −Tθ
θ ≃ Tr

r ≃ ϕ02/4þOð1/r6Þ. Since the metric func-
tion eA there adopts a constant value (eA → 1), the
dominant contribution to the right-hand side of Eq. (21) is

ðTr
rÞ0 ≃

2

r
ðTθ

θ − Tr
rÞ ≃ −

1

r
ϕ02 þ � � � : ð25Þ

Therefore, at asymptotic infinity, the Tr
r component is

positive and decreasing, in agreement with [5], since the
GB term is insignificant in this regime.
In the near-horizon regime, r → rh, the Tr

r component
(23) takes the approximate form

Tr
r ¼ −

2e−B

r2
A0ϕ0ḟ þOðr − rhÞ: ð26Þ

The above combination is finite but not negative definite as
in [5]. In fact, the Tr

r component is positive definite, since
close to the black-hole horizon, A0 > 0, and ḟϕ0 < 0
according to Eq. (14). Therefore, the existence of a regular
black-hole horizon in the context of the theory (1) auto-
matically evades one of the two requirements of the novel
no-hair theorem.
Turning finally to the expression for ðTr

rÞ0 and employing
the energy-momentum components (22)–(24) in Eq. (21),
we obtain the following expression, in the limit r → rh,
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ðTr
rÞ0 ¼ e−BA0

�
−
rϕ02

4Z
−
2ðf̈ϕ02 þ ḟϕ00Þ

rZ

þ 4ḟϕ0

r2

�
1

r
− e−BB0

��
þOðr − rhÞ; ð27Þ

where we have defined Z≡ rþ 2ḟϕ0. Close to the black-
hole horizon, Eq. (14) guarantees that ḟϕ0 < 0, while
Z > 0. Employing also the metric functions behavior
A0 > 0 and B0 < 0, we conclude that ðTr

rÞ0 is negative in
the near-horizon regime if a sole additional constraint,
namely, f̈ϕ02 þ ḟϕ00 > 0, is satisfied. This may be alter-
natively written as ∂rðḟϕ0Þjrh > 0 and merely demands that
the negative value of the quantity ðḟϕ0Þjrh, necessary for the
existence of a regular black-hole solution, should be
constrained away from the horizon. This is in fact the
only way for the matching of the two asymptotic solu-
tions (16)–(18) and (19) to be realized. Therefore, for
∂rðḟϕ0Þjrh > 0, the Tr

r component is positive and decreas-
ing also near the horizon regime. As a result, both require-
ments of the novel no-hair theorem [5] do not apply in this
theory, and thus it can be evaded.
The older version of the no-hair theorem for scalar fields

[1], which employs the scalar equation of motion, also fails
to exclude the existence of black-hole solutions in our
theory (1): multiplying the scalar equation (3) by fðϕÞ and
integrating over the black-hole exterior region, we obtain
the integral constraintZ

d4x
ffiffiffiffiffiffi
−g

p
fðϕÞ½∇2ϕþ ḟðϕÞR2

GB� ¼ 0: ð28Þ

Integrating by parts the first term, the above becomesZ
d4x

ffiffiffiffiffiffi
−g

p
ḟðϕÞ½∂μϕ∂μϕ − fðϕÞR2

GB� ¼ 0: ð29Þ

The boundary term ½ ffiffiffiffiffiffi−gp
fðϕÞ∂μϕ�∞rh vanishes both at the

horizon (due to the eðA−BÞ/2 factor) and at infinity (due to the
∂μϕ factor). Since ϕ ¼ ϕðrÞ, the first term in Eq. (29) gives
∂μϕ∂μϕ ¼ grrð∂rϕÞ2 > 0 throughout the exterior region.
Also, for the metric (5), the GB term has the explicit form

R2
GB ¼ 2e−2B

r2
½ðeB − 3ÞA0B0 − ðeB − 1Þð2A00 þ A02Þ�: ð30Þ

Employing the asymptotic solutions near the horizon (16)
and (17) and at infinity (19), we may easily see that the GB
term takes on a positive value at both regimes. Therefore, in
the simplest possible case where both fðϕÞ and R2

GB are
sign definite, Eq. (29) allows for black-hole solutions with
scalar hair for every choice of the coupling function that
merely satisfies fðϕÞ > 0.
In order to demonstrate the validity of the aforemen-

tioned arguments, we have numerically solved the system

of equations (11) and produced a large number of black-
hole solutions with scalar hair. The solutions for the scalar
field are depicted in Fig. 1 for a variety of forms of the
coupling function fðϕÞ: exponential, odd and even power
law, and odd and even inverse power law. These forms are
all simple, natural choices to keep the GB term in the four-
dimensional theory. For easy comparison, the coupling
constant in all cases has been set to α ¼ 0.01 and the near-
horizon value of the field to ϕh ¼ 1. For fðϕÞ ¼ ðαeϕ;
αϕ2; αϕ3Þ, which all have f0h > 0, our constraint (14) leads
to a negative ϕ0

