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We investigate notions of complexity of states in continuous many-body quantum systems. We focus on
Gaussian states which include ground states of free quantum field theories and their approximations
encountered in the context of the continuous version of the multiscale entanglement renormalization ansatz.
Our proposal for quantifying state complexity is based on the Fubini-Study metric. It leads to counting the
number of applications of each gate (infinitesimal generator) in the transformation, subject to a state-
dependent metric. We minimize the defined complexity with respect to momentum-preserving quadratic
generators which form suð1; 1Þ algebras. On the manifold of Gaussian states generated by these
operations, the Fubini-Study metric factorizes into hyperbolic planes with minimal complexity circuits
reducing to known geodesics. Despite working with quantum field theories far outside the regime where
Einstein gravity duals exist, we find striking similarities between our results and those of holographic
complexity proposals.
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Introduction.—Applications of quantum information
concepts to high-energy physics and gravity have recently
led to many far-reaching developments. In particular, it has
become apparent that special properties of entanglement in
holographic [1] quantum field theory (QFT) states are crucial
for the emergence of smooth higher-dimensional (bulk)
geometries in the gauge-gravity duality [2]. Much of the
progress in this direction was achieved by building on the
holographic entanglement entropy proposal by Ryu and
Takayanagi [3], which geometrizes the von Neumann
entropy of a reduced density matrix of a QFT in a subregion
in terms of the area of codimension-2 bulk minimal surfaces
anchored at the boundary of this subregion (see, e.g., Ref. [4]
for a recent overview). However, Ryu-Takayanagi surfaces
are often unable to access the whole holographic geometry
[5–7]. This observation has led to significant interest in
novel, from the point of view of quantum gravity, codi-
mension-1 (volume) and codimension-0 (action) bulk quan-
tities, whose behavior suggests conjecturing a link with
the information theory notion of quantum state complexity
[8–14]. In fact, a certain identification between complexity
and action was originally suggested by Toffoli [15,16]
outside the context of holography.

Quantum state complexity originates from the field of
quantum computations, which are usually modeled in a
finite Hilbert space as the application of a sequence of gates
chosen from a discrete set. In this context, the complexity
of a unitary U is roughly associated with the minimal
number of gates necessary to realize (or approximate) U.
Notable progress has been made in connecting this notion
to distances in Riemannian geometries derived from a set of
generators [17]. The complexity of a target state jTi is
usually subordinated to unitary complexity by specifying a
“simple” reference state jRi and minimizing the complexity
ofU subject to jTi ¼ UjRi [18,19]. Our approach differs in
defining state complexity directly.
In the context of holography, the organization of discrete

tensor networks (seen as a quantum circuit U) has been
suggested to give a qualitative picture of how quantum
states give rise to emergent geometries [20]. This heuristic
analysis was applied to the multiscale entanglement
renormalization ansatz (MERA) [21], employed to find
ground states of critical physical theories presenting a
tensor network structure reminiscent of an anti–de Sitter
(AdS) time slice. This motivated proposing “complexity
equals volume” (CV) [9] and “complexity equals action”
(CA) [11,12] as new entries in the holographic dictionary.
However, in holography, one naturally considers con-
tinuum setups, QFTs, and there are shortcomings of
traditional approaches to complexity when attempting to
address field theory states. The aim of this Letter is to
bridge a pressing gap by exploring complexity-motivated
distance measures in QFTs.
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The main challenges in providing a workable definition
of complexity in the continuum are related to choosing (a) a
reference state jRi, (b) a set of allowed gates (correspond-
ingly infinitesimal generators), (c) a measure for how such
gates contribute to the resulting distance function and a
procedure for how to minimize it, and (d) a way to regulate
ultraviolet (UV) divergences. Our proposed choice for (c) is
to measure the path length by integrating the Fubini-Study
(FS) line element along a path from jRi to jTi associated
with an allowed realization of U. Minimizing the path will
amount to studying geodesics on the manifold of quantum
states induced by allowed gates acting on the reference
state. In this way, our approach derives complexity from the
projective structure of the Hilbert space in a universal way.
In the FS prescription, directions which modify the state
by an overall phase have no effect on the complexity.
Simultaneously with our work, Ref. [22] appeared, which
considers a different approach based on unitary complexity
[17] (see Sec. F in Ref. [23] for a comparison).
While the FS prescription is quite general, our choices

