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Experiments measuring DNA extension in nanochannels are at odds with even the most basic predictions
of current scaling arguments for the conformations of confined semiflexible polymers such as DNA.
We show that a theory based on a weakly self-avoiding, one-dimensional “telegraph” process collapses
experimental data and simulation results onto a single master curve throughout the experimentally relevant
region of parameter space and explains the mechanisms at play.
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As the carrier of genetic information, DNA plays a key
role in biology. At the same time, recent advancements in
fluorescence microscopy allow DNA to serve as a model
polymer for investigating fundamental questions in polymer
physics [1,2]. Nowhere is this dual importancemore apparent
than in the problem of DNA confinement in a nanochannel
[3–5]. When the radius of gyration of the DNA molecule is
larger than the channel width, it extends along the channel.
This stretching lies at the heart of genome mapping in
nanochannels [6]. Here the stretchedDNAmolecules, usually
greater than 150 kilobase pairs in length, contain fluorescent
markers that reveal sequence-specific information with kilo-
basepair resolution.This newmethod serves as a complement
to next-generation de novo DNA sequencing [6–8].
Polymer confinement has been investigated for four

decades, starting with the scaling arguments of Daoud
and de Gennes [9]. Yet there is to date no microscopic
theory explaining the experimental data of recent genome-
mapping experiments [6–8,10] in narrow nanochannels.
The difficulty is that the channels are too wide to apply
scaling arguments derived for strong confinement [11,12],
yet too narrow for the scaling arguments and theory
[11,13–16] in wider channels to hold.
The challenge in developing a theory for the extension

of nanoconfined DNA arises from its semiflexible nature.
Semiflexible polymers are characterized by three length
scales: the contour length L, the persistence length lP
quantifying the stiffness of the chain, and the effective
width w that appears in the Onsager excluded volume [17].
For polyelectrolytes such as DNA, both the persistence
length [18–21] and the effective polymer width [22] depend
on electrostatic interactions. Recent experiments are often

conducted in high ionic-strength buffers. In this case lP is
approximately 50 nm [23] while w is around 5 nm [24],
and thus w ≪ lP. This inequality emphasizes the intrinsic
difficulty of describing DNA in a wide range of situations.
DNA is considerably stiffer than typical synthetic polymers,
yet the number of persistence lengths L=lP in genomic
DNA samples is large. Any theory for the conformational
statistics of channel-confined DNA must account for both
the local stiffness of the polymer and excluded-volume
interactions. This is a formidable challenge. Matters are
further complicated by the fact that most recent genome-
mapping experiments are performed in nanochannels that
are about 50 nm wide [6–8,10]. Essentially all experiments
involving DNA (Fig. 1) take place in channel sizesD of the
order of lP and do not satisfy the criterion D ≫ l2

P =w
required for the scaling arguments of Ref. [9] to apply.
There is nomicroscopic theory for the extensionof confined

DNA for D < l2
P=w, despite numerous attempts [28,38,39].

FIG. 1. Parameters for experiments on nanoconfined DNA:
inverted triangle [25], square [26], filled square [27], circle [28],
filled circle [29], triangle [30], filled triangle [31], inverted filled
triangle [32], diamond [10], filled diamond [33], pentagon [34],
and filled pentagon [35]. For experiments using funnels
[29,31,33] only maximum and minimum channel widths are
indicated. The methods for selecting the data sets, and for
computing the “effective channel width” Deff , lP, and w from
the experimental parameters, are described in the Supplemental
Material [36]. Solid line shows Deff ¼ l2