h; for fðϕÞ ¼ ðαe−ϕ; αϕ−1; αϕ−4Þ, which
have f0h < 0, Eq. (14) demands a positive ϕ0

h; the decreas-
ing and increasing, respectively, profiles are clearly
depicted in Fig. 1. In all cases, for a given value of ϕh,
Eq. (14) uniquely determines the quantity ϕ0

h. The inte-
gration of the system (11) with initial conditions ðϕh;ϕ0

hÞ
then leads to the presented solutions. The positivity and
decreasing profile of the Tr

r component, necessary features
for the evasion of the novel no-hair theorem, are clearly
seen in Fig. 2. It is worth mentioning that the second
constraint, ∂rðḟϕ0Þjrh > 0, is automatically satisfied for
every solution found and does not need any further action
or fine tuning of the free parameters. We finally note that,
for ϕ > 0, all the above forms of fðϕÞ satisfy also the
constraint fðϕÞ > 0, derived above for the evasion of the
old no-hair theorem.
For a given coupling function fðϕÞ and fixed (α, ϕh), the

constraint (15) dictates that there is a lower bound for the
horizon radius of the derived black-hole solutions given by
r2h > 4

ffiffiffi
6

p jḟhj and thus a lower bound on their mass. This
characteristic has been noted in the exponential-coupling
case [9,16] and comprises a generic feature of all the GB
black holes found here, which distinguishes them from
their General Relativity (GR) analogues. Thus, in the small-
mass limit, observable effects may include deviations from
standard GR in the calculation of the bending angle of light,
the precession observed in near-horizon orbits, and the
spectrum from their accretion disks [17]. The emission of
scalar radiation strongly depends on the existing coupling

FIG. 1. The scalar field ϕ for different coupling functions fðϕÞ,
for a ¼ 0.01 and ϕh ¼ 1.
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of the scalar field to ordinary matter, while the measure-
ment of the characteristic frequencies of the quasinormal
modes (especially the polar sector) will also help to
distinguish these solutions from their GR analogues
[18]. Finally, the detection of gravitational waves from
black-hole or neutron-star mergers may also help to impose
bounds on the parameters of the theory, provided that the
scalar charge is significant and their physical distance
is small.
The scalar-GB theory.—Finally, we investigate whether

a regular black-hole solution can arise as the result of the
synergy between only the scalar field ϕ and the GB term.
To this end, we ignore all terms in the field equations
coming from the Ricci scalar and attempt to construct
a near-horizon, regular solution similar to that of Eqs. (16)–
(18). In the absence of all R-related terms in the field
equations, the components of Tμν should vanish. If we
assume again that, as r → rh, ϕ0 remains finite while A0

diverges, Eq. (23) yields eB ≃ 3þOð1/A0Þ; this clearly
does not describe a black hole. Alternatively, demanding
that eB → ∞, as r → rh, Eq. (23) may be solved for A0 to
give A0 ≃ r2ϕ0/8ḟ þOðe−BÞ. Using this, Eqs. (22) and (24)
form a system of two differential equations for B and ϕ. In
the limit r → rh, we find the behavior

B0 ¼ −
2

r
eB þOðe−BÞ; ð31Þ

ϕ00 ¼ −
eB

r
ϕ0 þOðe−BÞ: ð32Þ

Equation (31) leads to the solution e−B ¼ 2 ln ðr/rhÞ, which
does point toward the existence of a horizon. However, for
this horizon to be regular, Eq. (32) demands that
ϕ0ðrhÞ ¼ 0. But then, ϕ00ðrhÞ is also zero, leading to a
constant scalar field outside the horizon. In this case, the
GB term does not contribute to the field equations and the
above solution disappears.
Conclusions.—In the context of a general Einstein-

scalar-GB theory with an arbitrary coupling function
fðϕÞ, we have demonstrated that the emergence of regular

black-hole solutions is a generic feature: the explicit form
of fðϕÞ affects very little the asymptotically flat limit at
infinity, while a regular horizon is formed provided that ϕ0

h
and fðϕÞ satisfy the constraints (14) and (15).
The existing no-hair theorems were shown to be evaded

under mild assumptions on fðϕÞ. The old no-hair theorem
[1] is easily evaded for fðϕÞ > 0, while the novel no-hair
theorem [5] is nonapplicable if the same constraint (14)
holds. Based on this, we have produced a large number of
regular black-hole solutions with nontrivial scalar hair for
arbitrary forms of the coupling function fðϕÞ. They are all
characterized by a minimum black-hole radius and mass,
and their near-horizon strong dynamics is expected to leave
its imprint on a number of observables. The obtained
solutions survive only when the synergy of ϕ with the GB
term is supplemented by the linear Ricci term.

Note added.—Recently, two more works appeared [19,20]
that studied the emergence of black-hole solutions with
scalar hair in the context of the same theory.
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