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We establish a framework for calculating the Hagedorn temperature of AdS5/CFT4 via integrability.
Concretely, we derive the thermodynamic Bethe ansatz equations that yield the Hagedorn temperature of
planar N ¼ 4 super Yang-Mills theory at any value of the ’t Hooft coupling. We solve these equations
perturbatively at weak coupling via the associated Y system, confirming the known results at tree level and
one-loop order as well as deriving the previously unknown two-loop Hagedorn temperature. Finally, we
comment on solving the equations at finite coupling.
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Introduction.—According to the AdS/CFT correspon-
dence [1], N ¼ 4 super Yang-Mills (SYM) theory on
R × S3 is dual to type IIB string theory on AdS5 × S5.
This duality should in particular relate the phase transitions,
critical behavior, and thermal physics of the theories.
One interesting example of a critical behavior is the

Hagedorn temperature. In the planar limit of N ¼ 4 SYM
theory on R × S3, the origin of the Hagedorn temperature
TH is the confinement of the color degrees of freedom due
to the theory being on a three-sphere. This enables the
theory to have a phase transition that bears resemblance to
the confinement-deconfinement phase transition in QCD or
pure Yang-Mills theory [2,3].
The Hagedorn temperature is the lowest temperature for

which the planar partition function ZðTÞ diverges. Via the
state-operator correspondence, the partition function can be
reexpressed in terms of the dilatation operator D of N ¼ 4

SYM theory on R4:

ZðTÞ ¼ trR×S3 ½e−H/T � ¼ trR4 ½e−D/T �; ð1Þ
where we have set the radius of S3 to 1. States correspond to
gauge-invariant operators consisting of one or more trace
factors. The energies correspond to the scaling dimensions
of the operators, as measured by the dilatation operator.
In the planar limit, the scaling dimensions of multitrace
operators are entirely determined by those of their single-
trace factors, and the latter can be enumerated via Pólya
theory to determine the partition function and thus the
Hagedorn temperature in the free theory [4]. This procedure
was later generalized to one-loop order and to the case of
nonzero chemical potentials [5–9].

On the string-theory side, the Hagedorn temperature
occurs due to the exponential growth of string states with
the energy present in tree-level string theory. For interacting
string theory, it is connected to the Hawking-Page phase
transition [10]. This suggests that the confinement-
deconfinement transition on the gauge-theory side is mapped
on the string-theory side to a transition from a gas of gravitons
(closed strings) for low temperatures to a black hole for
high temperatures. In particular, the Hagedorn temperature
on the gauge-theory and string-theory sides of the AdS/CFT
correspondence should also be connected [3,4].
On the string-theory side, the Hagedorn temperature has

been computed in pp-wave limits [11–14]. In Ref. [15], the
first quantitative interpolation of the Hagedorn temperature
from the gauge-theory side to the string-theory side was
made, exploiting a limit towards a critical point in the grand
canonical ensemble [16]. This limit effectively reduces
the gauge-theory side to the suð2Þ sector with only the
one-loop dilatation operator surviving, which enables one
to match the Hagedorn temperature of the gauge-theory
side to that of string theory on a pp-wave background via
the continuum limit of the free energy of the Heisenberg
spin chain.
A hitherto unrelated but very powerful property of planar

N ¼ 4 SYM theory is integrability, see Refs. [17,18] for
reviews. It amounts to the existence of an underlying
two-dimensional exactly solvable model, which reduces
to an integrable sigma model at strong coupling and to an
integrable spin chain at weak coupling. Via integrability,
the planar scaling dimensions of all singletrace operators
can in principle be calculated at any value of the ’t Hooft
coupling λ ¼ g2YMN, allowing for a smooth interpolation
between weak and strong coupling results. In practice,
however, the calculation for each operator is so involved
that summing the results for all operators to obtain the
partition function ZðTÞ seems prohibitive.
In this Letter, we show how to use integrability to