for (a), (b), and (d) render the necessary calculations
tractable. Some of these choices are inspired by the
continuous MERA (cMERA) approach to free QFTs
[24–26], which we briefly review in Sec. A of Ref. [23].
Similarly to the states in cMERA, our choices for the
reference state jRi and target state jTi will be pure
Gaussian states, and allowed generators will be subsets
of quadratic operators. Our choices include cMERA in the
set of allowed circuits, letting us test its optimality. We
perform our analysis in momentum space and ignore
frequencies above the UV cutoff Λ, which equips us with
a notion of approximation. Unlike in cMERA, Λ need not
coincide with the reference state characteristic scale M,
defined below, since the freedom of choosing the reference
state is a part of the definition of complexity and is a priori
independent from a notion of cutoff or regulator (this
observation is due to R. C. Myers).
As a first step, we consider the two-mode squeezing

operator for each pair of opposite momenta �k⃗. We then
extend our analysis to include the full set of momentum
preserving quadratic generators which form suð1; 1Þ alge-
bras. In this case, the study of minimal complexity reduces
to the study of geodesics on a product of hyperbolic planes.
While a full literature review is outside the scope of this

Letter, there is a substantial body of important recent
developments which include, e.g., Refs. [27–35].
Complexity from the Fubini-Study metric.—We are

interested in considering unitary operators U arising from
iterating generators GðsÞ taken from some elementary set
of Hermitian operators G. The allowed transformations U
can then be represented as path ordered exponentials:

UðσÞ ¼ Pe
−i
R

σ

si
GðsÞds

: ð1Þ

Here, s parametrizes progress along a path, starting at si
and ending at sf, and σ ∈ ½si; sf� is some intermediate value
of s. The path-ordering P is required for noncommuting
generators GðsÞ. We seek a path achieving jTi ≈ UðsfÞjRi,
where (≈) indicates that states coincide for momenta below
a cutoffΛ. According to the FS line element (see, e.g., [36])

dsFSðσÞ ¼ dσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j∂σjΨðσÞij2 − jhΨðσÞj∂σjΨðσÞij2

q
; ð2Þ

the length of a path going via states jΨðσÞi is

l½jΨðσÞi� ¼
Z

sf

si

dsFSðσÞ: ð3Þ

For a path jΨðσÞi ¼ UðσÞjRi, with UðσÞ given by Eq. (1),
the line element of Eq. (3) can be reexpressed as

dsFSðσÞ ¼ dσ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hG2ðσÞiΨðσÞ − hGðσÞi2ΨðσÞ

q
ð4Þ

and is independent of path reparametrizations.
If the path jΨðσÞi is unrestricted, the unique unitarily

invariant distance measure dR;T ¼ arccos jhRjTij ≤ π/2 is
obtained. However, by restricting the allowed generators
GðsÞ, highly nontrivial notions of distance deserving
the name complexity may be obtained. Our proposal is
to define the complexity C as the minimal length according
to Eq. (3) of a path from jΨðsiÞi ≈ jRi to jΨðsfÞi ≈ jTi
driven by generators GðsÞ in G:

CðjRi; jTi;G;ΛÞ ¼ min
GðsÞ

l½jΨðσÞi�: ð5Þ

The proposed complexity C inherits the properties of a
distance function from the FS metric.
Gaussian states in free QFTs.—We consider a theory of

free relativistic bosons in (dþ 1)-spacetime dimensions
defined by the quadratic Hamiltonian

