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Jones-Roberts solitons are the only known class of stable dark solitonic solutions of the nonlinear
Schrödinger equation in two and three dimensions. They feature a distinctive elongated elliptical shape that
allows them to travel without change of form. By imprinting a triangular phase pattern, we experimentally
generate two-dimensional Jones-Roberts solitons in a three-dimensional atomic Bose-Einstein condensate.
We monitor their dynamics, observing that this kind of soliton is indeed not affected by dynamic (snaking)
or thermodynamic instabilities, that instead make other classes of dark solitons unstable in dimensions
higher than one. Our results confirm the prediction that Jones-Roberts solitons are stable solutions of the
nonlinear Schrödinger equation and promote them for applications beyond matter wave physics, like
energy and information transport in noisy and inhomogeneous environments.
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Waves play a key role in physics and technology, ranging
from quantum mechanics to telecommunications. In linear
media, waves spread both transversally and longitudinally
due to dispersion, making them unsuitable for directed
transport. This is at variance with nonlinear media, where
solitary waves (solitons) become possible. In solitons, the
broadening due to dispersion is counteracted by a nonlinear
compression, leading to form-stable propagation at sub-
sonic speed over large distances and particlelike properties.
Depending on whether the soliton is a density dip or bump,
it is classified as dark or bright, respectively. Both bright
and dark solitons have been found in as diverse areas as
water channels [1], high-speed data communication in
optical fibers [2,3], energy transport along DNA in biology
[4,5], and tropospheric phenomena like Morning Glory
cloud formation [6]. In experiments with ultracold atoms,
bright solitons [7] and dark plane solitons (DPS) [8–12]
have been extensively studied. However, with the notable
exception of dipolar systems [13], bright solitons are prone
to collapse. Furthermore, DPS in two or three dimensions
always rapidly decay due to thermodynamical or dynamical
(snaking) instabilities [8,14,15]. Indeed, so far, stable
long-living dark solitons have been realized only in

one-dimensional systems [9–12]. In 1982, Jones and
Roberts predicted a class of dark solitons that are stable
both in two and three dimensions [16] and that, in contrast
to DPS, have a finite extent in every direction. Jones-
Roberts solitons (JRS) feature indeed a distinctive elon-
gated shape that allows propagation without change of form
and, due to their finite size and area, they are expected to
be immune to the snaking instability and to be resilient
against scattering of thermal excitations [17]. Despite their
outstanding properties, so far the experimental observation
of JRSs has been elusive. In this Letter we report the
experimental realization of two-dimensional JRSs,
achieved by imprinting a specific phase structure onto an
atomic Bose-Einstein condensate (BEC). We find that, as
predicted by Jones and Roberts, these solitons are immune
to both dynamical and thermodynamical instabilities and
indeed their lifetime greatly exceeds the one of simple
DPSs, created with the same technique. We characterize
our JRSs in terms of their size, speed, and direction of
propagation, finding good agreement with numerical sim-
ulations. In addition, we demonstrate that our JRSs fulfil
the Kadomtsev-Petviashvili condition, as predicted by
Jones and Roberts in their seminal work [16].
At the mean-field level, BECs are excellently described

by a nonlinear Schrödinger equation called the Gross-
Pitaevskii equation (GPE):
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where Ψ is the condensate mean-field wave function,m the
mass of the atoms, V the trapping potential, and g ¼
4πℏ2a=m with a the s-wave scattering length, that at low
temperatures parametrizes the strength of the interatomic
interactions. In their seminal paper, Jones and Roberts
demonstrated that, in addition to the well-known 1D dark
soliton, Ψ ¼ ffiffiffiffiffi

n0
p

tanhðx= ffiffiffi
2

p
ξÞeign0t=ℏ, with n0 the con-

densate density and ξ ¼ ð8πn0aÞ−1=2 the healing length,
Eq. (1) allows stable solitonic solutions also in two and
three dimensions. They further demonstrated that the shape
and properties of JRSs depend on their speed v. In two
dimensions, for v finite but lower than the speed of sound c,
they take the form of finite line-shaped density minima,
called rarefaction pulses. In the limit v → 0 instead, they
transform into spatially separated vortex-antivortex (VA)
pairs that mutually propel each other [16]. In the first case,
the vorticity vanishes and the phase pattern shows a dipolar
structure of two phase winding points of opposite sign
connected via an elongated phase step [18]. In the case of
spatially separated VA pairs, the phase pattern consists, as
one would expect, of two separated 2π phase winding
points of opposite charge. A similar picture holds for 3D
systems, where JRSs take the form of axisymmetric solitary
waves transitioning from rarefaction pulses to vortex rings,
instead of VA pairs.
To realize our BEC, in the experiment we start loading in