P =w.
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Scaling arguments [13,14,16] following Refs. [9,11] yield
the most useful description. If D ≫ lP, they suggest that the
extension X scales as X ∼D−2=3. The problem is that the
theory fails when D ≈ lP, and as a result it proves to be a
poor description of most recent DNA experiments in nano-
channels. The earliest experiments [25], for instance, reported
a much larger exponent X ∼D−0.85, and subsequent studies
[32,33,40] continue to report exponents exceeding the theo-
retical prediction.
We take a different approach in this Letter. We show that

the DNA-confinement problem for w ≪ lP and D ≪ l2
P =w

maps to the simple one-dimensional telegraph process in
Fig. 2, describing the correlated walk of a particle moving
with velocity v0 along the channel axis. The velocity
changes sign at rate r, creating hairpin configurations in
the particle path. The process lasts from t ¼ 0 to t ¼ T.
When the particle revisits a position it has previously visited,
it incurs a penalty ε. We show that this model collapses
experimental and simulation data for the extension through-
out the experimentally relevant parameter range onto a
universal master curve as a function of a new scaling
variable α that measures the combined effects of confine-
ment, local stiffness, and self-avoidance.
We start by considering narrow channels, D ≪ lP, and

later extend the arguments to channel widths up to l2
P =w.

Since we want to compute the extension of the DNA
molecule along the channel axis, it suffices to consider the
projection of the three-dimensional DNA configurations
xðsÞ to the channel axis x. Here s is the contour-length
coordinate; it corresponds to time t in the telegraph process.
We decompose the probability P½xðsÞ� of observing the
projected conformation xðsÞ as

P½xðsÞ� ∝ Pideal½xðsÞ�A½xðsÞ�: ð1Þ

The functional Pideal½xðsÞ� is the probability of observing
the conformation xðsÞ in an ensemble of ideal confined
polymers, disregarding self-avoidance. The functional
A½xðsÞ� captures the effect of self-avoidance. It equals
the fraction of three-dimensional polymer configurations
corresponding to xðsÞ that contains no segments that collide
with any other polymer segment.
When D < lP, the local conformation statistics are

determined by Odijk’s theory for narrow channels [41],
while the global statistics are dominated by a random
sequence of direction changes (hairpins) [42]. Neglecting
self-avoidance, the separation between neighboring hairpin
bends is exponentially distributed [42]. On length scales

much larger than the deflection length [41] λ≡ ðlPD2Þ1=3,
the central-limit theorem assures that local alignment
fluctuations are negligible [11]. These two facts imply that
the ideal problem maps onto the one-dimensional telegraph
process in Fig. 2. The correlation function of vxðsÞ, the
channel-axis component of the tangent vector of the ideal
polymer, decays exponentially [36]:

hvxðsÞvxð0Þi ¼ a2 expð−s=gÞ: ð2Þ
The telegraph velocity has similar correlations:

hvðtÞvð0Þi ¼ v20 expð−2rtÞ: ð3Þ
Comparing Eqs. (2) and (3) we see that the contour
parameter s maps to the time t in the telegraph process,
whereupon the polymer-contour length L maps to the total
time T in the telegraph model. The parameter a quantifies
the tendency of the tangent vectors to align with the channel
[31]. The parameter g is the global persistence length [42],
characterizing the typical distance between hairpin turns.
These parameters map to those of the telegraph process
as follows: a ¼ v0 and g ¼ ð2rÞ−1. We measured how a
and g depend on the physical parameters of the full three-
dimensional problem from simulations of confined ideal
polymers. It turns out that it suffices to determine just two
curves [Figs. 3(a) and 3(b)], since a and g=lP depend on
D=lP only.
Now consider the effect of self-avoidance. In general

it is very difficult to derive an expression for A½xðsÞ�. But
for a weakly self-avoiding polymer, the problem simplifies
considerably when the channel is so narrow that inter-
actions between the polymer and the channel wall cause the
three-dimensional configurations to lose correlations. We
show in the Supplemental Material [36] that

A½xðsÞ� ∝ exp

�
−
ε

2

Z
dxL2ðxÞ

�
ð4Þ

if w ≪ lP. Here LðxÞdx is the total amount of contour
in the interval ½x; xþ dx� [43]. The parameter ε penalizes
overlaps. It is determined by the probability that two short

FIG. 2. Illustration of the telegraph process along the channel
axis (x axis). The walk is one dimensional, but for clarity it is
expanded vertically, to show the changes in direction that create
hairpin configurations of the confined DNA molecule.