compute the Hagedorn temperature at any value of the
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’t Hooft coupling. In the spectral problem, the integrable
model is solved on a cylinder of finite circumference L,
which accounts for wrapping contributions to the scaling
dimension due to the finite length of the spin chain. In order
to calculate the partition function ZðTÞ, we would need to
solve this model on the torus with circumferences L and
1/T, an endeavor that has not been successful yet even
for the Heisenberg spin chain. The Hagedorn singularity,
however, is driven by the contributions of spin chains with
very high L, or rather a very high classical scaling dimen-
sion, where the finite-size corrections play no role [19].
Thus, we can calculate it by solving the integrable model on
a cylinder of circumference 1/T, a situation that is related to
the one in the spectral problem via a double Wick rotation.
Indeed, we find a direct relation between the continuum
limit of the free energy of the spin chain associated with
planar N ¼ 4 SYM theory and the Hagedorn temperature.
Using the integrability of the model, we derive thermody-
namic Bethe ansatz (TBA) equations that determine the
Hagedorn temperature at any value of the ’t Hooft coupling.
We present them in the form of a Y system in Eqs. (11)–
(23). As a first application, we solve them in the constant
case as well as perturbatively at weak coupling, confirming
the known tree-level and one-loop Hagedorn temperature.
Moreover, we determine the previously unknown two-loop
Hagedorn temperature:

TH ¼ 1

2 logð2þ ffiffiffi
3

p Þ þ
1

logð2þ ffiffiffi
3

p Þ g
2

þ
�
−
86ffiffiffi
3

p þ 24 logð12Þ
logð2þ ffiffiffi

3
p Þ

�
g4 þOðg6Þ; ð2Þ

where g2 ¼ λ/ð16π2Þ.
TBA equations for the Hagedorn temperature.—In the

following, we relate the Hagedorn temperature to the spin-
chain free energy and derive TBA equations for the latter.
The Hagedorn temperature from the free energy of the

spin chain: In the planar limit, the scaling dimensions of
multitrace operators are completely determined by the
scaling dimensions of their singletrace factors. The parti-
tion function ZðTÞ is then entirely determined by the
singletrace partition function ZðTÞ. Splitting the dilatation
operator into a classical and an anomalous part as
D ¼ D0 þ δD, we can write

ZðTÞ ¼
X∞
m¼2

e−
m
2Tð1þFmðTÞÞ; ð3Þ

where

FmðTÞ ¼ −T
2

m
log ðtrspin-chain;D0¼m

2
½e−δD/T �Þ ð4Þ

is the spin-chain free energy per unit classical scaling
dimension for fixed D0 ¼ ðm/2Þ. The multitrace partition
function ZðTÞ is then given by

ZðTÞ ¼ exp
X∞
n¼1

1

n

X∞
m¼2

ð−1Þmðnþ1Þe−m
2TðnþFmðT/nÞÞ; ð5Þ

where the alternating sign takes care of the correct statistics.
The Hagedorn singularity is the first singularity of ZðTÞ
encountered raising the temperature from zero. It arises
from the n ¼ 1 contribution to the sum over n, i.e., from
the infinite series

X∞
m¼2

e−
m
2T(1þFmðTÞ); ð6Þ

where each term in the series is finite as FmðTÞ only
includes a finite number of states. We can use Cauchy’s
root test to assess when this series diverges. To this end, we
compute the mth root of the absolute value of the mth term
and take the large m limit, giving

r ¼ lim
m→∞

e−
1
2T(1þFmðTÞ) ¼ e−

1
2T(1þFðTÞ); ð7Þ

where

FðTÞ ¼ lim
m→∞

FmðTÞ ð8Þ

is the thermodynamic limit of the free energy. The root test
states that the series is convergent for r < 1 and divergent
for r > 1. Thus, the Hagedorn temperature is determined
from r ¼ 1 or, equivalently, from

FðTHÞ ¼ −1: ð9Þ

TBA equations: The free energy F of the spin chain can
be calculated via the TBA. The TBA equations for the
Hagedorn temperature of N ¼ 4 SYM theory can be
derived in analogy to the case of the spectral problem
[22–27]. The starting points are the all-loop asymptotic
Bethe equations [28,29] for the psuð2; 2j4Þ spin chain
found in the spectral problem, which are written in terms of
the length L of the spin chain as well as the seven excitation
numbers corresponding to the roots in the Dynkin diagram
of psuð2; 2j4Þ. We then rewrite the Bethe equation so that
the middle, momentum-carrying root is written in terms of
D0 instead of L, since it is D0 that we keep fixed when
calculating the free energy (4). We proceed by employing
the string hypothesis, which enables us to write the Bethe
equations for many magnons. The next step is the con-
tinuum limit D0 → ∞, in which we can write the TBA
equations in terms of the Y functions defined from the
densities of the strings. In particular, it allows us to write
down the free energy. The main difference compared to the
TBA equations of the spectral problem is that we do not
make a double Wick rotation; i.e., we consider the so-called
direct theory and not the mirror theory. This means we use
the Zhukovsky variable xðuÞ with a short cut:
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xðuÞ ¼ u
2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4g2