10 s 108 87Rb atoms in a 3D Magneto-Optical Trap (MOT)
fed by a 2DMOT. After an optical molasses stage the atoms
are pumped in the jF ¼ 2; mF ¼ 2i state and then mag-
netically transported to the science chamber by moving the
trapping coils. In the science chamber the atoms are further
cooled by radio frequency evaporation and then transferred
into an optical dipole trap. This is produced by a single
astigmatic beam at 1550 nm, focused to a waist of 11 μm.
The distance between the two foci is approximately 1 mm.
The atoms are transferred into the region where the beam is
focused vertically, providing a strong confinement in the
vertical direction and much weaker confinement in the
horizontal plane. A nearly pure BEC of typically 4 × 104

atoms in the jF ¼ 2i ground state hyperfine manifold is
then formed with a subsequent evaporation. The final
trapping frequencies are 2π × ð5; 30; 250Þ Hz, leading to
an oblate BEC.
To create the JRSs, we employ a phase imprinting

method [19]. The phase imprinting and imaging setup is
illustrated in Fig. 1(a). A near-resonant light is reflected by
a digital micromirror device and then sent onto the atoms
along the vertical direction using a high-resolution optical
microscope objective. Each of the 1920 × 1080 micro-
mirrors can be individually controlled, allowing them to
imprint on the reflected beam any arbitrary intensity pattern
Iðx; yÞ. The phase of the atoms is therefore locally changed
by inducing a dipole potential Udipðx; yÞ ∝ Iðx; yÞ=Δ,
where Δ is the detuning with respect to the atomic
transition. The detection light is superimposed to the

imprinting beam on a polarizing beam cube. The atoms
are imaged by absorption imaging with a CCD camera
using a second microscope objective that allows a reso-
lution of ≃1 μm.
By performing numerical simulations using the GPE, we

have found that imprinting a homogeneous triangular-
shaped phase structure on our BEC leads to the nucleation
of a couple of rarefaction pulses. After formation, each of
them travels approximately in the direction perpendicular
to the corresponding edge of the triangle, as shown in
Fig. 1(b). The triangular shape combines two key features
of JRSs: phase winding around its vertices and an elongated
phase profile along its edges. To identify the most efficient
way to create the JRSs, we have performed a systematic
numerical study changing the shape and the position of the
imprinted triangle. We have found that a triangle whose
lower vertex subtends an angle of 90 deg and that imprints a
phase difference of π is the best choice to create 2 long-
living JRSs. Smaller subtended angles lead to the creation
of JRSs too close to the upper border of the BEC, limiting
their lifetime. Larger angles instead launch the JRSs more
in the direction of the short axis, also shortening the time
they can travel through the BEC. Finally, we have found
that imprinting a phase step lower than 0.9π leads to the
same effect as imprinting a triangle with a smaller sub-
tended angle. For these reasons, in the experiment the
imprinted triangle has the lower vertex positioned at the
center of the BEC and subtends an angle of 90 deg. We
illuminate the BEC with a light pulse at approximately
10 GHz detuning from the jF ¼ 2i → jF0 ¼ 3i transition
for 28 μs to create a phase difference of π. Before perform-
ing absorption imaging on the BEC along the vertical
direction, we then allow a time of flight of 10 ms.

(a) (b)