Hm ¼
Z

ddx∶
�
1

2
π2 þ 1

2
ð∂ x⃗ϕÞ2 þ

1

2
m2ϕ2

�
∶ ð6Þ

with commutation relations ½ϕðx⃗Þ; πðx⃗0Þ� ¼ iδdðx⃗ − x⃗0Þ.
This theory describes noninteracting particles created
and annihilated by operators a†

k⃗
and ak⃗ obeying ½ak⃗; a†k⃗0 � ¼

δdðk⃗ − k⃗0Þ. These are related to the field and momentum
operators via (ωk ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
)

ϕðk⃗Þ ¼ 1ffiffiffiffiffiffiffiffi
2ωk

p ðak⃗ þ a†
−k⃗
Þ and πðk⃗Þ ¼

ffiffiffiffiffiffi
ωk

p ffiffiffi
2

p
i
ðak⃗ − a†

−k⃗
Þ

ð7Þ

and diagonalize the Hamiltonian: Hm ¼ R
ddkωka

†
k⃗
ak⃗. For

m ¼ 0 we obtain a free conformal field theory (CFT).
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A general translation-invariant pure Gaussian state jSi
with momentum space correlation functions

hSjϕðk⃗Þϕðk⃗0ÞjSi ¼ 1

2αk
δðdÞðk⃗þ k⃗0Þ ð8Þ

is specified by its nullifiers (annihilation operators):

� ffiffiffiffiffi
αk
2

r
ϕðk⃗Þ þ i

1ffiffiffiffiffiffiffi
2αk

p πðk⃗Þ
�
jSi ¼ 0: ð9Þ

The ground state jmi of the free theory (6) is a pure
Gaussian state corresponding to αk ¼ ωk. The ground state
jmi is a product of vacuum states in momentum space
without particles according to the number operators
nk⃗ ≡ a†

k⃗
ak⃗. In momentum space, the only nontrivial corre-

lations in jSi are between k⃗ and ð−k⃗Þ modes. In real space,
the k⃗-dependent factor on the rhs of Eq. (8) leads to spatial
correlations (and entanglement).
A natural choice for a reference state jRðMÞi is the

Gaussian state corresponding to

jRðMÞi∶ αk ¼ M: ð10Þ

Since here αk is independent of k, this state is a product state
with no spatial correlations; i.e., in real space, the two-point
function of field operators takes the form hRðMÞj
ϕðx⃗Þϕðx⃗0ÞjRðMÞi ¼ ½1/ð2MÞ�δdð⃗x − x⃗0Þ. Nevertheless, in
the basis associated with energy eigenstates of Hm, momen-
tum sectors k⃗ and−k⃗ are pairwise entangled according to (8).
We will show that the reference state scale M is related
to certain ambiguities encountered in the context of holo-
graphic complexity. The annihilation and creation operators
bk⃗ and b

†
k⃗
associated with the state jRðMÞi can be related to

those of the vacuum state jmi by the following Bogoliubov
transformation:

bk⃗¼βþk ak⃗þβ−k a
†
−k⃗
; bk⃗jRðMÞi¼0;

βþk ¼ cosh2rk; β−k ¼ sinh2rk; rk≡ log

ffiffiffiffiffiffi
M
ωk

4

s
: ð11Þ

As our target state, we consider the approximate ground
state jmðΛÞi characterized by the UV momentum cutoff Λ
which corresponds to

jmðΛÞi∶ αk ¼
�
ωk; k < Λ ðQFT vacuumÞ;
M; k ≥ Λ ðproduct stateÞ; ð12Þ

with correlation functions interpolating between those of
the vacuum state jmi and the reference state jRðMÞi as the
momentum increases according to Eq. (8). This state is, in
fact, identical to the real ground state jmi up to the cutoff

momentum.WhenM ¼ ωΛ, this state is identical to the one
obtained by cMERA circuits [24,25] (see, e.g., Ref. [37]).
The target states (12) can be reached from the reference

states (10) by a circuit constructed with two-mode squeez-
ing operators which entangle the k⃗ and −k⃗ modes:

Kðk⃗Þ ¼ ϕðk⃗Þπð−k⃗Þ þ πðk⃗Þϕð−k⃗Þ
¼ iða†

k⃗
a†
−k⃗

− ak⃗a−k⃗Þ ¼ iðb†
k⃗
b†
−k⃗

− bk⃗b−k⃗Þ: ð13Þ

This operator is the main building block in cMERA circuits
and allows preparing the target state as follows:

jmðΛÞi ¼ e−i
R
k≤Λ

ddkrkKðk⃗ÞjRðMÞi; ð14Þ

which is the starting point for our complexity analysis.
Ground state complexity with a single generator per pair

of momenta �k⃗.—We start by evaluating our proposed
complexity under the assumption that we allow for a single
generator per pair of momenta �k⃗ which we take to be
Kðk⃗Þ of Eq. (13); i.e., G ¼ SpanfKðk⃗Þg, where Span is
taken over the field of real numbers. These generators
continue to achieve minimal complexity within the larger
suð1; 1Þ class considered below. We consider circuits of the
form (1) with

GðσÞ ¼
Z
k≤Λ

ddkKðk⃗Þyk⃗ðσÞ: ð15Þ

Since all the Kðk⃗Þ commute, the unitary UðσÞ of (1) is
simply specified by the integrated values

Yk⃗ðσÞ ≔
Z

σ

si

yk⃗ðsÞds; Yk⃗ðsfÞ ¼ rk; ð16Þ

where Yk⃗ðsfÞ was fixed to match Eq. (14). The commu-
tation of generators allows the variance in the FS line
element (4) to be evaluated at any state jΨðσÞi along the
path. Furthermore, the variance is additive with respect
to the different Kðk⃗Þ contributions, because only equal or
opposite momenta can be correlated. The complexity
minimization of Eq. (5) then reduces to

C ¼ min
Yk⃗ðσÞ

Z
sf

si

dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vol

Z
k≤Λ

ddk½∂σYk⃗ðσÞ�2
s

; ð17Þ

where Vol≡ δdð0Þ is the volume of the d-dimensional
time slice. One recognizes a flat Euclidean geometry with
coordinates Yk⃗ðσÞ continuously labeled by k⃗. To achieve
minimal complexity, the generators for the different
momenta must act simultaneously with the ratio dictated
by Eq. (16) (straight path). A particularly simple affine
parametrization for the path is
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Yk⃗ðσÞ ¼
σ − si
sf − si

Yk⃗ðsfÞ; ykðσÞ ¼
1

sf − si
Yk⃗ðsfÞ: ð18Þ

As the corresponding cMERA circuit presents a σ-
dependent ratio, the complexity associated with it will
generically be larger (as shown in Sec. A of Ref. [23]).
Evaluating (17) with (18), the minimal complexity reads

Cð2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vol

Z
k≤Λ

ddkr2k

s
; ð19Þ

where the superscript (2) anticipates an interpretation of
Eq. (19) as an L2 norm.
Suppose, on the other hand, that G contains only

individual generators Kðk⃗Þ and not their linear span.
This is analogous to disallowing different elementary gates
in a circuit to act simultaneously. Our path parameters in
this case consist of σ and k⃗. The arguments leading to
Eq. (17) continue to hold except that now the k integral
must be pulled out of the square root and an extra

ffiffiffiffiffiffiffiffiffiffiffi
Vol/2

p
factor appears. This leads to an L1 norm (Manhattan
distance) complexity

Cð1Þ ¼ Vol
Z
k≤Λ

ddkjrkj: ð20Þ

More generally, and without reference to the FS metric, one
can postulate Ln norms as a measure of complexity:

CðnÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vol
2

Z
k≤Λ

ddkjrkjnn

s
: ð21Þ

The leading divergence in the complexity measures CðnÞ
is proportional to

CðnÞ ∼ Vol1/nΛd/n logðM/ΛÞ; ð22Þ

when M and Λ are chosen independently, and to

CðnÞ ∼ Vol1/nΛd/n ð23Þ

when M ¼ Λ. See Sec. B of Ref. [23] for some additional
details on evaluating the ground state complexities using
the CðnÞ measures. The Cð1Þ norm results carry a resem-
blance to those found in the context of holographic
complexity as we explain below.
Ground state complexity using suð1; 1Þ generators.—