100 101
100

101

102

100 101

1.0

2.0

3.0

4.0

100

102

0.2

0.4

0.6

0.8

1.0
(a) (b)

(c) (d)

FIG. 3. Results from ideal-polymer simulations [36] showing
how a ¼ v0, g ¼ 1=ð2rÞ, ε, and α depend on D=lP.
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polymer segments overlapping in one dimension collide
in three dimensions [36]:

ε ¼ hδðy − y0Þδðz − z0Þvexi=l2: ð5Þ

The average is over the conformations of the confined ideal
polymer, and y and z are the transverse channel coordinates
of a short polymer segment of length l. Primed coordinates
belong to a second, independent segment, and vex is the
excluded volume. The excluded volume depends on the
segment orientation. If l ≫ w, we have vex ¼ 2wl2 sin θ,
where θ is the angle between the two segments [17].
Figure 3(c) shows how ε depends on D=lP, obtained by
evaluating the average in Eq. (5) from three-dimensional
simulations of confined ideal polymers [36]. A single curve
is sufficient to determine how ε depends on the physical
parameters, because εD2=w is a function of D=lP only (see
Supplemental Material [36]).
In the telegraph model self-avoidance is incorporated in

the same way. Here, L has units of ðtimeÞ=ðpositionÞ. Equa-
tion (4) then shows that ε has units of ðpositionÞ=ðtimeÞ2.
Since r has units of ðtimeÞ−1, and v0 of ðpositionÞ=ðtimeÞ, the
only dimensionless combination of ε, r, and v0 is

α≡ ε=ð2v0rÞ: ð6Þ

In the limit of large T, only α can have physical significance.
Invoking our mapping between telegraphmodel and polymer
problem, we conclude that α is given by

α ¼ εg=a: ð7Þ

This parameter measures the expected number of overlaps
between the two strands of a hairpin of length g.
Equation (7) has two important consequences. First,

Eq. (7) allows us to generalize the mapping to all channel
widths up to l2

P =w. To show this, consider first the ideal
part. Strictly speaking, the simple picture outlined above
breaks down when D ∼ lP because the typical hairpin
length g becomes of the same order as lP. But consider how
α changes as D approaches lP from below. For w ≪ lP,
the parameter α decreases below unity before g ¼ lP is
reached, and for small α the precise nature of the local
conformations is irrelevant. All that matters is that the ideal
part is a diffusion process with exponentially decaying
correlations of vxðtÞ. Similarly, the local probability of
collision is still ðε=2ÞL2ðxÞdx, because each segment pair
collides independently. The latter assumption eventually
breaks down at D ≈ l2

P =w since the transversal segment
coordinates become correlated. But up to this point Eq. (4)
is valid, as is Eq. (5).
Second, observables that are dimensionless in the tele-

graph model can only depend on α, Eq. (7), in the limit of
large L. This combination α is plotted in Fig. 3(d). It turns
out that αD2=ðlPwÞ depends only on D=lP [36]. Now

consider the average extension X and the variance about
that average σ2. In the telegraph model these quantities
have units of (position) and ðpositionÞ2, and for large values
of L they must be proportional to L. We therefore conclude
that the data must collapse as

X=ðLaÞ ¼ fXðαÞ and σ2=ðLga2Þ ¼ fσðαÞ: ð8Þ

Here fX and fσ are universal scaling functions that depend
only on α. We can numerically compute the form of these
functions simply by simulating the telegraph model [36].
We have compared our theory to direct numerical

simulations (DNS) of three-dimensional, confined, self-
avoiding wormlike chains [39] using the PERM algorithm
[44,45]. Figures 4(a) and 4(b) show that our theory quanti-
tatively captures the DNS results for all values ofw=lP tested
[36], up to w=lP ¼ 0.4. This agreement is remarkable, as the
theory assumes weak self-avoidance, w ≪ lP.
Figures 4(c) and 4(d) show the comparison between the

