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Gravity gradients represent a major obstacle in high-precision measurements by atom interferometry.
Controlling their effects to the required stability and accuracy imposes very stringent requirements on
the relative positioning of freely falling atomic clouds, as in the case of precise tests of Einstein’s
equivalence principle. We demonstrate a new method to exactly compensate the effects introduced by
gravity gradients in a Raman-pulse atom interferometer. By shifting the frequency of the Raman lasers
during the central 7 pulse, it is possible to cancel the initial position- and velocity-dependent phase shift
produced by gravity gradients. We apply this technique to simultaneous interferometers positioned along
the vertical direction and demonstrate a new method for measuring local gravity gradients that does not
require precise knowledge of the relative position between the atomic clouds. Based on this method, we
also propose an improved scheme to determine the Newtonian gravitational constant G towards the 10 ppm

relative uncertainty.
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Atom interferometers (Als) [1] enable precise measure-
ments of accelerations [2-5], rotations [6-9], gravity
gradient (GG) [10-15], and curvature [16,17]. In most
applications, optimal performances have been achieved
using Ramsey-Bordé Al schemes, where the wave packets
of freely falling samples of cold atoms are split and
recombined using Raman or Bragg optical pulses. The
excellent long-term stability and accuracy achieved so far
makes them the ideal candidates for several applications, as
in metrology [18-23], geodesy, geophysics, engineering
prospecting, inertial navigation [24,25], and fundamental
physics tests [26,27]. The success of this method is based
on a clever mechanism that allows atoms with different
initial positions and velocities to acquire the same inter-
ferometric phase in the presence of uniform forces and
rotations. Large samples of cold atoms can be produced
with high repetition rates and used for Al measurements
with low shot noise. However, the request for Als with
higher sensitivities has revealed a limitation of this method;
that is, it fails when external forces are not uniform over the
size of the cloud, for instance, due to the Earth GG.

In the presence of a uniform gravity acceleration g and
GG T, the phase shift measured in an atomic gravimeter
oriented along the vertical z axis depends on the initial
position z, and velocity v, of the atoms,
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¢ = kcfng2 - keffrzz<z0 + UZOT)TZ’ (1)
where I',, is the GG tensor component along z, kg is the
effective wave vector of the interrogation lasers, and 7 is
the free evolution time between the central = pulse and
the z/2 pulses acting as mirror and beam splitters of the
Mach-Zehnder Al. Furthermore, the atomic wave packets
at the output ports of the Al experience a non-negligible
displacement, which is responsible for a loss of contrast in
the Al fringes. For this reason, concerns have recently been
raised on Als for more demanding applications such as tests
of Einstein’s equivalence principle, gravitational waves
detection, and, more generally, for metrological applica-
tions [28]. When testing the weak equivalence principle,
simultaneous Als are used to compare the free-fall accel-
eration of two different atomic species [29-32] or the same
atom in two different quantum states [33]. Pushing the
accuracy of this test to the 10713 level in the E6tvos ratio, as
proposed for future experiments on the ground [26] or in
space [34], requires a control on the relative position and
velocity of the two atomic samples to better than 1 nm and
0.3 nm/s, respectively. Such numbers are very challenging,
even when using evaporatively cooled atomic samples
close to the Bose-Einstein condensation phase transition,
precisely positioned with optical lattice potentials. Also, in
the atom interferometry measurement of the Newtonian
constant of gravity performed in [21], the major source of
systematic error arises from the limited control on the
position and velocity of the atoms in the thermal cloud [35].
Similar limitations are affecting precise measurements of
Earth’s GG that are of fundamental importance for geodesy,
Earth observation, and applied physics [25].
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In this Letter, we experimentally demonstrate a new
method, recently proposed in [36], to cancel the effect of
the ambient GG and remove the dependency of the Al
phase on the initial conditions of the atomic sample. By
introducing a variation Ak of the effective wave vector
during the central 7 pulse of the Mach-Zehnder Al it is
possible to change the Al phase by —2Ake(zo + v,0T).
When

