PHYSICAL REVIEW LETTERS 120, 121601 (2018)

Fine Grained Chaos in AdS, Gravity

Felix M. Haehl and Moshe Rozali
Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road,
Vancouver, British Columbia V6T 1Z1, Canada

® (Received 21 December 2017; published 19 March 2018)

Quantum chaos can be characterized by an exponential growth of the thermal out-of-time-order
four-point function up to a scrambling time i,. We discuss generalizations of this statement for certain
higher-point correlation functions. For concreteness, we study the Schwarzian theory of a one-dimensional
time reparametrization mode, which describes two-dimensional anti—de Sitter space (AdS,) gravity and the
low-energy dynamics of the Sachdev-Ye-Kitaev model. We identify a particular set of 2k-point functions,
characterized as being both “maximally braided” and “k-out of time order,” which exhibit exponential

growth until progressively longer time scales ai"’

~ (k= 1)ir,. We suggest an interpretation as scrambling

of increasingly fine grained measures of quantum information, which correspondingly take progressively

longer time to reach their thermal values.
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Introduction.—The out-of-time-order (OTO) four-point
function F(&t) = (V(a)W(0)V(a)W(0))/((VV)(WW)) in
a thermal state serves as a diagnostic of quantum chaos
[1-6]. A manifestation of this is the existence of a time
regime where the (connected and regularized) part of F(it)
grows exponentially [7]: F(it) o, ~ €*(#~%). The scram-
bling time i, is larger than the typical time scale of thermal
dissipation by a factor of the logarithm of the entropy of the
system. It has thus been suggested that it quantifies a more
fine grained aspect of thermalization, a process that has
been coined scrambling [8-10].

In this Letter we consider higher-point correlation
functions in OTO configurations. We will suggest a
particular generalization of the four-point chaos correlator,
which we call the “maximally braided” OTO correlator.
It is a 2k-point function involving k Lorentzian insertion
times and has several interesting features: 1. There
exist Lorentzian insertion time configurations for which
it exhibits exponential growth up until a time 0~
(k — 1)i1,. These configurations are such that the correlator
is maximally OTO; i.e., they display the highest possible
number of switchbacks in real time. 2. The Lyapunov
exponent describing the speed of this growth is the same 1;
as for the four-point function. The longer time scales
are associated with the higher-point correlators being more
fine grained quantities; thus, they can be made progres-
sively smaller initially. We demonstrate these features in a
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particular model, which is known to be maximally chaotic
(i.e., the Lyapunov exponent is as large as universally
allowed in any quantum system, 1; = (2z/f) [5,11-13]):
the Schwarzian theory of a single time reparametrization
mode, describing the fluctuations of the location of the
boundary in two-dimensional anti—de Sitter space (AdS,)
gravity coupled to scalar matter fields.

OTO correlation functions—Backreaction in AdS,.—
Our starting point is the calculation of backreaction of
matter fields in Euclidean AdS, space. We follow previous
discussions in Refs. [14—17], which the reader is invited to
consult for further details. The gravitational action reduces
to a boundary term, which describes the dynamics of the
soft mode #(u):

MG o

This is the Schwarzian action, which is determined by a
pattern of spontaneous and explicit conformal symmetry
breaking. The coupling x is our expansion parameter: in
gravity it is proportional to G,l\,/2 (the bulk Newton constant)
and it scales as N~'/2 in the SYK model.

Note that the SYK model [6,11] has an additional energy
scale J, which appears in the gravity calculation as a UV
cutoff. The dominance of the soft modes over the massive
modes of the SYK model, for certain quantities, stems from
those quantities being UV sensitive. We believe this is the
case for the special class of correlation functions discussed
here, and therefore that the time scales we unravel are also
relevant to the SYK model. However, for simplicity we
restrict our attention to the purely gravitational calculation,
representing the contribution of the soft mode to correlation
functions.
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We couple the gravity theory to a dimension-A matter
action which represents external massless particles:

_ Cu)f'(up) \*.
—Inaer = Da / duydu, ([[(Ml)l— [(uzz)]2> J(”l)](”Z),
(2)

where j is a source for the operator whose correlator we are
calculating, and D, is a constant. For notational simplicity,
in the following we consider A = 1, whence D, = (1/2x).