Here, we extend our minimization to a larger set of
generators G that transforms jRðMÞi into jmðΛÞi. Namely,
we consider momentum-preserving quadratic operators,
which for each k⃗ are spanned by

G ¼ Span
�
K0; K1 ≡Kþ þK−

2
; K2 ≡Kþ −K−

2i

�
;

Kþ ¼
b†
k⃗
b†
−k⃗

2
; K− ¼ bk⃗b−k⃗

2
; K0 ¼

b†
k⃗
bk⃗ þ b−k⃗b

†
−k⃗

4
:

ð24Þ

These Hermitian operators form a larger (yet manageable),
algebraically closed extension of the generators K ¼ −4K2

of Eq. (13) used in cMERA circuits. The algebra formed is
an infinite product of suð1; 1Þ subalgebras of quadratic
generators commuting with nk⃗ − n−k⃗. The path in Eqs. (1),
(15), and (18) is contained in this larger set. We prove that
it continues to be minimal and determine its complexity,
although we emphasize that this does not follow automati-
cally from the results of the previous section. For instance, in
Sec. D of Ref. [23], we study another constant generator
Bðk⃗;MÞ which belongs to the extended suð1; 1Þ subalge-
bras but does not lead to a minimal length path. This
generator has a bounded norm and drives constant period
oscillations between the reference state jRðMÞi and target
state jmðΛÞi.
We will see that the manifold of states generated by each

suð1; 1Þ is a hyperbolic plane, one for each pair of opposite
momenta. Minimal complexity paths correspond to geo-
desics in the resulting tensor product manifold. At the level
of the state jΨðσÞi, the most general suð1; 1Þ path can
always be recast in the form (see Sec. C of Ref. [23])

jΨðσÞi ¼ N ðσÞe
R

ddkγþðk⃗;σÞKþðk⃗ÞjRðMÞi; ð25Þ

where N ðσÞ is a complex normalization and σ is the path
parameter from Eq. (1). This implies that the state jΨðσÞi
can be conveniently parametrized by a single complex
parameter γþðσÞ. The existence of spurious parameters is a
manifestation of the nonuniqueness of the unitary circuit
UðσÞ achieving a minimal complexity path. Because of the
noncommutative nature of the generators (24), there is a
nontrivial relationship between their coefficients in the path
ordered exponential in Eq. (1) and γþðk⃗; σÞ. Our reference
state jRðMÞi corresponds to γþðk⃗; siÞ ¼ 0, while the target
state jmðΛÞi corresponds to γþðk⃗; sfÞ ¼ tanhð2rkÞ.
Evaluating the FS line element (2) along the path (25)

leads to the following remarkably simple form:

dsFSðσÞ ¼ dσ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vol
2

Z
Λ
ddk⃗

γ0þðk⃗; σÞγ0�þðk⃗; σÞ
½1 − jγþðk⃗; σÞj2�2

vuut ð26Þ

(see Sec. C of Ref. [23] for the derivation). This line
element corresponds to a direct product of Poincaré disks
parametrized by the complex coordinates γþðk⃗Þ ¼ γþð−k⃗Þ
[jγþðk⃗Þj < 1], one for each pair of momenta �k⃗ (an
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example of such a disk is illustrated in Fig. 1). The Poincaré
disk is the manifold naturally associated with the coset
SUð1; 1Þ/Uð1Þ (see, e.g., [38–40]), and its structure of
geodesics is well known. Given an affinely parametrized
geodesic on a Riemannian product manifold such as (26),
its natural projections are affinely parametrized geodesics
within each factor manifold. The relative speeds of these
projections are coupled and will, as in (18), be fixed by the
target state.
The geodesic connecting jRðMÞi and jmðΛÞi follows

the radial direction on the Poincaré disk which corresponds
to the affinely parametrized path γþðk⃗; σÞ ¼ tanhð2rkσÞ,
σ ∈ ½0; 1�, generated byKðk⃗Þ defined in Eq. (13). Therefore,
the path in Eqs. (15) and (18) leads to minimal complexity
even within the larger class of suð1; 1Þ generators.
Comparison with holographic complexity proposals.—

