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Three-dimensional linear spin-wave eigenmodes of a vortex-state Permalloy disk are studied by
micromagnetic simulations based on the Landau-Lifshitz-Gilbert equation. The simulations confirm that
the increase of the disk thickness leads to the appearance of additional exchange-dominated so-called
gyrotropic flexure modes having nodes along the disk thickness, and eigenfrequencies that decrease
when the thickness is increased. We observe the formation of a gap in the mode spectrum caused by the
hybridization of the first flexure mode with one of the azimuthal spin-wave modes of the disk. A qualitative
change of the transverse profile of this azimuthal mode is found, demonstrating that in a thick vortex-state
disk the influence of the “transverse” and the “azimuthal” coordinates cannot be separated. The three-
dimensional character of the eigenmodes is essential to explain the recently observed asymmetries in an
experimentally obtained phase diagram of vortex-core reversal in relatively thick Permalloy disks.
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The study of spin-wave (SW) excitations in micro- and
nanosized magnetic elements is one of the most important
topics in modern magnetism. The dynamic spin-wave
eigenmodes of finite-size magnetic elements not only
determine the high-frequency properties of these elements,
but also provide valuable information about remagnetization
processes in nanomagnetic objects, as the change of the
magnetic ground state of an element is, usually, happening
through the softening of one of the SW eigenmodes of this
element. When the ground state of magnetization in a
magnetic element is spatially uniform the spatial distribution
of the spin-wave excitations can, usually, be factorized, and
represented as a product of three functions of three inde-
pendent coordinates (separation ansatz).
The situation becomes much more complicated in the

case when the magnetic element is thick, so that it has to be
treated as three-dimensional (3D), and the magnetization
ground state of the element is spatially nonuniform. In that
case the possibilities of traditional analytic methods are
limited; however, the essential information about SW
excitations can be obtained from micromagnetic simula-
tions. As it will be shown below, in a 3D spatially
nonuniform case the dependence of the spin-wave mode
profile on some of the spatial coordinates gets mixed, and

the above discussed separation ansatz traditionally used in
the analytic theory does not work anymore.
A relatively simple example of a magnetic element

having spatially nonuniform ground state of static mag-
netization is a vortex-state magnetic disk [1–3]. In a
cylindrical nanodisk with thickness h of a few tens of
nanometers and diameter 2R of typically several hundred
nanometers the magnetic ground state is a vortex. There the
magnetization curls in the plane of the disk with a clock-
wise (CW) or counterclockwise (CCW) circulation. At the
center of the disk in an area with a typical diameter of 10 to
20 nm the magnetization turns out of the plane [3] forming
the vortex core, which points either up or down, corre-
sponding to the two polarities p ¼ þ1 and p ¼ −1.
The spectrum of magnetic excitations in relatively thin

vortex-state magnetic disks, having a thickness in the
range of the exchange length [lex ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2A=ðμ0M2
sÞ

p

in
Système International (SI) units [4]] in which the dynami-
cal magnetization along the out-of-plane direction (i.e.,
transverse direction) can be considered uniform, has been
intensively studied in [1,2,5–18]. The lowest frequency
mode is the fundamental gyrotropic mode G0 with the
frequency in the range of 0.1–1.2 GHz [2,9,10,13]. It
describes the translational gyrotropic motion of the vortex
core and has an almost linear dependence of the mode
frequency on the disk thickness. The higher frequency
excitations are the dipolar spin-wave modes describing the
dynamics of the in-plane part of the magnetic vortex [7,11].
The dipolar in-plane modes have a square-root-like thick-
ness dependence of their eigenfrequencies in the range of
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several GHz [11,12], and are denoted by a pair of integers
(n,m). The radial mode number n ≥ 1 is the number of
radial nodes in the out-of-plane component of the dynami-
cal magnetization. The azimuthal mode numberm can have
negative and positive values and j2mj is the number of the
azimuthal nodes [2,7]. In the following, we consider
primarily the azimuthal in-plane modes with jmj ¼ 1.
In thicker vortex-state magnetic disks the problem of

finding spin-wave eigenexcitations becomes a three-
dimensional problem, as it becomes necessary to take into
account the possible variation of the dynamic magnetiza-
tion along the disk thickness and the formation of nodes in
the mode magnetization profile along this direction. This is
correct for all the dynamic modes of the magnetic vortex. In
particular, for the lowest in frequency gyrotropic mode, this
leads to the appearance in the disk spectrum of the so-called
“higher order gyromodes”GN (or “flexure”modes), having
a flexed line of the gyrating vortex core with N ≥ 1 nodes
along the disk thickness, see Fig. 1 and Refs. [19–22].
These flexure modes are dominated by the exchange
interaction, and their eigenfrequencies are inversely propor-
tional to the square of the disk thickness h [19]. In principle
all the SW eigenmodes of a vortex-state magnetic disk are
3D, but some of them, which have a spatially uniform
profile of the dynamic magnetization along the disk thick-
ness, are well described by the effectively two-dimensional
models developed in [2,7,11,14,18].
It should be noted that in all of the above mentioned

