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We study two cases of interrelations between the enhancement of symmetries in the infrared (IR) and
duality properties of supersymmetric quantum field theories in four dimensions. First, we discuss an SUð2Þ
N ¼ 1 model with four flavors, singlet fields, and a superpotential. We show that this model flows to a
conformal field theory with E6 ×Uð1Þ global symmetry. The enhancement of the flavor symmetry follows
from Seiberg duality. The second example is concerned with an SUð4Þ gauge theory with matter in the
fundamental and antisymmetric representations. We argue that this model has enhanced SOð12Þ symmetry
in the IR, and, guided by this enhancement, we deduce a new IR duality.
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Introduction.—Models with different ultraviolet (UV)
properties can flow to the same IR conformal fixed point. In
supersymmetric setups there are many examples of such
universality properties, with the UV models being gauge
theories having different gauge groups and gauge singlets,
or having the same gauge groups with different gauge
singlet fields and different superpotentials. In the latter case
the phenomenon is usually referred to as self-duality. The
global symmetry of the two dual models will usually act
differently on the gauge nonsinglet fields.
Another interesting phenomenon is that of the global

symmetry in the IR being larger than the symmetry in the
UV. This often happens when some of the degrees of
freedom become free as one approaches the fixed point.
However, there are also cases in which the symmetry
enhancement happens as the quantum numbers of the states
at the IR fixed point align to form representations of a
bigger symmetry. The bigger symmetry usually will have
the same rank as the symmetry in the UV but with a larger
dimension. Enhancements of the rank are also possible,
though they will not be discussed here.
We will discuss in this short Letter two cases where self-

duality of a certain model can be related to enhancement of
symmetry in a similar model. The basic observation is that,
in the case of self-duality, one often can add additional
gauge singlet operators on the two sides of the duality,
without spoiling the IR equivalence, such that the two dual
models will have exactly the same field content. The
duality will still identify the symmetries of the two models

in a nonobvious way, leading to symmetry enhancement.
It will also be observed in one of the examples that, in order
to obtain a model with enhanced symmetry, the additional
gauge singlet fields will break some of the original
symmetry.
We will emphasize three important guiding principles.

First, breaking global symmetries with interactions might
lead to an enhanced symmetry in the IR which is not a
subgroup of—and in fact might not contain—the symmetry
of the original model. Second, self-dualities of field theories
can be utilized to find theories with enhanced flavor
symmetry by constructing models which are structurally
invariant under dualities, with the effect of the latter being a
nontrivial action on the matter. Third, enhancement of
symmetry can, in some cases, be a sign of new self-dualities.
E6 symmetry from duality.—The E6 model: Let us

consider SUð2Þg gauge theory with eight fundamental chiral
fields. We split the eight chiral fields into six (QA) and two
(QB). We also introduce gauge invariant operators MA and
MB coupling as

MAQAQA þMBQBQB: ð1Þ

The quiver theory is depicted in Fig. 1, and charges of fields
can be obtained in Table I. The choice of gauge singlet fields
breaks the symmetry of the model from SUð8Þ down to
SUð6ÞA × SUð2ÞB ×Uð1Þh. We will soon show that this is

FIG. 1. Model with E6 × Uð1Þ global symmetry. The cross on
the edges denotes the fields MA and MB. These are flipping the
baryonic operators constructed from the fields associated with the
corresponding edge. Flipping chiral operator O means introduc-
ing chiral field ϕO and coupling it as ϕOO.
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enhanced to E6 ×Uð1Þh. We also note that SUð8Þ is not
subgroup of E6 and that, for the enhancement to be possible,
it is crucial to break the symmetry.
In Table I, Uð1Þr̂ is the superconformal R symmetry

obtained by a maximization [1], and the conformal anoma-
lies are c ¼ 29

24
and a ¼ 13

16
. To study the protected spectrum

of the theory, it is very useful to compute the super-
symmetric index [2]. Using the standard definitions, this is
given as an expansion in the superconformal fugacities q
and p [3],