There are two proposals for the gravity dual of complexity
in terms of maximal codimension-1 volumes (CV [9]) or
on-shell actions of the Wheeler-DeWitt patch bounded by
null hypersurfaces (CA [11,12]) in the dual bulk spacetime.
The structure of the vacuum UV divergences of holo-
graphic complexity can be characterized by a UV regu-
larization scheme [13,14,41] with the cutoff distance
from the AdS boundary in Fefferman-Graham coordinates
identified as δ ∼ 1/Λ. Equation (22) for Cð1Þ indicates a
leading divergence of VolΛdj logðM/ΛÞj (with M and Λ
independent), which resembles the result of the CA
proposal. In the holographic CA calculation, the leading
logarithmic divergence is due to the codimension-2 joint
action contributions associated with the intersection
between the null and timelike hypersurfaces that bound
the regulated Wheeler-DeWitt patch near the AdS

boundary [42]. These contributions depend on the para-
metrization of null normals (Ref. [42] suggested working in
an affine parametrization) and their overall rescaling.
The latter gives rise to an extra freedom represented in
Ref. [13] by a free parameter α̃ inside the logarithm. In our
calculation, the same type of ambiguity is related to the
choice of the reference state scale M, and we can identify
M ∼ α̃/LAdS, where LAdS is the AdS scale. When M ¼ ωΛ,
the leading divergence becomes proportional to VolΛd,
which is in agreement with the CV results [13] (or with the
CA results when including a counterterm which renders the
action reparametrization invariant; see [41]). It is interest-
ing that, despite considering QFTs without semiclassical
gravity duals (having a small central charge and no
interactions), the Cð1Þ norm exhibits close similarity to
the holographic calculations of leading UV divergences.
Summary and outlook.—We proposed a definition of

state complexity in QFTs, independent from a notion of
unitary complexity. This measure is derived from the FS
metric by restricting to directions, in the space of states,
generated by exponentiating allowed generators G, on
which our measure crucially depends. We identified unitary
paths that map simple Gaussian reference states jRðMÞi
with no spatial correlations to approximate ground states
of free QFTs, generated within suð1; 1Þ subalgebras of
momentum-preserving quadratic generators and singled
out the paths corresponding to minimal complexity accord-
ing to our measure. Remarkably, for some instances, the
evaluated complexity presents a qualitative agreement with
holographic results.
We could verify using our methods that cMERA circuits

are optimal in the Cð1Þ norm when interpreting the renorm-
alization scale u of cMERA as the circuit parameter σ. In
contrast, the Cð2Þ norm allows for lower FS complexity than
that achieved by cMERA circuits by reorganizing the
circuit in such a way that all the different momentum gates
are active at every step along the circuit (see Sec. A of
Ref. [23] for details). The Cð1Þ norm results show a close
resemblance to the holographic results, which suggests it is
a better predictor of circuit complexity.
We worked in momentum space and restricted the gen-

erators to be quadratic. In position space, our generators are
bilocal, which suggests an analogy to the two-qubit oper-
ations of traditional quantum circuits. However, our gates are
spread in position space, and itwould be interesting to explore
the implicationsofworkingwith local gates. Future directions
include evaluating the complexity for fermionic systems and
studying the time evolution of thermofield double states.
Finally, it would be interesting to understand what universal
data can be extracted from complexity, whether complexity
in QFTs can serve as an order parameter, and if it plays a
role in the context of RG flows.
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state (the center) and the target state (on the real axis). The
geodesic connecting the two is the straight solid line along the
diameter, corresponding to the generator Kðk⃗Þ. The solid semi-
circle is the nongeodesic path generated by Bðk⃗; MÞ (see Sec. D
of Ref. [23]). The suð1; 1Þ algebra generates isometries on the
hyperbolic plane.
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