analytical approaches to the calculation of the frequencies
of the SW modes of a vortex-state magnetic disk, where a
linearized Landau-Lifshitz-Gilbert (LLG) equation [23,24]
is used, the coordinate dependence of the mode’s profiles
is factorized in separate functions, and the “approximate
eigenmodes” are obtained. Apart from the separation of
coordinates, the main approximation in these analytical
calculations is the neglect of the nondiagonal part of the
dipole-dipole interaction appearing in the effective field of
the LLG equation. This nondiagonal part describes the
dipole-dipole hybridization of the different approximate
eigenmodes taking place when their “approximate eigen-
frequencies” are sufficiently close to each other and when
their mode profiles have sufficient overlap [25].
Obviously, the presence of approximate eigenmodes

in the spin-wave spectrum of a relatively thick magnetic
disk with both increasing and decreasing frequency

dependences on the disk thickness may lead to a crossing
of the corresponding dispersion curves, and related hybridi-
zation of those approximate eigenmodes having similar
symmetry of their spatial profiles [25].
A similar hybridization of the approximate eigenmodes

is observed and calculated in relatively thin vortex-state
magnetic disks for G0 and the lowest dipolar SW modes
having radial index n ¼ 1 and opposite azimuthal indices
m ¼ −1 and m ¼ þ1 [6]. This hybridization leads to a
frequency splitting of the azimuthal dipolar spin waves that
agrees well with experimental results [15–17]. In addition,
the hybridization of G0, G1 and dipolar spin waves leads to
a reduction of the frequency of the gyrotropic mode for
increasing disk thickness [26]. This reduced frequency is in
better agreement to experimental results [19] compared to
previous analytical theory [2,7].
In the present Letter, we investigate the numerically

simulated “true” eigenmodes of relatively thick 3D mag-
netic disks (for details on the method see Supplemental
Material [27]). Our initial goal is to interpret these true
eigenmodes as hybridizations between the “approximate”
(or diagonal) three-dimensional eigenmodes with separated
spatial coordinates happening due to the nondiagonal
dipolar interaction between them. In order to remain in
the linear regime, only small amplitude excitations are used
to analyze the eigenmodes. Below we especially focus on
the spectral region where the frequencies of the approxi-
mate dipolar SWmodes, having a uniform profile along the
disk thickness in thin films, are close to the frequency of the
gyrotropic flexure mode G1 that has one node along the
thickness of the disk. We demonstrate that the hybridization
between these modes qualitatively changes not only the
frequency behavior of these modes, opening a spectral gap
near the point of degeneracy of the approximate eigen-
frequencies of one of the azimuthal dipolar modes
(m ¼ þ1) and G1, but also the transverse dependence of
this m ¼ þ1 SW mode. A node is created in its transverse
profile at the region of the vortex core (see Figs. 3 and 4),
leading to different dependences of the mode profile on the
“transverse” coordinate close to the vortex center and
outside of the core region. Thus, our numerical simulations
show that in thick 3D vortex-state magnetic disks the
dependence of the mode profile on the transverse and the
“azimuthal” coordinates is mixed, and cannot be separated
even in the linear regime.
The simulations are performed for circular Permalloy

disks with a diameter of 500 nm. Figure 2 shows the
frequencies of the true (hybridized) vortex eigenmodes as a
function of the disk thickness h. The resolution in h is
0.7 nm. The respective dominant character of the eigen-
mode is given by the color of the line: Orange represents
the fundamental gyrotropic mode G0, red the first gyro-
tropic flexure mode G1, and blue and green the azimuthal
spin-wave modes with n¼1,m ¼ −1 and n ¼ 1,m ¼ þ1,
respectively. For a vortex core pointing in the direction of
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FIG. 1. Schematic representation of the gyrotropic modes G0,
G1, and G2. The blue dots indicate nodes of the vortex-core
gyration radius.
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the observer the senses of rotation of these modes are CCW
for G0, G1 and the n ¼ 1, m ¼ þ1 mode and CW for the
n ¼ 1, m ¼ −1 mode.
In thin disks the dependence of the mode frequency of