u2

s !
: ð10Þ

Note that TBA equations for the direct theory were also
considered in Refs. [27,30] but in different thermodynamic
limits.
Y system: The TBA equations can be rephrased in terms

of a Y system consisting of the functions Ya;s, where
ða;sÞ∈M¼fða;sÞ∈N≥0×Nja¼1∨jsj≤2∨�s¼a¼2g.
With some exceptions, they satisfy the equations

logYa;s ¼ log
ð1þ Ya;s−1Þð1þ Ya;sþ1Þ
ð1þ Y−1

a−1;sÞð1þ Y−1
aþ1;sÞ

⋆s; ð11Þ

where ⋆ denotes the convolution with sðuÞ ¼ ð2 cosh πuÞ−1
on R and the (inverse) Y functions with shifted indices
are assumed to be zero when the shifted indices are not
in M. The Y functions are analytic in the strip with
jImðuÞj < 1

2
ja − jsjj. For the purpose of this Letter, the

chemical potentials are set to zero. Hence, the Y system is
symmetric, Ya;s ¼ Ya;−s, with boundary conditions

lim
a→∞

Yaþ1;s

Ya;s
¼ 1; lim

n→∞

Y1;nþ1

Y1;n
¼ 1; ð12Þ

for s ¼ 0,�1. The first of the aforementioned exceptions to
the equations (11) then is

logY1;0 ¼ −ρ⋆̂sþ 2 logð1þ Y1;1Þ⋆̌s − logð1þ Y−1
2;0Þ⋆s;

ð13Þ

where we have defined ⋆̂ and ⋆̌ as the convolutions on
ð−2g; 2gÞ and Rnð−2g; 2gÞ, respectively. Similarly, the
convolution with Y1;1 and Y2;2 in Eq. (11) for ða; sÞ ¼
ð2; 1Þ; ð1; 2Þ is also understood to be ⋆̌. The source term
ρðuÞ is defined as

ρ ¼ ϵ0
T
þ 2 logð1þ Y1;1Þð1þ Y−1

2;2Þ⋆̌H0

þ 2
X∞
m¼1

logð1þ Ymþ1;1Þ⋆ðHm þH−mÞ

þ
X∞
m¼1

logð1þ Ym;0Þ⋆Σm; ð14Þ

where

Hmðv; uÞ ¼
i
2π

∂v log
xðu − i0Þ − g2

xðvþi
2
mÞ

xðuþ i0Þ − g2

xðvþi
2
mÞ
; ð15Þ

ϵ0ðuÞ ¼
�
0; for juj ≥ 2g;

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2 − u2

p
; for juj < 2g;

ð16Þ

and the kernel

Σmðv; uÞ ¼ i
2π

∂v

�
log

R2(xðvþ im
2
Þ; xðuþ i0Þ)

R2(xðvþ im
2
Þ; xðu − i0Þ)

þ log
R2(xðv − im

2
Þ; xðu − i0Þ)

R2(xðv − im
2
Þ; xðuþ i0Þ)

�
ð17Þ

is given in terms of the dressing factor [29]

σ2ðu; vÞ ¼ R2(xþðuÞ; xþðvÞ)R2(x−ðuÞ; x−ðvÞ)
R2(xþðuÞ; x−ðvÞ)R2(x−ðuÞ; xþðvÞ) ð18Þ

with x�ðuÞ ¼ xðu� i
2
Þ. When applied to a function of two

arguments such as Hmðv; uÞ, ⋆, ⋆̂, and ⋆̌ are moreover
understood as integrals over the respective intervals. The
other exceptions to the equations (11) are the nonlocal
equations

logY1;1Y2;2ðuÞ ¼
X∞
m¼1

log (1þ Ym;0ðvÞ)⋆Θmðv; uÞ ð19Þ

with

Θmðv; uÞ ¼
i
2π

∂v log
xðuÞ − g2

xðv−im
2
Þ

xðuÞ − g2

xðvþim
2
Þ

xðuÞ − xðvþ im
2
Þ

xðuÞ − xðv − im
2
Þ ð20Þ

and

log
Y2;2

Y1;1
¼
X∞
m¼1

am⋆ log
ð1þ Ymþ1;1Þ2

ð1þ Y−1
1;mþ1Þ2ð1þ Ym;0Þ

ð21Þ

with anðuÞ ¼ n/½2πðu2 þ n2/4Þ�.
The free energy per unit scaling dimension is given by

