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Rotational superradiance was predicted theoretically decades ago, and is chiefly responsible for a
number of important effects and phenomenology in black-hole physics. However, rotational superradiance
has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we
investigate the behavior of sound and surface waves in fluids resting in a circular basin at the center of
which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder,
surface and sound waves are amplified. Two types of instabilities are studied: one sets in whenever
superradiant modes are confined near the rotating cylinder and the other, which does not rely on
confinement, corresponds to a local excitation of the cylinder. Our findings are experimentally testable in
existing fluid laboratories and, hence, offer experimental exploration and comparison of dynamical
instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical
systems.
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Introduction.—Superradiant amplification of waves by
rotating systems has been predicted to arise in a variety of
setups [1]. Zel’dovich pioneered the studies of super-
radiance by rotating objects, showing that low-frequency
electromagnetic waves scattered by a rotating conducting
cylinder are amplified [2–4]. Following the original pro-
posal, Misner [5] suggested that rotating black holes would
also amplify low-frequency waves, which was confirmed
analytically and numerically by several authors [1,6–8].
More generally, in curved spacetimes, superradiance leads
to a wealth of interesting phenomenology, including float-
ing orbits [9] and superradiant instabilities which lead to
interesting constraints on ultralight fields [10–12], and even
new hairy black hole configurations [13]. Upon quantiza-
tion, superradiance yields spontaneous emission of radia-
tion, which was historically a precursor to black-hole
evaporation.
Despite the wealth of theoretical and astrophysical

implications, rotational superradiance has never been
observed. In this Letter, we discuss rotational superradiance
in fluids, with the aim of implementing such a setup in the
laboratory. Our analysis builds on previous work which
showed the existence of superradiant scattering of both

sound and surface waves by a rotating analogue black hole
[14–18] (the main difference in comparison to our work is
the energy extraction mechanism, which relies on the
trapping of modes inside the analogue event horizon). In
fluid dynamics, this amplification effect is called over-
reflection [19–22] and has been studied mostly for vortex
sheets in supercritical flows (flow velocities larger than the
wave velocity). Our main objective is to investigate the
possibility of superradiant amplification and superradiant
instabilities for waves propagating on a static fluid flow
around a central rotating cylinder. The cylinder is charac-
terized by an impedance, which is a well-known concept in
acoustics, describing the interaction between the wave and
the scatterer. Several factors like thickness, porosity, and
fiber size influence its value [23]. The possibility of
manipulating the impedance of a given object [24,25]
motivates and strengthens our analysis. For this reason,
we will provide a precise account of how the value of the
impedance influences superradiance.
The setup.—Consider a (initially static) fluid of density

ρ0 constrained between two concentric cylinders of radii R0

and R1 > R0. The inner cylinder rotates with constant
angular velocity Ω, whereas the outer cylindrical wall is at
rest. After one sets the cylinder in motion, the initially still
fluid will be dragged by the cylinder’s motion until it
reaches an equilibrium state. This is the circular Couette
flow. We assume that Ω is sufficiently small to avoid the
formation of Taylor vortices [26,27]. As discussed in the
Supplemental Material, all viscous effects can be neglected
[28]. In particular, the time scales associated with
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superradiant effects are much lower than the time scale of
the diffusion of angular momentum from the surface of the
cylinder to the flow. For all practical purposes, the fluid can
be considered to be at rest.
Scattering off a rotating cylinder.—The propagation

of both sound and surface waves on a static and inviscid
flow is described by a scalar field ψ1ðt; r;ϕÞ ¼
½φðrÞ= ffiffiffi

r
p �eimϕ−iωt which obeys the wave equation

∂2
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��

φðrÞ ¼ 0: ð1Þ

Here ω is the frequency of the wave and m is the azimuthal
wave number.
We assume that the outer cylinder is sufficiently far away

from the inner one that its presence can be ignored in a
scattering experiment. Far away from the inner cylinder
(r ≫ R0), the wave is composed by an incident part with
amplitude jA−j and a reflected part with amplitude jAþj,
that is,

φðrÞjr→∞ ¼ A−e−iωr=c þAþeiωr=c: ð2Þ

At the surface of the cylinder, waves can exchange
energy and momentum with the cylinder. This process is
encoded in a boundary condition involving the impedance
Zω of the cylinder, which is a complex number relating the
pressure change to the radial velocity perturbation on
the cylinder [31]. In general, it depends on the frequency
of the perturbation [32].
The real part of the impedance is called resistance and

relates to the energy flow. We assume ReðZωÞ > 0,
corresponding to a surface which absorbs energy. The
imaginary part, on the other hand, is called reactance and
relates to the natural oscillation frequency of the surface. If
the frequency of the incident wave resonates with the
surface, one has ImðZωÞ ∼ 0, as in [33]. On the other hand,
far from resonance, the surface of the cylinder barely moves
under the action of the wave and behaves like a hard wall.
In terms of impedance, the boundary condition for both

sound and surface waves in the rest frame of the cylinder is
�∂rψ1

ψ1

�
�

�

�

�

r¼R0

¼ −
iρ0ω
Zω

: ð3Þ

When the cylinder rotates uniformly with angular velocity
Ω, it is sufficient to transform to a new angular coordinate
~ϕ ¼ ϕþ Ωt, which effectively amounts to the replacement
of ω with ~ω ¼ ω −mΩ in (3). In terms of the radial field φ,
we have