To compute correlators perturbatively in a black hole
background, we transform #(u) = tan[z(u)/2], correspond-
ing to working with temperature f = 2z, and expand
around the saddle: 7(u) = u + ke(u).

To leading order in x the Schwarzian action gives a
quadratic term, and hence a propagator for the mode &(u).
This propagator can be written as

((u)e(0)) =

(74 u)

1 [2sinu— (7 +u)
2r 2

+ 2720(u)(u — sin u)} , (3)

where we take the coefficients a, b appearing in [15] to zero
(this corresponds to a gauge choice). Further expansion of
the Schwarzian action gives self-interaction terms for &(u),
suppressed by factors of k. These are required for calculat-
ing general correlation functions, but not for our purposes.

Similarly, we can expand the matter action (2). We write
the expansion in x as

1
_Imatter o /duldMZ 2(1412 ZKPB (u17“2 (4)

p>0

where ©;, = u; — u,. The leading order contribution comes
from the two-point function in the absence of backreaction.
It is the conformal correlator at finite temperature, i.e.,
B = 1. We will also need the first and second order
expansions, corresponding to the way the matter sources
the soft mode &(u) to orders x and x* [18]:

e(ur) — e(uy)

tan(“52)

[(z +cos ups)[e(un) — e(uy)P

BY (uy,up) = & (uy) + € (uy) —

9’

3(2)(141,142) = M

+ 4sin? ( 212>€’(u1)8’(u2)

= 2sinupple(uy) — e(uy)][€'(uy) + €' (uz)] |

In order to compute a Euclidean 2k-point function up to
O(k™"), one has to sum the relevant diagrams arising from
this expansion: first, one writes all possible products of k

instances of B (uy;_;,uy;), which are relevant at nth
order in perturbation theory (i.e., Y ;p; <n). In this
product, one then contracts &’s either with propagators
(3), or with higher-point vertices arising from expanding
the action (1) to higher orders in x. This quickly gets
complicated (see Supplemental Material [19] for exam-
ples). We will now present a particularly interesting class of
observables for which this task simplifies considerably.

Systematics of the calculation.—Consider coupling the
Schwarzian theory, describing gravity in AdS, space, to k
distinguishable matter fields representing the coupling to
external operators V; with i =1,...,k. Our aim is to
calculate 2k-point correlation functions involving the
operators V(uy), Vi(us), ..., Vilus—y), Vi(us). We pro-
ceed as follows: (i) We calculate the Euclidean correlators.
Without loss of generality, for each pair of insertions of the
same operator, say V;(uy_;) and V;(u,;), we order the
Euclidean times as u,;_; > u,;. The remaining relations
between Euclidean insertion times determine the order in
which the operators occur in the correlation function.
(i) Then, to discuss Lorentzian times we analytically
continue by setting u, — 6, + it, for all r=1,...,2k.
We then analyze the late time dependence on Lorentzian
times i,. (iii) Ultimately we are interested in putting
equivalent operators at coincident Lorentzian times,
fl5;_1 = lp;. The short time regulators o, (which are ordered
in the same way as the original Euclidean times) serve to
regulate the divergence in this limit. We write below terms
at leading order in 6;; = §; — 6;, which are universal in the
sense that they contain the exponential behavior we are
interested in (see the discussion in Ref. [20]).

We start by discussing the computation of Euclidean
correlators. The Euclidean time ordering determines the
ordering of operators in the correlator. We are interested in
a specific set of orderings, which we will call maximally
braided correlators, for which the calculation becomes
particularly simple. To describe those correlators we need
to introduce some conventions.