1þ 27h−1ðqpÞ4/9 þ h3ðqpÞ2/3 þ � � � þ ð−78− 1Þqpþ � � � :
ð2Þ

The boldface numbers are representations of E6, as we will
elaborate on momentarily, and h is the fugacity for Uð1Þh.
We remind the reader that the power of qp is half of the R
charge for scalar operators and we observe that all of the
operators are above the unitarity bound. Let us count some
of the operators contributing to the index. The relevant
operators of the model are QBQA and MA, which comprise
the ð2; 6Þ and ð1; 15Þ representations of (SUð2ÞB; SUð6ÞA),
which gives 27 of E6. We also have MB, a singlet of non-
Abelian symmetries. At order qp, assuming that the theory
flows to an interacting conformal fixed point, the index gets
contributions only from marginal operators minus con-
served currents for global symmetries [4]. The operators
contributing at order qp are gaugino bilinear λλ ½ð1; 1Þ�,
QAψ̄QA

[ð1; 35þ 1Þ], and QBψ̄QB
[ð3þ 1; 1Þ]. These oper-

ators give the contribution

1 − ð1; 35Þ − 1 − ð3; 1Þ − 1;

which gives the conserved currents for the symmetry we
see in the Lagrangian. Here, ψ̄F is the complex conjugate
Weyl fermion in the chiral multiplet of the scalar F. We
also have the operators ψ̄MA

MA, ψ̄MB
MB, MBQBQB, and

QAQAMA, which cancel out in the computation since the
first two are fermionic while the second two are bosonic,
but they both have the same representations of flavor
symmetry pairwise. Finally, we have Q3

AQB ½ð2; 70Þ� and
QAψ̄MA

QB [ð2; 20þ 70Þ]. These two contribute

−ð2; 20Þ

to the index, which, combined with the above, forms the
character of the adjoint representation of the E6 ×Uð1Þh
symmetry. We emphasize that the fact that we see −78 in
order qp of the index is a proof following from the
representation theory of the superconformal algebra that
the symmetry of the theory is enhanced toE6, where the only
assumption, in addition to the absence of accidental Uð1Þ
values, is that the theory flows to an interacting fixed point.
We also observe that the conformal manifold here is a point.
Symmetry and duality: The enhancement of symmetry

toE6 follows from a well-known IR duality [5]. Note that we
can reorganize the gauge charged matter into two groups of
four chiral fields. We take four out of the six QA values and
call them Q̃, then combine the other two with QB and call
them Q. This also decomposes the symmetry SUð6ÞA to
SUð4ÞA × SUð2ÞA ×Uð1Þh0 , with a combination of Uð1Þh0
and Uð1Þh being the baryonic symmetry (see Fig. 2). IR
duality [5] without the gauge singlet fields will then map the
baryonic symmetry to itself while conjugating the two
SUð4Þ symmetries and adding 16 gauge singlet mesonic
operators. With our choice of gauge singlet fields, the flipper
fields of Fig. 2 are flipping eight of the baryons, and the
bifundamental gauge invariant operators form half of the
mesons. Thus, the duality removes the half of the mesons
which connect SUð2ÞB with SUð4ÞA and attaches the other
half between the SUð4ÞA and SUð2ÞA quiver flavor nodes.
This transformation acts only on the symmetry, leaving the
quiver structurally unchanged. The action on the symmetry
is as the Weyl transformation, which enhances the
SUð6ÞA × SUð2ÞB symmetry to E6.
Deformation to Wess-Zumino (WZ) model: Let us

deform our model by adding MB to the superpotential,
which entails a vacuum expectation value for QBQB. This
will result in the Higgs mechanism in the gauge group, and
we will be left with a WZ model of 27 chiral fields
connected through a superpotential (see Fig. 3). In fact, this
model is the same as the one discussed in Ref. [6] (see
Ref. [7] for related observations). The superpotential can be
thought of as a determinant of a 3 × 3 Hermitian octonionic
matrix, exactly the form that the E6 symmetry preserves.
Although this is not too interesting of a model in four
dimensions, all of our arguments admit a generalization by
reducing a circle to three dimensions, where this WZmodel
flows to an interacting fixed point.
Relation to E string compactifications: The theory we

have discussed can be related to compactifications of the E

TABLE I. Matter and gauge content of the E6 model.