∂rφjr¼R0
¼

�

1

2R0

− iρ0
~ω

Z ~ω

�

φjr¼R0
: ð4Þ

Superradiance.—Equation (1) admits the general solu-
tion

φðrÞ ¼ C1

ffiffiffi

r
p

Jmðωr=cÞ þ C2

ffiffiffi

r
p

Ymðωr=cÞ; ð5Þ
where Jm and Ym are the Bessel functions of first and
second kinds. Because of the boundary condition (4), the
constantsC1 andC2 are related to the scattering coefficients
A� by

A� ¼
ffiffiffiffiffiffiffiffiffi

c
2πω

r

ðC1 ∓ iC2Þe∓iðmπ=2þπ=4Þ: ð6Þ

To characterize superradiance, it is common practice to
exploit the Wronskian W ¼ Imðφ�∂rφÞ, which is indepen-
dent of r [1,34]. At large r, it is

W ¼ ω

c
ðjAþj2 − jA−j2Þ ¼ ω

c
AωmjA−j2: ð7Þ

The number Aωm ¼ jAþj2=jA−j2 − 1 is defined as the
amplification factor. When Aωm > 0, the scattering process
is referred to as superradiance since the amplitude of the
reflected wave is larger than the amplitude of the incident
one. By equating the Wronskian above with the Wronskian
at the surface of the cylinder, one can relate the amplifi-
cation factor with the impedance

AωmjA−j2 ¼ −
ρ0c ~ωReðZ ~ωÞ

ωjZ ~ωj2
jφðR0Þj2: ð8Þ

As we see, the occurrence of superradiance depends solely
on the signs of ~ω and ReðZ ~ωÞ. As explained before, the real
part of the impedance is positive and, therefore, super-
radiance will occur as long as 0 < ω < mΩ, which is the
usual superradiant condition for waves scattering off a
rotating object [1].
Amplification coefficients.—Unfortunately, Eq. (8) is not

useful for determining the numerical value of the ampli-
fication factor; the full solution of the wave equation is
needed. Combining Eqs. (4) and (5), one finds

Aωm ¼
�

�

�

�

σ−1
σ Ym − iZY 0

m þ i σ−1σ Jm þ ZJ0m
σ−1
σ Ym − iZY 0

m − i σ−1σ Jm − ZJ0m

�

�

�

�

2

− 1; ð9Þ

where the dimensionless parameters σ ¼ ω=ðmΩÞ,
Z ¼ Z ~ω=ðρ0cÞ, and α ¼ ΩR0=c have been defined. For
short, we write Ji ¼ JiðmασÞ and Yi ¼ YiðmασÞ. Note that
α measures how fast the cylinder is rotating: α < 1 (α > 1)
represents a subcritical (supercritical) cylinder, which
rotates slower (faster) than the wave speed.
In Fig. 1 we plot the amplification factor as a function of

σ for different rotation speeds and a fixed impedance
Z ¼ 1 − i, which is a typical value for the impedance of
a fibrous material [32]. Here and throughout, we assume
m ¼ 1 since it maximizes the amplification for most values
of Z. For fixed α, Aωm attains its maximum Amax

m at the
superradiant frequency σmax.
To have a better understanding on how large Amax

m can be,
we analyze the limits of small and large wavelengths λ
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using the relation λ=R0 ¼ 2π=ðmασÞ. In fact, if the radius
of the inner cylinder is much smaller than the wavelength λ
of the incident waves, i.e., mασ ≪ 1, the amplification
factor (for m > 0) reduces to

Aωm ¼ −
8πReðZÞðσ − 1Þ
22mðm!Þ2jZj2σ ðmασÞ2mþ1: ð10Þ

This formula holds both in the sub- and supercritical
regimes. Because of the power law decay, the resulting
amplification factor is typically very small (Aωm ≪ 1) in
this limit, unless the impedance is small jZj ∼ 0 and/or the
cylinder is fast (α ≫ 1).
On the other hand, if mασ ≫ 1, corresponding to