The backreaction calculation involves in intermediate
steps Heaviside ® functions, resulting from the propagator
of the soft mode (3). Organizing these will be crucial. We
choose to write all step functions canonically as ©(u; — u;)
with i > j, using O(x) =1 —O(—x). We then use the
configuration of these step functions to uniquely character-
ize the different possible operator orderings of the corre-
lation function. For example, the time ordered correlator
(Vi(u)Vi(us)...Vi(ua_1)Vi(uai)), with the canonical
ordering u; > uy > --- > Uy, is the term in the generic
Euclidean 2k-point function with no step functions.

The longest living modes in the chaos regime can be
characterized as a coefficient in the generic Euclidean
correlator with the maximum number of step functions.
It is simpler to evaluate, and subtracting off all other time
orderings does not influence the information we are
interested in.
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Maximally braided correlator—Our subtracted maximally braided correlator can be characterized by the appearance of
precisely k — 1 step functions, “braiding” every pair of operators with the consecutive pair. Elementary combinatorics
shows that this is equivalent to computing a product of commutators (see Supplemental Material [21]). We thus define

sz(”1,--

(Vi(u))[Valus), Vi(ur)][Vi(us), Vo (ug)|[Va(uz), Vi(ug)]... [Vi(tar—r), Vier (o) Vi(ua))

) u2k) =

The maximally braided configuration is obtained by
dropping all commutator brackets (see Fig. 1). The com-
mutators in Fy; serve to subtract subleading pieces. Fyy is
then just the coefficient of a term in the generic Euclidean
correlator with k£ — 1 step functions. We argue below that to
leading order in perturbation theory, F»; can be computed
using only the Feynman diagrams of the type illustrated
in Fig. 1.

Note that thus far we are discussing the Euclidean time
ordering, or, equivalently, the operator ordering in the
correlator. This determines the combinatorics of the cal-
culation, and is the source of the simplification we exploit.
Further below, we discuss the independent issue of the
Lorentzian time ordering, which is crucial to understanding
the different time scales.

Example: OTO four-point function.—Consider the cor-
relator (V' (u;)[Vy(u3), Vi(up)|V,(uy)). We demonstrate
here the simplified calculation that picks out this particular
combination (which describes precisely the dominant term
in the chaos regime), without the need to calculate the full
Euclidean or Lorentzian 4-point function. We then general-
ize that process for higher-point functions.

We compute F, as the coefficient of ®(us3,) in the
exchange of a soft mode between two bilinears (see
Supplemental Material [21]):

Fy =B (uy, uy) BY (us, Us)) oy + O(ic*)

FIG. 1.

Maximally braided 2k-point correlator (first term
obtained by expanding out commutators in F,;): only diagrams
of the type shown contribute to F,; at leading order in k. The
arrangement of insertions along the circle indicates the ordering
in Euclidean time.

(Vi(u)Vi(uz)) -+ (Vi(ugeer) Vie(ua))

. 5)

[

We have already used the benefit of hindsight and extracted
the leading divergence as 6;; — 0 for the analytic continu-
ation u, — 0, + iit, with @ty = i1, ii3 = iiy. We can thus
complete the analytic continuation to the OTO chaos region
by simply setting u,3 — iil,3 [22]. The term sinu,3 in
Eq. (6) then gives an exponentially growing term e*/#-!,
with A, =1 = 27/ =2x), as expected. The time
scale associated with this exponential growth, where the
correlator becomes of order 1, is the scrambling time
it, ~log(k=%) ~log(Gy') ~log(N), or with units, &~
(8/27) log 2/ i),

Indeed, Eq. (6) is the result obtained by evaluating the
full 4-point function, specializing to the operator ordering
<V1(M1)V2(M3)V1(Mz)Vz(u4)>, subtracting off the time-
ordered part, and expanding in small J;; (cf. Ref. [15]).

Note that the exponentially growing factor is associated
with the exchange of one soft mode. We see below that such
a pattern persists for higher-point correlators, where one
such exponential factor is associated with any exchange of
operators relative to the canonical ordering. Any exchange
is reflected by the presence of a (canonically ordered) step
function we use to organize the calculation. Each step
function is accompanied by a similar propagator factor and
hence by an exponentially growing mode.