Field SUð2Þg SUð2ÞB SUð6ÞA Uð1Þh Uð1Þr̂
QA 2 1 6 1

2
5
9

QB 2 2 1 − 3
2

1
3

MB 1 1 1 3 4
3

MA 1 1 15 −1 8
9

FIG. 2. An equivalent way to represent the theory of Fig. 1.
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string, a superconformal theory in six dimensions with E8

flavor symmetry. In Fig. 4 we depict the field theory one
obtains by compactifying the rank 1 E string on a torus with
a half unit of flux breaking E8 to E6 ×Uð1Þ [8]. Giving a
vacuum expectation value to the flip fields of this model
gives us the exact model of Fig. 1, up to the singlet field
MB, which does not effect the enhancement of symmetry.
This relation provides a geometric explanation for the
enhancement of symmetry.
We thus summarize that starting fromSUð2Þg gauge theory

with four flavors and adding gauge singlet fields breaking
the SUð8Þ symmetry to Uð1Þh × SUð6ÞA × SUð2ÞB, the
renormalization group flow leads to a model with
E6 ×Uð1Þh symmetry. This statement assumes only that
the flow leads to interacting fixed points, and we see no
evidence to the contrary. The enhancement of symmetry
discussed here is very closely related to the enhancement
of symmetry of the sequence of USpð4nÞg gauge theories
discussed in Ref. [9], which follows Ref. [10]. See also
Ref. [11] for related examples in a different context.
Duality from SOð12Þ symmetry.—The second case we

study is SUð4Þg gauge theory with four flavors, Q and Q̃,
and two chiral fields, X, in the antisymmetric representation.
The fields and the charges are in the upper half of Table II.
This model and the one discussed in the previous section

are two first entries, N ¼ 2, 1, in a sequence of SUð2NÞg
gauge theories with four flavors in fundamental represen-
tation and a field in antisymmetric representation. All
models in this sequence are known to have self-dual
descriptions [12,13]. We will not detail the dualities here
and will simply mention that the two SUð4Þ symmetry
groups are manifest in all dual frames. We can construct a
model with SUð4Þg gauge symmetry which is dual to itself
by turning on the very particular collection of gauge singlet

fields listed in the bottom half of Table II. We couple the
gauge singlet fields to the following superpotential:

Q̃QX2M þQQXBþ ϕX2: ð3Þ

As all of the dualities preserve the global symmetry and the
superpotential also does not break it, we naively do not
expect any non-Abelian enhancement of symmetry follow-
ing from these dualities. However, computing the index, we
find that all the states fall into representations of
SOð12Þ × SUð2Þ ×Uð1Þ2,

1þ ð1; 320Þa−2ðqpÞ1/3 þ ð2; 12Þb−2ðqpÞ1/2 þ � � �
þ ( − ð1; 66Þ − ð3; 1Þ − 1 − 1)qpþ � � � : ð4Þ

Here ðR1;R2Þ denotes the characters of representation
R1 ×R2 of SUð2Þ × SOð12Þ, and a and b are fugacities
for Uð1Þa and Uð1Þb, respectively. The superconformal R
symmetry here is given as

r̂ ¼ rþ 0.057qb þ 0.142qa;

and, to evaluate the index, we used the R charge rþ 1
6
qa,

which is close to the superconformal one. The two
SUð4Þ symmetry groups are imbedded in SOð12Þ as
SOð6Þ × SOð6Þ. Moreover, at the order of the index in
which the conserved currents and marginal deformations
contribute, we observe a term in adjoint representation of
the SOð12Þ, indicating that the symmetry enhances to this
in the IR. The decomposition into SOð6Þ × SOð6Þ repre-
sentations of the adjoint is