FIG. 1. (a) Experimental setup for phase imprinting. An imprint
pattern displayed on a digital micromirror device (DMD) is
imaged by a microscope objective onto the atoms (see inset).
The detection light is superimposed on a polarizing beam splitting
cube and transverses the atomic cloud, whose shadow is imaged
with a second microscope objective onto the chip of a CCD
camera. (b) Gross-Pitaevskii simulations of the creation of JRS via
phase engineering. A triangular phase pattern whose lower vertex
is approximately at the center of the BEC generates two JRSs that
travel across the BEC. The time between frames is 10 ms.
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The experimental evolution that follows the phase
imprinting is displayed in Fig. 2(a). In accordance with
our simulations [Fig 2(b)], we observe that the imprinting
generates two elliptical rarefaction pulses, one on each side
of the triangle. To characterize the motion and the proper-
ties of the two traveling JRSs, we perform two independent
Gaussian fits determining their angle θ, their position, their
depth n0, and their major (α) and minor (β) axis lengths. We
observe that, after the first 5 ms in which the initial sharp
triangular imprint decays into the two JRSs, these latter
notably travel through the BEC without any form of decay
for at least 40 ms. At this time, they stop since they reach
the border of the BEC. Indeed, as reported in Fig. 3(a), we
observe that until that time, their relative depth n0=n, where
n is the density of the unperturbed BEC, remains approx-
imately constant for the whole evolution. The absence of
decay as well as the overall dynamical evolution are in
agreement with the GPE simulations demonstrating that
JRSs are stable solutions of the nonlinear Schrödinger

equation. Indeed, from our results we can conclude that
finite temperature effects and quantum fluctuations [20] do
not significantly alter the dynamics of JRSs.
To provide a direct comparison, we also study the

evolution of a standard DPS created in our experiment
imprinting a linear phase step of π on the BEC. After only
≃10 ms we observe the DPS decaying due to snaking and
thermodynamic instability into a pair of vortices, as shown
in Fig. 3(b). The corresponding depth as a function of time
is also reported in Fig. 3(a). The lifetime obtained by an
exponential fit is 4 ms [21], therefore, an order of
magnitude lower than the lifetime of our JRSs. This latter
is limited only by the finite extension of our BEC.
Interestingly, when reaching the border of the BEC, each

JRS breaks into a VA pair [18,22], as shown in the inset of
Fig. 3(a). This is due to the fact that at this point the speed
of the JRSs rapidly drops to zero, making the rarefaction
pulses transition to separated VA pairs, as predicted by
Jones and Roberts [16]. This observation, in agreement
with our simulations, further confirms that our solitons
belong to the Jones-Roberts class. It is worth noticing that
the high trapping frequency in the vertical direction
prevents the formation of vortex rings. Indeed, the smallest
vortex ring has a size comparable to 4 times the healing
length ξ. For our BEC the healing length is≃420 nm while
the Thomas-Fermi radius in the vertical direction is 1.1 μm.
Therefore, our condensate cannot support the formation of
vortex rings but only of VA pairs along the compressed
vertical direction. From this we conclude that even though
our BEC is not strictly two dimensional, it can only support
2D JRSs.
By measuring the speed of propagation we confirm the

subsonic nature of our JRSs, as they move with an average
speed of 0.43 mm=s, which is smaller than the speed of
sound of 1.21 mm=s. Interestingly, in Ref. [23] it was
predicted that in two dimensions JRSs should become
vortex-antivortex pairs for velocities below ≃0.43c.
Despite the fact that our JRSs travel at 0.355c, in our
experiment they appear as pure rerefaction pulses and we
attribute this discrepancy with theory to the nonuniformity
of our trapped BEC. Furthermore, a single JRS is expected
to travel parallel to its minor axis [16]. However, the
direction of travel ϕ of our two JRSs features a different
angle, as reported in Fig. 3(c). While ϕ is very close to
π=4—the angle of the edge of the imprinting triangle—the
orientation θ of the two JRSs tends to a more (anti)parallel
configuration. This discrepancy could again be attributed to
the nonhomogeneity of our BEC but could also stem from
the fact that each of the two JRSs propagates in the velocity
field exerted by the other. Given the peculiar dipolar phase
structure of the JRSs, this could suggest that JRSs might
feature a dipolarlike interaction. As with our imprinting
method, including simulations, it is difficult to isolate one
effect from the other, we plan to study this effect in detail in
future work.