FðTÞ ¼ −T
X∞
n¼1

Z
∞

−∞
du θnðuÞ log (1þ Yn;0ðuÞ); ð22Þ

where

θnðuÞ ¼
i
2π

∂u log
xðuþ in

2
Þ

xðu − in
2
Þ : ð23Þ

Thus, the TBA equations (11)–(23) determine the Hagedorn
temperature at any value of the ’t Hooft coupling via
Eq. (9).
Solving the TBA equations.—Let us now solve the TBA

equations in the form of the Y system.
Constant solution via T system: At large spectral

parameter u, the Y system approaches a constant value.
This means we can find a constant Y system that solves
Eq. (11) for all ða; sÞ ∈ Mnfð1; 1Þ; ð2; 2Þg as well as
Eq. (21). Note that we cannot impose Eq. (19) as it relates
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the behavior at finite and large u. Thus, we find a one-
parameter family of solutions with parameter z. This
solution is most easily expressed in terms of a T system
consisting of the functions Ta;s with ða; sÞ ∈ M̂ ¼
fða; sÞ ∈ Z≥0 × Zjminða; jsjÞ ≤ 2g and Ta;s ¼ 0 for
ða; sÞ ∉ M̂. The Y functions are expressed in terms of
the T functions as

Ya;s ¼
Ta;sþ1Ta;s−1

Taþ1;sTa−1;s
: ð24Þ

In the constant case, the equations (11) imply the following
T system (Hirota) equations for all ða; sÞ ∈ M̂:

T2
a;s ¼ Taþ1;sTa−1;s þ Ta;sþ1Ta;s−1: ð25Þ

The latter are solved by

Ta;0 ¼
�
1 − z
1þ z

�
2a aþ 2z

12z4
ða3 þ 6za2

þ ð12z2 − 1Þaþ 6z3Þ;

Ta;�1 ¼ ð−1Þa
�
1 − z
1þ z

�
2a aþ 3z

6z4
ða2 þ 3azþ 3z2 − 1Þ;

Ta;�2 ¼
1

z4

�
1 − z
1þ z

�
2a
; ð26Þ

for a ≥ jsj, and

T0;s ¼ 1;

T1;s ¼
ð−1Þs
z2

�
jsj þ 1 − 3z2

2z

��
1 − z
1þ z

�jsj
;

T2;s ¼
1

z4

�
1 − z
1þ z

�
2jsj

; ð27Þ

for jsj ≥ a. This solution is a special case of the most
general, psuð2; 2j4Þ character solution of Eq. (25) in
Ref. [31].
Solution at zero coupling: In the limit of zero coupling,

g2 ¼ 0, the source term ρðuÞ in Eq. (13) vanishes [32], such
that the functions Ya;s are constant for all u. Hence, the
nonlocal equation (19) implies Y1;1Y2;2 ¼ T1;0 ¼ 1. We
can use this to determine the parameter z in the constant
solution for the T system above and thereby find the Y
system at zero coupling. Imposing T1;0 ¼ 1 is equivalent to
z ¼ �1/

ffiffiffi
3

p
. The negative solution has to be discarded as it

leads to a negative Hagedorn temperature. Thus, we
conclude that to zeroth order z ¼ 1/

ffiffiffi
3

p
. Using Eqs. (9)

and (22), we find the zeroth-order Hagedorn temperature

Tð0Þ
H ¼ 1

2 logð2þ ffiffiffi
3

p Þ ; ð28Þ

which is in perfect agreement with Ref. [4].
Perturbative solution: We can also solve the TBA

equations in a perturbative expansion at weak coupling,
expanding the Y functions as

Ya;sðuÞ ¼ Yð0Þ
a;s

�
1þ

X∞
l¼1

g2lyðlÞa;sðuÞ
�
: ð29Þ

At one-loop order, the solution takes the form

yð1Þa;sðuÞ ¼ ỹð1Þa;s þ
X∞
k¼0

cð1Þa;s;ka2kþaþsðuÞ; ð30Þ

where ỹð1Þa;s as well as c
ð1Þ
a;s;k are constants. This follows from

the expansions

ϵ0⋆̂sðuÞ ¼ 4πg2sðuÞ þ 2πg4s00ðuÞ þOðg6Þ;

sðuÞ ¼
X∞
m¼0

ð−1Þma1þ2mðuÞ;