Akeff = _(Fzsz/z)keff’ (2)

the extra phase accumulated by the atoms exactly com-
pensates for the position- and velocity-dependent phase
shift introduced by the GG [see Eq. (1)], demonstrating the
possibility of operating a Ramsey-Bordé Al in the presence
of nonuniform forces. The additional momentum Ak
transferred to the atoms equals the momentum change due
to the presence of tidal forces and it allows us to reverse the
atomic trajectories in a completely symmetric way. As a
consequence, the atomic trajectories perfectly overlap at
the output ports of the Al [see Fig. 1(a)] without any loss
of contrast. We use this method to measure GGs and
curvatures. Finally, we discuss its potential for an Al
determination of the Newtonian gravitational constant.
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FIG. 1. (a) Space time trajectories in a freely falling Mach-
Zehnder Al operated with Raman transitions in the absence of
GGs (straight thin lines) and with GGs, when the compensation
scheme is not applied (dashed line) and after readapting the
effective wave vector during the central 7 pulse (thick curved
lines). (b) Scheme of the experimental apparatus. By varying the
position of the external source masses, it is possible to generate
the two different vertical acceleration profiles.

A complete description of the experimental setup can
be found in [12,16]. Here, we only discuss the measure-
ment principle. Three clouds of 8’Rb atoms are magneto-
optically trapped, cooled to ~4 xK and launched with a
fixed vertical separation of d =31 cm inside a 1-m-long
vacuum tube. In the tube, shielded from external magnetic
fields, the atomic samples are prepared in the (F =1,
mp = 0) state and selected in a narrow longitudinal
velocity class corresponding to a temperature of ~80 nK
along the vertical direction. After state preparation, the
atoms are interrogated with a z/2-7-z/2 sequence of
vertically-oriented Raman pulses in a classical Mach-
Zehnder Al. The Raman lasers, with effective wave vector
ket = 16 x 10° m~!, are resonant with the 6.8-GHz two-
photon transition between the two hyperfine levels of the
8Rb ground state and have a 2-GHz red detuning with
respect to the 528 »|F = 2) — 52P;,|F = 3) transition.
This detuning is changed by Av = ¢/(4x)Ake at the «
pulse of the Al to provide the required Ak for the
compensation of the GG. The Al sequence has a duration
of 2T = 320 ms, while the entire experiment cycle takes
~2 s. The z pulse has a duration of 24 us. Interference
fringes are obtained by measuring the normalized atomic
population in one of the two hyperfine levels of the 3’Rb
ground state by detecting the laser-induced fluorescence
emission of the atoms. To reduce the effect of inhomo-
geneous magnetic fields on the AI phase, we apply the
k-reversal protocol [37].

In our experiment, we measure the linear dependence of
the gradiometer phase @ on the frequency detuning Av,

8
D(Av) = — (keffrzsz + :Ay> (d+ AvoT),  (3)

where Av, is the differential velocity between the two
atomic clouds of the gravity gradiometer at the beginning of
the Al sequence and d is their distance. At the frequency
value Av that nulls the differential phase, the two gravim-
eters of the gravity gradiometer show the same Al phase,
independently of their position. This measurement provides
a direct demonstration of the GG compensation method
proposed in [36]. A linear fit to the experimental data
allows us to precisely determine the frequency detuning at
zero phase and from it to evaluate the average GG over the
measurement baseline.

We generate different acceleration profiles by varying
the vertical position of a set of high-density source masses,
24 tungsten cylinders symmetrically arranged over two
platforms surrounding the Al tube (see [38] for more
details). The measurements involve three simultaneous
Als that can be used to simultaneously measure three
GGs, over three different baselines [see Fig. 1(b)]: gradi-
ometer 1-2, gradiometer 2-3, and gradiometer 1-3.

In a first series of measurements, we position the source
masses in the far configuration [see Fig. 1(b)]. In this way,
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FIG. 2. Gravity gradiometer phase angle as a function of the
applied Av for the three simultaneous gradiometers: results for
the gradiometer 2-3, 1-2, and 1-3 are in red (triangles), black
(squares), and blue (circles), respectively. The source masses are
positioned in the far configuration [see Fig. 1(b)].

the atoms experience a homogeneous GG on the 1-3
measurement baseline. The corresponding vertical accel-
eration profile is shown by the plot in the left panel,
together with the regions where the three Als
take place. Each phase measurement of Fig. 2 is the
result of a least-square elliptical fit of a set of 360 data
points. From the three zero-crossing frequency values, it is
possible to calculate the three average GGs '3 = (—3.32+
0.02) x 107 s72, T';, = (—3.48 £0.01) x 107% s72, and
I3 = (=3.4040.01) x 107° s72. The measured GG is
homogeneous within 2%-3% over the 60-cm baseline.
As expected [see Eq. (3)], the GG measurements provided
by this method do not require precise knowledge of d, nor
do their errors change when the measurement baseline is
doubled (e.g., gradiometer 1-2 and gradiometer 1-3). This
technique can have interesting applications in GG meas-
urement campaigns involving field instruments, where
determining the measurement baseline d with the required
precision might be not straightforward.