results of the experiments summarized in Fig. 1 and our
theory. The theory not only collapses the experimental data,
but provides good quantitative agreement, in particular with
the most recent experiments [10,33,34]. There is some
scatter of the experimental data around the theoretical
curve, but this is expected because the nanofluidic experi-
ments are quite difficult to control.
In the limit α ≪ 1 our theory allows us to map the

problem to an uncorrelated weakly self-avoiding diffusion
process [43,47]. This follows from the fact that the corre-
lation function in the telegraph model, Eq. (3), decays to zero
before the next collision occurs, for α ≪ 1. As a result,
the ideal random walk is simply diffusive, with diffusion
constant D ¼ v20=ð2rÞ. This has two consequences.
First, for α ≪ 1 observables depend on v0 and r only

through the combinationD. Since the extension is linear in L
for large L, we deduce that X=L can only depend on ε andD
in this limit. Since D has units of ðpositionÞ2=ðtimeÞ while ε
has units of ðpositionÞ=ðtimeÞ2 in the telegraph model, we
see that the only possible combination is X=L ∝ ðεDÞ1=3.
This gives X=ðLaÞ¼fXðαÞ∝α1=3, explaining the power
law in Figs. 4(a) and 4(c). For the variance we conclude
that σ2=L ∝ D, independent of ε [Figs. 4(b) and 4(d)].
Alternatively, we can deduce these scalings by a mean-field
argument, indicating that fluctuations of L are negligible
when α ≪ 1. Assuming thatL ∼ T=X, we find for the exten-
sion distribution PðXÞ ∼ exp½−rX2=ð2v20TÞ − ðε=2ÞT2=X�,
whereupon d logP=dX ¼ 0 yields X=ðv0TÞ ∼ α1=3. For the
variance we obtain σ2r=ðv20TÞ ∼ α0.
Second, we can use the exact mathematical results

derived in Ref. [47] to deduce the prefactors:

fXðαÞ ¼ cXα1=3 ð1.104 ≤ cX ≤ 1.124Þ; ð9aÞ

fσðαÞ ¼ cσ ð0.72 ≤ cσ ≤ 0.87Þ; ð9bÞ
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as α → 0. The constraints for cX and cσ are rigorously
proven mathematical bounds [47].
Now consider the limit of large α. The extension X tends

to La in this limit [11], since the frequency of hairpins
tends to zero. The variance decays as σ2 ∼ α−3, as Fig. 4
shows. To deduce this power law, we estimate the variance
of the strongly extended polymer as ðnumber of hairpinsÞ×
ðhairpin extensionÞ2. To determine the number of hairpins,
note that the expected number of collisions for a hairpin of
contour length h is ∼αh=g. The resulting hairpin is there-
fore likely to survive the collision check only if h is of the
order g=α or smaller. This requires a second switch of
direction within the length g=α. This occurs with proba-
bility ðg=αÞ=g ¼ α−1, so that the number of hairpins is
ðL=gÞα−1. To obtain the hairpin extension we multiply its
contour length h ∼ g=α by its alignment a, so that the
typical hairpin extension becomes ∼ga=α. Therefore,
σ2 ∝ ðL=gÞα−1ðga=αÞ2 ¼ Lga2α−3 for large α.
For very large values of α, the theory fails [Fig. 4(b)]

because hairpins are so rare that alignment fluctuations (not
included in the telegraph model) dominate the variance
[11]. This correction is taken into account simply by adding
the variance in the extreme Odijk limit [48]:

σ2 ¼ dσðLga2Þα−3 þ σ2Odijk as α → ∞: ð10Þ

Here dσ is a universal constant. By fitting the solid line
in Fig. 4(b) for α > 10, we find dσ ≈ 0.09. We observe
excellent agreement between this refined theory and the
simulation data for lP=w ¼ 12. For the stiffer polymers