λ=R0 ≪ 1, the amplification factor (for m ≥ 0) can be
recast as

Aωm ¼ −
4ReðZÞσðσ − 1Þ

f½1þ ReðZÞ�σ − 1g2 þ ImðZÞ2σ2 ; ð11Þ

which does not depend on α. To obtain a significant
amplification in this situation, one needs a material with
ImðZÞ ≈ 0. Indeed, if κ ¼ ReðZÞ=ImðZÞ, the maximum
amplification is Amax

m ¼ 2κðκ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

κ2 þ 1
p

Þ and occurs at
σmax ¼ ð1þ jZjÞ−1. In this case, the small wavelength
assumption is equivalent to ΩR0 ≫ cð1þ jZjÞ and, there-
fore, the cylinder must be supercritical.
It is natural for the amplification factor to depend on the

impedance and on the velocity of the cylinder. To illustrate,
we plot in Fig. 2 logðAmax

m Þ as a function of ReðZÞ and
ImðZÞ for α ¼ 0.5 and α ¼ 5. We observe that there is no
significant difference in the qualitative behavior of Amax

m
when varying the rotation speed (i.e., α), except for a
change in the scale of Z. In particular, superradiance occurs
for both sub- and supercritical cylinders, as one can
compensate for a lower angular velocity with a lower
impedance. More generally, any value of the amplification
can be obtained at fixed α by properly choosing the
impedance. Arbitrarily small values of Amax

m are obtained
as jZj is increased. Arbitrarily large values of Amax

m , on the
other hand, are obtained for impedances which lie close to
the white curves in Fig. 2.

These white curves represent points where Aωm diverges.
They correspond to solutions of the wave equation which
are purely outgoing far away from the cylinder, i.e., for
which A− in Eq. (2) vanishes. This extra boundary
condition turns the scattering problem into an eigenvalue
problem for the frequency, and is equivalent to finding the
poles σ ¼ σR þ iσI of Aωm in the complex plane. By
looking at the corresponding equation, we can show that
there is a unique solution for each m. If σI < 0, the
corresponding mode decays in time (analogously to the
ringdown of a black hole [35]). On the other hand, if
σI > 0, the mode is unstable, meaning that it will grow in
time until the linear approximation breaks down. The white
lines correspond to an eigenmode whose imaginary part is
exactly zero. They divide the Z-complex right halfplane
into two regions (see Fig. 2): inside (region I), an unstable
mode exists; outside (region II), the mode is stable.
This unstable mode corresponds to a local excitation of

the surface of the cylinder. Indeed, for a negative reactance
ImðZÞ < 0, there exist surface waves that are evanescent in

FIG. 1. Amplification factors Aωm for Z ¼ 1 − i and different
rotation speeds.

FIG. 2. Logarithm of the maximum amplification logðAmax
m Þ as

a function of the real and imaginary parts of the impedance for
α ¼ 0.5 (top panel) and α ¼ 5 (bottom panel). The white curve
separates the complex plane according to the stability of the
system: region I (inside) is unstable, while region II (outside) is
stable.
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the radial direction [31]. When including rotation, such a
mode possesses a negative energy when it lies inside the
superradiant regime 0 < ω < mΩ. Since it is evanescent in
the radial direction, it couples with the continuum of modes
in the fluid through a mechanism analogous to tunneling.
This leads to the observed dynamical instability: the
negative energy modes are amplified by emitting positive
energy waves in the fluid [36]. In Fig. 2, the stable and
unstable regions are plotted for m ¼ 1. When considering
higher m values, these regions tend to increase or decrease,
depending on α (but the corresponding instability time
scale does not change much).
Superradiant instabilities: “Acoustic bomb.”—Another

interesting application of superradiance is the possibility to
build an “acoustic bomb.” By confining the superradiant
modes near the rotating cylinder we can amplify the
superradiant extraction of energy and trigger another kind
of instability. In this simple setup, confinement is achieved
by the presence of the outer cylindrical surface (which is
characterized by an impedance Zext). Unlike the instability
discussed in the previous section, this one occurs for any
impedance. After imposing the appropriate boundary con-
ditions, we obtain from (5) the equation for the associated
eigenfrequencies,

iðσ − 1ÞJm þ σZJ0m
iðσ − 1ÞYm þ σZY 0

m
¼ iĴm − ZextĴ0m

iŶm − ZextŶ 0
m
; ð12Þ

where we have further defined Ĵm ¼ JmðmασR1=R0Þ and
Ŷm ¼ YmðmασR1=R0Þ for short.