Higher-point correlators.—Consider the six point func-
tion Fg as defined in Eq. (5), following the process outlined
and demonstrated in the previous section. The combination
(Vi(un)[Va(uz).V i (un)][V3(us). Vo (us)]V3(ug)) is obtained
from the generic Euclidean six-point function by isolating
the terms involving the product of step functions
O(u3,)0O(usy). We claim that the necessary presence of
this product of step functions specifies a unique diagram
that can contribute to the (connected and subtracted)
maximally braided correlator, to leading order in «.

Indeed the diagram depicted in Fig. 1 (for k =3)
contains the minimal ingredients necessary to produce
the two-step functions defining the maximally braided
ordering we are interested in. Such diagram is of order
k*. Other diagrams of the same order, for example,
disconnected ones or those involving a 3-point self-inter-
action of the soft mode, will have fewer step functions.
They contribute only to other correlators, where the
braiding is less than maximal, or get subtracted off in
the combination F¢. Similarly, diagrams involving more
than two & propagators contribute to F'¢ but at higher orders
in k.
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We are therefore faced with the relatively easy calcu-
lation of the following contribution to Fig. 1:

Fo = k*(BY (uy, 1) B (3, us) BY (us, u6)) ()00

Uss)*

(7)

up to corrections of O(k’). Since we will eventually set
u, = 90, + iit,, we can further use the simplifications of the
Supplemental Material [21]. The result to leading order in
and to leading order in the regulators J;; is

24x*

Fomw—
812034056

(p3 — sin uy3) (tgs — Sin uys). (8)

In the Supplemental Material [19] we illustrate how to
calculate the full six-point function and reproduce this
simple result for the maximally braided subtracted
correlator.

The calculation of the eight-point function is similar. To
leading order in k and 6;; we find

144k £
~——— Uyjnir] — SIN U 2i11)- 9
5125%45§6578 H( 2i,2i+1 21,21+1) ( )

i=1

Fy

Similar results are obtained for higher order maximally
braided correlators F,;. Those continue to obey the pattern
evident from extrapolating Eqgs. (8) and (9).

Lorentzian times.—We now turn to the analytic continu-
ation u, — &, + iit, in more detail. Our assumptions so far
concerned Euclidean time ordering and the first term in F»;
(dropping all commutators) corresponds to the choice
01 > 03 > 0, > 85 > ---. The late time growth indicating
quantum chaos is, however, sensitive to the ordering of real
Lorentzian times it,. As we will now see, there is an
independent way to characterize the real time ordering of
the correlator. The proper-OTO number of F,; is deter-
mined by the real time ordering and it affects both the
associated Lyapunov exponents and the associated scram-
bling time scales. We will see that the correlator we discuss
involves the time scale i#,, but also longer time scales,
depending on the proper-OTO number.

Types of OTO correlators.—Our maximally braided
correlators involve k swaps of neighboring operators as
compared to the canonical (time ordered) configuration. It
also has the distinguishing feature that it can be maximally
OTO: its analytic continuation allows for configurations
that are as much out-of-time-order as any 2k-point function
can be.

The proper-OTO number indicates the minimal number
of switchbacks in the complex time contour that is required
to represent a correlator [23]. The proper-OTO number of a
2k-point function is at most k. In the case of Fy, the
maximal OTO number is achieved by the real time ordering
iy =ty > iz =ty > -+ > ily_; = ity, which we focus

Vi
~——x >

. = }

& :
Vk Yk—2 )
' Y

Vi1

Vi_s

Vi_o Yy

g D
B v
:

FIG. 2. Complex time contour representation of the maximally
braided, maximally OTO correlator. We show the first (and
dominant) term in the expansion of commutators in Fy.

on. The associated contour is shown in Fig. 2. Most other
configurations of real times lead to a smaller proper-OTO
number (i.e., the correlator can be represented on a contour
with fewer switchbacks). We now show the importance of
this characterization of the possible Lorentzian time
orderings.