In a second series of measurements, we position the
source masses in the close configuration [see Fig. 1(b)] to
produce a strong vertical variation of the GG. The vertical
acceleration profile is shown by the plot in the right panel.
The phase angles measured by the three gravity gradiom-
eters as a function of the frequency detuning Av are
reported in Fig. 3, together with the corresponding linear
fits. In this case, I'»3=(0.497+0.006)x 100572, '}, =
(=4.8740.01)x107°s72, and T 3=(-2.1934+0.006) x
107572, As expected, I'j3 = (T'15 + I'p3)/2.

Interestingly, the measurement also provides the sign of
the GG, without any need for applying external magnetic
fields or performing additional gravity measurements. The
angular coefficient of the line best fitting phase data also
provides a direct measurement of the distance between the
barycenters of the two clouds [39]. In our case, we obtain
d»; =(0.3072+0.0003) m and d;, = (0.3086 £0.0004) m,
both in agreement with the expected values measured
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FIG. 3. As in Fig. 2, but with the source masses in the close
configuration.

with the standard time-of-flight technique. Finally, we
can estimate the average curvature over the measurement
baseline, {=(T,3—T,)/d=(1.74340.004)x 10> m~!s~2.

To evaluate the stability of our instrument, we perform
long-duration GG measurements with two atomic clouds
separated by a distance d of about 33 cm and with the
source masses in the far configuration. The two Als are
located in the linear region of the vertical acceleration
profile, where the vertical GG is highly uniform. The GG is
measured with both the method of the ellipse fitting (as in
[12,16]) and the new technique described above that,
although it is still using the ellipse fitting for the determi-
nation of the gradiometer phase at different Av, relies on a
measurement of the zero-crossing frequency to extract the
GG. The results from five measurement runs taken over five
successive days are shown in Fig. 4. We observe insta-
bilities at the level of 10 mrad, which are introduced by the
measurement systematics. The major source of instability
in our experiment is represented by the absolute ac Stark
shift produced by the inhomogeneities in the Raman lasers
intensity profile due to diffraction effects. This shift can be
compensated by using the method proposed in [40]. We
control the Coriolis phase shift by rotating the retroreflect-
ing mirror with piezoactuators [41,42]. Still, even when our
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FIG. 4. GG obtained with both the method of the ellipse fitting
(black circles) and the new technique based on the determination
of the zero-crossing frequency (red squares) from five measure-
ments taken over five days. Residual instabilities are due to the
systematics affecting our measurements.
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compensation scheme is active, systematic shifts up to
~4 mrad can be observed for a variation of the transverse
velocity of 0.1 mm/s. On the contrary, the distance
between the two clouds, as measured from the slope of
the linear fit to the experimental data, proves to be very
stable, at the level of 300 um, and reproducible from day to
day. The simultaneous velocity selection pulses, which
prepare the atomic clouds before starting the Al sequence,
ensure that the velocity difference Av,, is negligible. To
verify that, we have measured the gradiometer phase as a
function of a small asymmetry d7 in the time interval
between the first beam splitter pulse and the mirror pulse
(T') and the mirror pulse and the final beam splitter pulse
(T + dT). From the data, we estimate a value of Aw,
smaller than 40 ym/s, corresponding to a negligible
correction in the measurement of d. Therefore, we can
conclude that no contribution to the measurement system-
atics is coming from a drift or jitter in the relative position
of the atomic clouds.