66 ¼ ð15; 1Þ þ ð1; 15Þ þ ð6; 6Þ: ð5Þ

The first two terms come from Qψ̄Q and Q̃ψ̄ Q̃. We have an
operator in ð6; 6Þ residing in the bosonic operator Q̃2Q2X2,
and two fermionic operators, Q̃2ψ̄BX with Q̃Qψ̄M.
The combined effect of these is to contribute ð6; 6Þ to
the enhancement of the conserved current.
Duality from symmetry: The enhancement to SOð12Þ

does not follow from the dualities of Ref. [12], as these
preserve the two SUð4Þ symmetries. However, the Weyl
group for SOð12Þ permutes the Cartan generators residing

FIG. 3. Model obtained upon deforming the quiver by admix-
ing MB to the superpotential.

FIG. 4. The model on the left corresponds to compactification
of a rank 1 E string on a torus with a particular flux for the global
symmetry. Giving vacuum expectation values to the flip fields,
one obtains the model in the middle, which is equivalent under
Seiberg duality to the third model.

TABLE II. Matter and gauge content of the SOð12Þ model.

Field SUð4Þg SUð4Þ SUð4Þ SUð2Þ Uð1Þa Uð1Þb Uð1Þr
Q 4 4 1 1 −1 1 1

2

Q̃ 4̄ 1 4 1 −1 −1 1
2

X 6 1 1 2 2 0 0

M 1 4̄ 4̄ 1 −2 0 1
B 1 6 1 2 0 −2 1
ϕ 1 1 1 3 −4 0 2
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in the two SUð4Þ symmetries. Enhancement of symmetry
can be taken as an indication that there is a dual description
of the original theory in which the two SUð4Þ symmetries
are broken and the subgroups are identified in a nonobvious
way. The basic duality of Ref. [12] is a generalization of
Seiberg duality for SUð2Þg theory with eight flavors. There
we have 35 different dualities corresponding to a splitting
of the eight chiral fields into two groups of four. However,
here we naively do not have a generalization of such
freedom, as the relevant representations are complex. The
enhancement of symmetry is again an indication that such a
generalization can be obtained as we shall now describe.
We first decompose both SUð4Þ symmetries into

SUð2Þ × SUð2Þ ×Uð1Þ and write the matter content of
the SUð4Þg theory with no gauge singlet fields in terms of
representations of these groups. In Table III, we detail the
charges under the SUð4Þ symmetries, as the rest are as in
the previous table.
The dual theory has fields shown in Table IV.
The duality exchanges theUð1ÞL andUð1ÞR symmetries.

The superpotential is

X1

l¼0

ðM−þ
l QþQ̃− þMþ−

l Q−Q̃þÞX2ð1−lÞ

þ ðBþQ−Q− þ B̃þQ̃−Q̃−ÞX
þ ðB−QþQþ þ B̃−Q̃þQ̃þÞX: ð6Þ

We can make many checks on this duality—for example,
that the indices of the two dual models are in agreement and
that the ’t Hooft anomalies match. The contribution of the
singlet fields to all of the Abelian anomalies is vanishing.
The nonobvious matching of anomalies involves the SUð2Þ
symmetries. For example,

TrSUð2Þ2LUð1ÞL ¼ ½Q−� ¼ ½Mþ−
1 � þ ½Mþ−

2 � ¼ −2: ð7Þ

Let us mention that a relevant deformation of the SOð12Þ
theory with a Q4 operator leads to symmetry enhancing
to E7 ×Uð1Þ.
We summarize by stating that, by using the basic

observations of this Letter, one can generate many exam-
ples of conformal theories with enhanced symmetries
starting from known self-dualities and can also derive
new self-dualities by observing enhancements of sym-
metry. We plan to report in more detail on some of the
plethora of examples in a forthcoming work.
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