G0 on the disk thickness is approximately linear, similar to
the analytical prediction [2]. Furthermore, our numerical
calculations show that, in agreement with the analytical
calculations [6], G0 is hybridized with both azimuthal
dipolar SW modes with n ¼ 1, m ¼ �1. This can be seen
in Figs. 3(a) and 3(d) from the uniform vortex-core gyration
along the disk thickness present for these SW modes. This
hybridization leads to the frequency splitting of the dipolar
modes with different values of the azimuthal index m
[6,15], which was briefly discussed in the introduction.
It also leads to the renormalization and a decrease of the
fundamental gyromode frequency [1,19,26] compared to
the “unhybridized” case [2] (see orange curve at large
thickness in Figs. 2 and 3 in Ref. [19]).
Approximate analytical calculations [19] predict that

for large thickness h the frequency of the nonhybridized
approximate G1 should scale as h−2 which is similar to the
dependence we find in our numerical simulations (red
curve in Fig. 2).
In Fig. 2 one can see a strong hybridization between this

flexure mode G1 (red curve) and one of the azimuthal
dipolar modes (green curve, m ¼ þ1) in the vicinity of
h ¼ 40 nm. Obviously, this strong hybridization qualita-
tively changes the thickness dependence of the spin-wave
spectrum of a vortex-state magnetic disk and opens a
spectral gap near h ¼ 40 nm.
ThehybridizationwithG1 is also evidencedby thegyration

radius of the vortex core as a function of the transverse

coordinate z numerically calculated at the frequencies cor-
responding to the dipolar mode n ¼ 1, m ¼ þ1 at different
values of the disk thickness [see Figs. 3(a)–3(c) and the
corresponding dynamicmode profiles in Figs. 4(a)–4(c)]. For
a disk thickness below h ¼ 40 nm the mode n ¼ 1,m ¼ þ1
is dominantly hybridized with G0 [see nearly z-independent
gyration radius for h ¼ 25 nm in Fig. 3(a)], whereas
above h ¼ 40 nm the strong hybridization with G1 can be
seen by a deep minimum in the gyration radius in Fig. 3(b)
(h ¼ 75 nm). For even larger disk thickness, themoden ¼ 1,
m ¼ þ1 is hybridized with the second flexure mode G2

having two nodes in the transverse profile [note the two
minima in the frame Fig. 3(c) for h ¼ 100 nm]. In summary,
these results imply that the dipolar mode n ¼ 1, m ¼ þ1,
whichhas the sameCCWsenseof the azimuthal rotation as all
the gyrotropic modes, is hybridized with all the gyrotropic
modes, in dependence of disk thickness. The hybridization is
so strong that the profile of this mode along the transverse
coordinate z qualitatively changes due to the hybridization.
This property of the CCW azimuthal mode (m ¼ þ1) is
further confirmedby the transversemodeprofiles presented in
Figs. 4(a)–4(c), showing that after the hybridization with the
mode G1 the transverse profile of the CCWmode acquired a
node only at the core region which does not exist without the
hybridization (for h < 40 nm), whereas the profile outside of
the core remains unchanged. This means that for sufficiently
thick magnetic disks the dependence of the mode profile on
the azimuthal and transverse coordinates is mixed and cannot
be separated. Therefore, the simple analytical formalism
based this separation ansatz is not applicable for the quanti-
tative description of the spin-wave eigenmodes in sufficiently
thick 3D vortex-state magnetic disks.
In contrast, the dipolar mode n ¼ 1, m ¼ −1 having the

opposite CW sense of the azimuthal rotation, is hybridized
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FIG. 2. Eigenfrequencies of the gyrotropic eigenmodes G0 and
G1 and the azimuthal spin-wave modes n ¼ 1, m ¼ �1 as a
function of the disk thickness h obtained from micromagnetic
simulations by Fourier analysis.
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FIG. 3. The vortex-core gyration radius r obtained for the
points (a)–(f) marked in Fig. 2 shows that the azimuthal spin-
wave modes do not only hybridize with G0 (a), (d)–(f), but also
with G1 (b) and G2 (c) (see also Fig. 4).
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with G0 only, independent of disk thickness. This follows
from the frames Figs. 3(d)–3(f) where the vortex gyration
radius is virtually independent of the transverse coordinate
z and from the corresponding mode profiles Figs. 4(d)–4(f).
Since there is no significant hybridization present between
this SW mode and the G1 mode, no spectral gap forms at
the crossing of these modes. The different hybridization
behavior of the CW and CCW rotating spin-wave modes
can be explained in the following way. The spatial profile
of the CW (n ¼ 1, m ¼ −1) azimuthal dipolar mode is
orthogonal to the profile of the mode G1 along both
azimuthal and transverse coordinates, and, therefore, no
hybridization of these modes takes place. In contrast, for
the CCW (n ¼ 1, m ¼ þ1) azimuthal mode its azimuthal
profile is similar to the azimuthal profile of the mode G1

due to the CCW senses of rotation of both modes, and, in
spite of the orthogonality of the transverse profiles of these
two modes, due to the mixing of the azimuthal and
transverse coordinates in a 3D case a strong hybridization
of the modes takes place, and a spectral gap is formed.
A similar behavior is also found at the crossing ofG1 with