Finally, we test the robustness of the GG measurement
against variations of the position of the atomic clouds. In
the same configuration as before, we alternate two meas-
urement cycles in which the position of the higher atomic
sample is modulated by +1 cm around the d =33 cm
measurement baseline. Results are shown in Fig. 5. In the
far configuration, we expect variations of the average GG
at the level of 0.04%/cm at the position of the higher
cloud, therefore negligible over a distance of 2 cm. As a
consequence, GG measurements obtained with the zero-
crossing frequency technique remain very stable. Relative
variations are at the level of a few percent, consistent with
the typical variations of the systematic shift introduced by
the ac Stark effect. In contrast, measurements performed
with the ellipse fitting technique show much higher relative
variations. As expected, they are at the 7% level, well
compatible with the relative variations Ad/d of the meas-
urement baseline due to the modulation of the initial
position of the higher atomic cloud.
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FIG. 5. GG obtained with both the method of the ellipse fitting

(in black) and the new technique based on the zero-crossing
frequency measurement (in red) when changing the position of
the higher atomic cloud by +1 cm (circle and square data).

This method can be used for an improved determination
of the Newtonian gravitational constant G. The proposed
experimental setup is similar to the one described in [21].
However, rather than positioning the source masses with
the purpose of generating stationary points of the gravita-
tional acceleration, the cylinders can be uniformly distrib-
uted along the tube where atoms are interrogated with the
Al sequence [43]. The resulting GG of 4.4 x 1070 s72 is
homogeneous to 2.7% over a distance of 18 cm. Two
atomic clouds at a distance of 10 cm can be used to probe
the GG generated by the source masses in a standard Mach-
Zehnder Al with an interrogation time 7 = 150 ms. The
effect of Earth’s GG is removed by taking the difference
between measurements in two different configurations,
with and without the tungsten cylinders. The GG is
measured with the technique described above, which is
highly insensitive to positioning errors. The gradiometer
phase for different frequency detunings Av at the z pulse of
the Al is determined with the ellipse fitting method. Every
200 s, a linear fit extracts the zero-crossing frequency and
the corresponding GG. The frequency detuning Av is also
used to open the ellipses in a controlled way and improve
the fit convergence, thus avoiding the magnetic field pulses
used in [21]. With this method, the relative uncertainty
introduced by errors in the vertical position and size of the
clouds, originally evaluated to 56 ppm [21,35], is now
reduced well below the 10-ppm level. At the same time, the
smaller curvature of the gravitational acceleration in the
horizontal plane also reduces the relative uncertainty due to
the error on the horizontal position and size of the cloud
from 44 ppm down to 20 ppm. Performing a measurement
down to the 10-ppm level requires a control on the drift in
the position of the atomic clouds at the level of 100 um/s,
which is well compatible with our setup. Alternatively,
the gravity gradiometer can be operated close to the
zero-crossing frequency, where compensation of the phase
shift introduced by the GG can easily be ensured within
0.1%—-1%. The differential effect of the residual GG
between the two configurations of the source masses is
now a factor of 10> — 103 less sensitive to phase insta-
bilities and it can be measured as in [21], after introducing a
magnetic field pulse to open the ellipses. In summary, the
major sources of systematic error in the G measurement,
represented by the size of the atomic clouds and their
positioning along the symmetry axis of the source masses,
can easily be reduced from 72 ppm to 20 ppm in the current
setup. By enhancing the gravity gradiometer sensitivity
and improving the mass distribution, an Al determination
of G at the 10-ppm level or below appears feasible [43].

In conclusion, we have experimentally demonstrated the
method proposed in [36] for compensating the effect of
GGs in an Al showing that a Ramsey-Bordé Al can indeed
be operated to high sensitivity and accuracy in the presence
of nonuniform forces. Our measurements overcome the
limitations imposed by the uncertainty in the knowledge of
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initial position and velocity of the atoms contributing to
the Al signal. We have used this technique for precise
measurements of GGs without any need for an independent
determination of the measurement baseline. Finally, we
have discussed a new scheme for controlling the system-
atics arising from the errors on the size and the positions of
the atomic clouds in a precision measurement of the
Newtonian gravitational constant. Our results find impor-
tant applications in different areas of research: in funda-
mental physics, for atom-based tests of Einstein’s
equivalence principle or future atom Als for detecting
gravitational waves, in metrology, for the measurement of
the Newtonian gravitational constant G or the fine structure
constant a, and in geodesy and Earth observation, where
precision measurements of gravity, GG, and curvature are
required to map the geoid or to study the mass distribution
in the underground.
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