Time scales.—Let us now discuss the physical signifi-
cance of the proper-OTO number. Using the result from the
previous section, we have the following behavior for real
time separations |ily; — iy, (| > 1 = (B/2x):

f':f |ity; — Gy | — (k= 1)iL,)

Fym NP . (10)

2 2
0120340343 2k—2024—12k

with scrambling time i, ~ log(x~?), associated with the
growth of the 4-point function. The normalization N is
O(1) and has an alternating sign depending on the sign of
fly; — fp;41. Note the appearance of the term (k — 1), in
the exponent, reflecting the fact that the connected 2k-point
functions are proportional to x**=1).

Depending on the real time ordering, the connected 2k-
point function F,; exhibits different growth patterns as a
function of different time separations. We focus on the
proper k-OTO configurations: these are maximally OTO,
1.e., Ily; > ilp;_; for all i. The time differences in the
exponent in Eq. (10) are then all positive and cancel
telescopically (recalling that we set it,; = i1,;_; for all i),
yielding F, ~ ef1=fa-1=(k=1.

Thus the correlator in this case is a function of a single
time separation ity 5;_;, corresponding to a measurement
which is only sensitive to the total duration of the experi-
ment. Despite being scrambled in different “channels,” the
chaotic growth of F,; does not saturate after the scrambling
time &, and continues unabated until i 5;,_; reaches the k-
scrambling time
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2l ~ (k= 1), (11)

The Lyapunov exponent for this growth is still

/I(Lk) = 1 = (27/p), but the longer time scale is associated
with our chosen correlators being sensitive to more fine
grained quantum chaos: they start off smaller and continue
to grow for a longer time.

Let us now discuss briefly configurations with less than
maximal OTO number. For example, proper (k — 1)-OTO
configurations are obtained by swapping the order of a single
pair of real times, say i and i3, giving a correlator which can
be represented on a contour with only £ — 1 switchbacks. The
exponents in Eq. (10) do not quite add up anymore, and we get
Fyy ~ e2is=ii—ii=(k=1)ii. There is now a two-dimensional
space of time dependence on both i3, and i3 5,_;. If, e.g.,
1 < @131 < 11, then after a total duration of the experiment
o, = fi301-1 ~ (k—2)it, the observable F,; already
reaches the size of O(1). Working recursively, we see that
less than maximal OTO configurations can exhibit inter-
mediate time scales and transient behavior. It would be
interesting to explore this in more detail.

Discussion.—We have argued that there exists new
physically interesting data in higher-point out-of-time-
order (OTO) correlation functions. These are qualitatively
similar to the OTO four-point function used to diagnose
quantum chaos. However, the observables F,, we con-
structed in Eq. (5) display an exponential growth for a

longer time a{") ~ (k— 1)i,. That is, there exists a hier-
archy of time scales associated with scrambling, probed by
increasingly fine grained (OTO) observables.

This is reminiscent of similar hierarchies encountered in
the context of unitary k design in quantum circuit complex-
ity [24,25]. It would be interesting to explore this con-
nection. Similarly, it would be an intriguing task to explore
the experimental relevance, or the precise operational
meaning of the hierarchy of k-scrambling times [13,26].
Interestingly, the relevant experimental protocols already
exist [27,28]. An interpretation in terms of echo experi-
ments, or, more theoretically, as quantifying operator
growth by the size of repeated commutators, seem possible.

It would be interesting to repeat the calculation in the
Lorentzian setting, as a variant of the standard shock wave
calculation [2,3,29] (one would have to interpret the
maximal braiding in that context). Similarly, one would
like to make precise the connection to the formalism of
Ref. [30]. Extensions to higher dimensions (e.g., Ref. [31])
and exploration of butterfly velocities would be interesting,
for example, in the context of two-dimensional CFTs at
large central charge [20]. It is also interesting to explore
whether those k-OTO correlators obey some bounds along
the lines of Ref. [5] (see also Ref. [32]).

Finally, we hope to explore other types of 2k-point OTO
correlators, such as the (suitably regularized) “tremolo”
correlator ((W(#)V(0))¥). This might shed light on the

physical significance of abstract arguments about the
structure of OTO correlators [23,33].
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