higher order SW modes having mode numbers n ¼ 2, m ¼
�1 and n ¼ 3, m ¼ �1. Similar to the case of the n ¼ 1
modes, the spectral gaps are only formed for the CCW
rotating modes (m ¼ þ1) having an azimuthal profile
similar to that of the mode G1, but not for the CW rotating
m ¼ −1 modes (see Fig. II of the Supplemental Material
[27]). No hybridization between G1 and SW modes with
jmj ≥ 2 is found, which can be explained by a small or no
overlap of the mode profiles caused by different symmetries
(see Supplemental Material [27]).
We have also performed simulations for rings where the

central part of the vortex structure is removed, so that there is
no vortex core, and, therefore, no gyrotropic modes GN . In
this case the dipolar spin-wave modes with the opposite
sense of the azimuthal rotation (m ¼ þ1 and m ¼ −1) are
degenerate in frequency. This is shown by the black dashed
line in Fig. 2, which is always located between the

eigenfrequencies of then ¼ 1,m ¼ �1modes of the system
with a vortex core. This means that the non-monotonic
behavior of the frequency of the dipolar azimuthal modes in
amagnetic disk, either with or without the vortex core, is not
related to their hybridization with either of the gyrotropic
modes, and is an inherent property of the dipole-dipole
dispersion [see, e.g., dispersion equation (8) in [5] ].
An analysis of the numerically calculated spatial profiles

of the dynamic magnetization in the SW modes of the disk
(Fig. 4) reveals a z dependence outside the core region,
demonstrating that all true spin-wave eigenmodes have 3D
character [Figs. 4(b), 4(c), 4(e), and 4(f) 3D cuts] even
outside the core region. The transverse profiles of the true
eigenmodes of the vortex-state magnetic disk have maxima
at z ¼ h=2, and are similar to the profiles of the exchange-
dominated perpendicular standing spin waves (PSSWs) in
planar films (see, e.g., [28]).
Besides the modification of the mode spectrum the

hybridization between azimuthal spin waves and the first
order flexure mode has also to be considered in experiments
onvortex-core reversal. It was shown invarious publications
that the polarity of the vortex core can be reversed dynami-
cally, for example, by exciting the fundamental gyrotropic
mode [29,30] or spin waves [31]. Recently experiments on
vortex-core reversal by pulsed excitation of spin waves have
been performed [32]. The asymmetric experimental results
of [32] could not be reproduced by two-dimensional micro-
magnetic simulations, and only three-dimensional simula-
tions allow an adequate description of the experiment. It was
suggested that while the energy transfer from the external
field to the vortex structure is dominated by excitation of
azimuthal spin waves, the z-dependent vortex-core trajec-
tories found in the three-dimensional simulations are
responsible for the asymmetry observed in the experiments.
In the present Letter we have shown that the hybridization of
the dipolar azimuthal spin-wavemodeswith the higher order
gyromodes introduces a three-dimensional character to the
vortex-core dynamics of dipolar spin waves and in this way

FIG. 4. Mode profiles for the points (a)–(f) marked in Fig. 2. All cuts at z ¼ 1=2h (respectively, right images) show the bipolar
structure typical for a n ¼ 1, m ¼ �1 azimuthal spin-wave mode. The 3D cuts (left images) show no minimum at the core region in the
precession amplitude in (a) and (d)–(f), one minimum in (b), and two minima in (c), indicating a hybridization with G0, G1, and G2,
respectively.
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explains the origin of the observed three-dimensional core
trajectories in [32]. Therefore, we can conclude that this
hybridization can have significant influence on the results of
switching experiments.
To conclude, we have performed micromagnetic simu-

lations of the linear dynamical behavior of a vortex-state
cylindrical Permalloy disk based on the Landau-Lifshitz-
Gilbert equation. The numerically calculated true spin-wave
eigenmodes of the disk are interpreted in terms of hybridized
three-dimensional approximate eigenmodes of a simplified
version of the equation of motion, where the nondiagonal
part of the dipole-dipole interaction has been neglected. Our
three-dimensional numerical simulations confirm the well-
known frequency splitting of the n ¼ 1, m ¼ �1 azimuthal
spin-wave modes [6] caused by their hybridization with the
fundamental gyrotropic mode G0. The simulations reveal a
new effect appearing with increasing disk thickness: the
formation of a spectral gap. This is caused by the mixed
dependence of the spin-wavemode profiles on the azimuthal
and transverse coordinates resulting in the strong hybridi-
zation of the first flexure gyrotropic modeG1 and the dipolar
azimuthal mode n ¼ 1, m ¼ þ1 having the same CCW
sense of the azimuthal rotation as the mode G1. This also
means that in sufficiently thick vortex-state magnetic disks
the separation of the coordinate dependence (typically used
in traditional two-dimensional analytical calculations) can-
not be applied to model such systems and more involved
theoretical approaches are required.
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