(lP=w ¼ 36), still longer contour lengths are required to
reach the large-L limit and to reduce the statistical error.
Finally, we show that our theory contains scaling laws

derived earlier as particular asymptotic limits. In very
narrow channels, a ≈ 1 and hsin θi ≈ ðD=lPÞ1=3. Using
these approximations in Eqs. (5) and (6) gives

α ¼ CgwðD5lPÞ−1=3 ¼ Cξ ðD ≪ lPÞ; ð11Þ

where C ≈ 1.95 is a constant [36]. The parameter ξ appears
in Odijk’s scaling theory [11] and the extension scales
as X ∼ ξ1=3 [11] in this special limit. In wide channels,
for lP ≪ D ≪ l2

P =w, we have that a ¼ 1=
ffiffiffi
3

p
and g ≈ lP.

Using diffusion approximations for the distribution of the
polymer in the channel [36] gives

α ¼ 9
ffiffiffi
3

p
πwlP=ð8D2Þ ≪ 1 ðlP ≪ D ≪ l2

P=wÞ: ð12Þ

This is the result of Ref. [15], implying the same scaling
X ∼D−2=3 that Odijk’s scaling arguments [11] predict in
this asymptotic limit. At first glance it is perhaps surprising
that the two distinct limits Eqs. (11) and (12) are described
by the same random-walk process. After all, the three-
dimensional polymer conformations are entirely different
in the two regimes, described by invoking deflection
segments, hairpins, and blobs. Our universal theory, by
contrast, rests on the fact that the macroscopic statistics of a
weakly interacting random walk do not depend on the
microscopic details of the process [49].

(a) (b)

(c) (d)

FIG. 4. One-parameter scaling of the mean extension X and the extension variance σ2. Comparison of one-parameter theory (solid
black lines) to results of three-dimensional direct numerical simulations (DNS) (a), (b) and experiments (c), (d). DNS: crosses. The DNS
method [39,46] is described in the Supplemental Material [36]. Experiments (same as in Fig. 1): ▿ [25], square [26], filled square [27],
circle [28], filled circle [29], triangle [30], filled triangle [31], inverted filled triangle [32], diamond [10], filled diamond [33], pentagon
[34], and filled pentagon [35]. The details of these experiments and the selection of experimental data sets are described in the
Supplemental Material [36]. In addition, the predicted scalings for the mean extension, X ∼ α1=3, and for the extension variance,
σ2 ∼ α−3, are indicated. The color bar shows the range of lP=w for DNS (top) and experiments (bottom). The dashed lines in (b) show
theoretical predictions from Eq. (10) for lP=w ¼ 12 (dashed blue line) and 36 (dashed red line). See Fig. S-2 in Supplemental Material
[36] for the telegraph-model results as a function of channel width D.
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We can also conclude that the DNA experiments shown in
Fig. 1 cannot obey the scalingsX ∼D−2=3 orX ∼ ξ1=3 because
the experiments do not satisfy the strong inequalitiesD ≫ lP
or D ≪ lP (see Fig. S-5 in the Supplemental Material [36]),
and therefore do not reach the asymptotic limits required for
these power laws to emerge. Our theory shows, and Fig. 4(a)
confirms, that X ∼ α1=3 for small values of α. But the
parameter α depends upon D and lP in an intricate way via
Eq. (7), in general not in a power-law fashion.
In summary, we have shown that DNA confinement in

nanochannels can be modeled by a telegraph process,
collapsing all of the data in terms of a scaling variable α.
Our theory brings to the fore universal properties of confined
polymers in a good solvent in a way that is obscured by the
prevailing scaling theories [9,11,12,14,15,41]. The distinc-
tion between deflection segments, hairpins, and blobs,
which leads to the need to define separate regimes, is not
necessary. Rather, the statistics of the confined polymer
chain for D≲ l2

P =w adopt a universal behavior at suffi-
ciently long length scales, independent of the details of the
microscopic model.
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