As a point of principle, we solve Eq. (12) by taking
Z ∼ 1 − i and assuming a “perfect mirror” (jZextj → ∞)
configuration, which is akin to the model proposed by Press
and Teukolsky for the “black-hole bomb” [37–39]. As the
distance between the inner and outer cylinders increase, we
show in Fig. 3 that the acoustic bomb instability rates
typically decrease (note that for a given ratio R1=R0, several
unstable modes coexist).
In Fig. 4 the real and imaginary parts of the eigenfre-

quencies are plotted using the ratio R1=R0 as a parameter.
Note that the unstable modes usually satisfy the super-
radiance condition 0 < σR < 1. A remarkable fact regard-
ing Fig. 3 is the existence of a peculiar mode (for α ¼ 5)
whose instability rate tends to a nonzero value as the ratio
R1=R0 increases. This unstable mode is simply the unstable
mode described in the preceding section, only slightly
perturbed by the outer boundary (when R1=R0 → ∞, it
becomes a pole of Aωm). The corresponding spiraling
behavior of the frequency in the complex plane resembles
the behavior of some quasinormal modes of near extremal
rotating black holes [40–42].
For the subcritical cylinder (α ¼ 0.5), the fastest growing

mode is σ ∼ 0.75þ 0.01i and occurs when R1=R0 ∼ 4.5.
The associated instability time scale is τi ¼ 100=Ω. For the
supercritical cylinder (α ¼ 5), on the other hand, if
R1=R0 ≳ 5, the characteristic time of the instability is
τi ¼ 8=Ω, which is even shorter than the previous result.

FIG. 3. Instability rate for the “acoustic bomb” modes as a
function of the ratio R1=R0 for α ¼ 0.5 (top panel) and α ¼ 5
(bottom panel). The impedance considered is Z ¼ 1 − 1i.

FIG. 4. Parametric plot of the instability rate and the oscillation
frequency of the modes confined between the cylinders. The
parameter used is the ratio R1=R0. (Inset) The peculiar mode
which spirals towards an unstable eigenvalue as R1=R0 increases
is shown in detail.
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Final remarks.—Although our model is extremely sim-
ple, the results we have obtained suggest the interesting
prospect of detecting superradiant amplification and acous-
tic bomb instabilities in a fluid laboratory. We offer an
alternative to existing proposals involving analogue black
holes (see [43] for another recent proposal, involving
nonlinear optics). The main message of this Letter is that,
by carefully selecting the impedance of a rotating cylinder,
one can observe superradiant effects. In particular, although
amplification increases with angular velocity, it is not
necessary for the cylinder to rotate at a speed that surpasses
the wave speed. At low rotation speeds, high amplifications
can be obtained by using a cylinder with a small imped-
ance. Because the impedance is a function of the frequency,
in order to observe the effect one has to match the required
impedance for large superradiance with the experimental
frequency.
Concerning the experimental observation of superra-

diance for surface waves in today’s available fluid labo-
ratories, a reasonable estimate for the parameters of the
setup is R0 ∼ 0–0.2 m, R1 ∼ 0.5–2 m, h0 ∼ 0–0.5 m,
ω ∼ 0–10s−1, and Ω ∼ 0–10s−1. The corresponding veloc-
ity of the inner cylinder is ΩR0 ∼ 0–2 ms−1. By adjusting
the fluid depth, one can set the wave speed to be as large as
c ∼ 2 ms−1. Hence, both sub- and supercritical velocities
are possible in a realistic experiment. In particular, both
cases discussed in this Letter (α ¼ 0.5 and α ¼ 5) are
reproducible for surface waves. If an inner cylinder with the
appropriate material (impedance) can be designed, super-
radiant effects should be detectable in the laboratory.
For sound waves, on the other hand, the velocities are

typically much larger (c ∼ 1500 ms−1 in water and c ∼
300 ms−1 in air). Hence, much larger rotation speeds, wave
frequencies, and cylinder radii are required for experimen-
tal implementation. For a given rotation speed Ω, the
parameter α for surface waves is typically 2 or 3 orders
of magnitude larger than the α parameters for sound waves.
Conversely, for a given cylinder with impedance Z ~ω, the
dimensionless parameter Z is 2 or 3 orders of magnitude
larger for surface waves than for sound waves. Taking all
the details into account, we believe surface waves provide
the easiest setup for experimental verification of super-
radiance. Nonetheless, the techniques recently developed in
the field of acoustic metamaterials [24,25] offer very
promising directions for sound waves as well.
In summary, although superradiant scattering has been

known for over 40 years, it has never been observed. We
propose here a feasible experimental setup inspired by
Zel’dovich’s cylinder and by rotating black holes. We
provide a detailed analysis of the influence of the imped-
ance on the scattering amplitudes and show that, by
carefully choosing it, arbitrarily large amplification coef-
ficients can be obtained. On the contrary, the gain coef-
ficient in the original superradiance proposal by Zel’dovich
is extremely small unless the cylinder’s velocity is

comparable to the speed of light [44]. Unlike the case
for analogue rotating black holes, where one has very little
control over the background flow, in our case the flow is
much simpler (static) and everything is encoded in the
impedance. The possibility to better control the amplifi-
cation through the impedance offers an excellent oppor-
tunity to observe superradiance, in either sound or
surface waves.
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