θnðuÞ ¼ anðuÞ þ g2a00nðuÞ þOðg4Þ;
Θmðv; uÞ ¼ amðu − vÞ − amðvÞ

þ g2
�
2

u
a0mðvÞ − a00mðvÞ

�
þOðg4Þ; ð31Þ

in combination with the convolution identity an⋆am ¼
anþm and the structure of the TBA equations. Inserting
Eq. (30) into the expansion of the TBA equations, we can

solve for the coefficients cð1Þa;s;k. The remaining one-loop
parameter in the constant solution can be fixed from
ðY1;1Y2;2Þð1Þð0Þ ¼ 0, which follows from Eq. (19) and
the last expansion in Eq. (31). We find for the one-loop
Hagedorn temperature

Tð1Þ
H ¼ 1

logð2þ ffiffiffi
3

p Þ ; ð32Þ

which perfectly agrees with the result of Ref. [5].
At two-loop order, ρ⋆̂s in Eq. (13) receives contributions

from the one-loop solution yð1Þa;sðuÞ from the second and
third term in Eq. (14). They can be calculated using

ðan⋆Hm⋆̂sÞðuÞ ¼ g2
4

ðnþ jmjÞ2 sðuÞ þOðg4Þ: ð33Þ

Note that the dressing kernel in the fourth term of Eq. (14)
vanishes at this loop order. The two-loop solution takes
the form
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yð2Þa;sðuÞ ¼ ỹð2Þa;s þ
X∞
k¼0

cð2Þa;s;k;1a2kþaþsðuÞ

þ
X∞
k¼0

cð2Þa;s;k;2a
2
2kþaþsðuÞ

þ
X∞
k¼0

cð2Þa;s;k;3a
3
2kþaþsðuÞ; ð34Þ

as follows from simple reasoning paralleling the one at

one-loop order. Solving for the coefficients cð2Þa;s;k;1, c
ð2Þ
a;s;k;2,

and cð2Þa;s;k;3 and fixing the two-loop parameter in the
constant solution via Eq. (19), we find the previously
unknown two-loop Hagedorn temperature

Tð2Þ
H ¼ −

86ffiffiffi
3

p þ 24 logð12Þ
logð2þ ffiffiffi

3
p Þ : ð35Þ

Solution at finite coupling: At finite coupling, the
infinite set of nonlinear integral equations (11)–(23) can
be solved numerically by iterating the equations and
truncating to a; s ≤ nmax. The convolutions are calculated
for a finite number of sampling points from which the
functions are recovered by interpolation and extrapolation
at small and large u, respectively. We have implemented
this procedure in Mathematica following the strategy of
Ref. [33], where also TH has to be iterated. We will report
on the resulting solution at finite coupling in our future
publication [34].
Outlook.—In this Letter, we have derived integrability-

based TBA equations (11)–(23) that determine the
Hagedorn temperature of planar N ¼ 4 SYM theory at
any value of the ’t Hooft coupling. As an application, we
have solved these equations perturbatively up to two-loop
order. Our TBA equation can also be solved numerically at
finite coupling, as was briefly discussed here but will be
detailed on in a future publication [34]. Thus, they open up
the door for an exact interpolation from weak to strong
coupling, which, with the exception of Ref. [15], would be
the first time for the case of thermal physics. Potentially,
this could allow us to develop a better understanding of
the phase structure of gauge theories and their dual
gravitational theories in general.
For the spectral problem, the TBA equations have been

recast into the form of the quantum spectral curve [35],
which allows one to generate precision data at weak
coupling [36] as well as at finite coupling [37]. We will
report on a similar reformulation of our equations in a
future publication [34]. Moreover, one can study the case of
nonzero chemical potentials. We have generalized our
method to this case as well, and we have solved the
zeroth-order TBA equations for the case with chemical
potentials turned on but corresponding still to a symmetric
Y system. We will report on this in a future publication as
well [34].

In this Letter, we have used the fact (9) that the spin-
chain free energy determines the Hagedorn temperature TH
at which the partition function diverges. The spin-chain free
energy should however also determine the partition func-
tion in the vicinity of TH, which should allow us to extract,
e.g., critical exponents.
The partition function and Hagedorn temperature have also

been studied in integrable deformations of N ¼ 4 SYM
theory up to one-loop order [38], where it was found that
although ZðTÞ is different, TH is unchanged. It would be
interesting to see whether this statement continues to hold at
higher loop orders. Similarly, one might apply our framework
to the three-dimensional N ¼ 6 superconformal Chern-
Simons theory, which is known to be integrable as well.
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