FIG. 2. (a) Experimental column density profiles of the BEC
taken at different times after the initial imprinting. The time of
flight is 10 ms. (b) Corresponding numerical simulations (in trap)
using the Gross-Pitaevskii equation. In both (a) and (b), two
elongated but spatially localized rarefaction pulses (density dips),
known as Jones-Roberts solitons, are formed close to the center
of the BEC after 5 ms from the initial imprinting. After formation,
the two rarefaction pulses maintain an almost constant finite size
until they reach the border of the BEC. The discrepancies
between (a) and (b) are mainly due to the switching off of the
trapping potential, that is not simulated in (b). The density defects
that are visible at the border of the BEC are due to unavoidable
spurious sound waves stemming from the phase imprint and are
unrelated to the physics of the JRS.
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By analyzing the dynamics of their size, we can gain
further insights on our JRSs. As reported in Fig. 4, after an
initial time of 5 ms in which the initial triangular structure
decays into the two JRSs, their major axis α reaches a stable
value that is kept until the solitons reach the border of the
BEC. This behavior coincides with the predictions of our
numerical simulations [solid line in Fig. 4(a)]. The size of
the minor axis β is at the limit of our resolution also after
10 ms of expansion and we do not observe any significant
change, as also expected from the simulations [Fig. 4(b)].
As can be seen in Fig. 4, once they are formed, our JRSs
acquire a shape that fulfils the Kadomtsev-Petviashvili
condition (KPC) [24] α ¼ C=χ2 and β ¼ C=χ (dotted
lines), with χ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v=c
p

=3 and C≃ ξ=3. The fulfil-
ment of the KPC is another characteristic feature of two-
dimensional JRSs with finite velocity [17,23]. Intuitively,
an increasing axis length over time in both directions due to
dissipation would be expected, similar to DPS becoming
wider and faster due to thermodynamic dissipation, as
observed in previous experiments [10]. Notably, as far as
our experiment can test, the fulfilment of the KPC provides
an outstanding immunity against both the snaking and the
thermodynamic instability, making the scattering of sound
waves also negligible [22].
In summary, we have experimentally realized and

characterized JRSs and confirmed that they are stable
solutions of the nonlinear Schrödinger equation, a long-
sought goal since their prediction in 1982 [16,23]. By
studying their motion and shape, we have confirmed the
fulfilment of the KPC and found discrepancies with respect
to the original theory that might be due to the

nonuniformity of our trapped BEC or to the interaction
between the two solitons. All this creates an experimental
opportunity to investigate the contribution of JRSs to the
specific heat of the BEC that possibly exceeds the phonon

FIG. 3. (a) Points: measured relative depth over time for the JRS (filled blue) and DPS (open orange) as a function of time. Error bars
are one σ statistical error. The blue solid line is the depth predicted by the numerical simulations rescaled to take into account the finite
resolution of our imaging system (≃1 μm). The orange dashed line is an exponential fit to the data. The inset shows an absorption image
of our JRSs reaching the border of the BEC and breaking into VA pairs. The experimental observations are in good agreement with the
simulations. The phase structure illustrates that the phase winds in opposite directions around the two winding points. (b) Experimental
column density profiles of DPS at different evolution times showing the decay due to snaking instability. (c) Points: measured
orientation of the JRSs. Error bars are one σ statistical error. Filled black and open red points correspond to solitons traveling towards left
and right, respectively. The solid lines are the prediction from the numerical simulations. The orientation shows small variations over
time due to sound waves traveling through the BEC and a substantial discrepancy with respect to the direction of travel ϕ, indicated by
the dashed lines. The inset shows the definition of the angles θ and ϕ.
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FIG. 4. (a) Evolution of the long axis α of the JRSs as a function
of time. Points are the experimental data while the solid line is the
result of the numerical simulations. The small wiggles are due to
sound waves traveling across the BEC. The scale on the left
(right) relates to the experimental data (simulations). The scaling
factor of 3 comes from the 10 ms time of flight and is in
accordance with the numerical simulations. The dashed line
(related to the scale on the right) is the mean value of the KPC for
times > 5 ms, and the shaded band takes into account the
fluctuations of the speed of the solitons. (b) The same as
(a) but for the short axis β. The different scaling factor takes
into account also the limited resolution of our imaging (≃1 μm).
Error bars for (a) and (b) are one σ statistical error.
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contribution [25]. Furthermore, studying the onset of
vortex-free rarefaction pulses can also shed light on the
anomalous critical scaling in acoustic turbulences described
by the Kardar-Parisi-Zhang equation [26], which is relevant
in turbulent systems far from equilibrium such as ava-
lanches [27], formation of fire fronts [28], and surface
growth [29]. The outstanding resilience of JRSs against
dynamical instabilities and thermal decay might allow their
propagation in disordered media, suggesting that they can
play a significant role in many areas of science. This
encourages the search for similar phenomena in other areas
of physics, chemistry, and biology and opens up novel
technology opportunities in directed transport through
homogeneous but nonlinear media.

The data presented here are available from the research
data management system of the University of Birmingham,
accessible online [30].
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