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Precise characterization of quantum devices is usually achieved with quantum tomography. However, most
methods which are currently widely used in experiments, such asmaximum likelihood estimation, lack awell-
justified error analysis. Promising recent methods based on confidence regions are difficult to apply in practice
or yield error bars which are unnecessarily large. Here, we propose a practical yet robust method for obtaining
error bars. We do so by introducing a novel representation of the output of the tomography procedure, the
quantum error bars. This representation is (i) concise, being given in terms of few parameters, (ii) intuitive,
providing a fair idea of the “spread” of the error, and (iii) useful, containing the necessary information for
constructing confidence regions. The statements resulting from our method are formulated in terms of a figure
of merit, such as the fidelity to a reference state.We present an algorithm for computing this representation and
provide ready-to-use software. Our procedure is applied to actual experimental data obtained from two
superconducting qubits in an entangled state, demonstrating the applicability of our method.
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Introduction.—Recent experimental developments
have demonstrated increasingly precise manipulation and
control of quantum systems, paving the way towards the
hopeful implementation of a quantum computer [1–12].
The successful outcome of an experiment is usually
certified using quantum tomography. This is the task of
inferring the quantum state of a device from statistics of
measurements on many copies of the system [13–19].
Several methods perform this task and are widely used,
such as maximum likelihood estimation [20,21].
In the realistic regime where finite data are collected, the

error bars provided by most methods which are widely
applied in current experiments [19,22–24] are typically ill
justified and may lead to deceiving conclusions [25–27]. To
remedy this problem, Blume-Kohout [27] and Christandl
and Renner [28] resort to confidence regions. These are
regions in state space of all density matrices in which the
state lies with high probability. In contrast to Bayesian
methods [25], the reliability statements do not depend on
any prior distributions. However, confidence regions are
a priori difficult to construct explicitly [29]. Furthermore,
they are designed for worst-case scenarios and are often not
representative of the intuitive extent of the error.
Our main result is a novel representation of the output of

the tomography procedure—a summary of what the tomo-
graphic data tells us about the state of the system—which
we call quantum error bars. This description is (i) concise,
being given in terms of a few parameters only, (ii) intuitive,

providing a fair idea of the “spread” of the error, and
(iii) useful for precise statements, containing all necessary
information for constructing confidence regions. Our
method particularly inherits the mathematical robustness
of the confidence region approach.
The quantum error bars are designed to mimic the role

of classical error bars. Classically, an error bar typically
represents the standard deviation of the distribution of a
physical quantity caused by noise or statistical errors;
this distribution is usually assumed to be Gaussian.
Observe that, precisely, classical error bars (i) are a concise
description of the error, (ii) provide a fair, intuitive idea of
the spread of the quantity of interest, and (iii) allow us to
calculate precise statements such as the required error
interval to consider (e.g., 5 standard deviations) for a
specific requested certainty level (e.g., one in a million).
Our statements are formulated in terms of a figure of merit

which can be chosen freely. Our method works best when
the figure of merit is the fidelity to a pure target state, the
expectationvalue of an observable, or the trace distance to any
reference state. This encompasses most tomography settings.
The quantum error bars are constructed as follows. The

input is the experimental data from a general quantum
tomography experiment. Then we construct a particular
distribution μðfÞ of the chosen figure of merit f, which has
the property of containing the necessary information to
construct confidence regions at any confidence level using
the method of Ref. [28]. We show that in a wide range of
situations and for a class of figures of merit, the distribution
μðfÞ can be approximated by a simple analytical expression
with three parameters. The quantum error bars are then
straightforwardly deduced from these parameters.
We provide a simple numerical algorithm to obtain the

quantum error bars from the measurement data. By fitting a
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+numerical approximation of μðfÞ with our approximate
analytical model, we obtain the values of the parameters of
the model which directly translate to the quantum error bars.
The practicality of our method is demonstrated by applying
it to experimental data from two superconducting qubits.
Our work complements a vast literature which has

provided error analyses for experiments [30–42], as well
as explicit schemes [43–52], by introducing the novel
concept of quantum error bars. The complexity of such
schemes have also been investigated [53,54] and numerical
techniques put forward [25,55–57]. Furthermore, a number
of contributions propose measurement schemes for fidelity
estimation [58,59], tomography of matrix product states
[60], estimation of low-rank states [61,62], and permuta-
tionally invariant tomography [63–65]. An experiment
following such schemes would achieve target benchmarks
more efficiently, and it could still be analyzed using our
procedure, the latter being applicable to any measurements.
The rest of this Letter is structured as follows. First,

we briefly explain our quantum tomography setup and the
concept of confidence regions. We then derive our main
technical results, namely, the definition of μðfÞ, its appro-
ximate theoretical model, and the algorithm to estimate
μðfÞ numerically. Finally, we demonstrate the applicability
of our method on experimental data.
Quantum tomography setup.—A large numbern of copies

of a quantum system are measured using independent,
possibly different, measurement settings (Fig. 1) [66]. We
list all of the distinct positive operator valued measure
(POVM) effects in one set fEkg, and denote by nk the
number of times the POVM effect Ek was observed. We then
construct the likelihood function, which will be needed in our
analysis. It is defined as the probability with which the
observed data would occur if the true statewere n copies of ρ,

ΛðρÞ ¼ Pr½observed datajρ� ¼
Y

k

ðtr½Ekρ�Þnk ; ð1Þ

along with the log-likelihood,

λðρÞ ¼ −2 lnΛðρÞ ¼ −2
X

k

nk ln trðEkρÞ; ð2Þ

with a conventional (−2) factor [27,33].
Confidence regions.—In the following, we briefly review

the method of Ref. [28] for constructing confidence
regions, on which our method is based.
Confidence regions of confidence level 1 − ϵ are defined

as regions in state space which contain the true state with a
probability of at least 1 − ϵ. Crucially, it is the complete
procedure of assigning a region to tomographic data which
is certified and not the particular region itself (despite
the slightly misleading terminology). More precisely, for a
particular “true” state ρtrue, the measurement outcomes
observed in the tomography procedure are only one
possible outcome data set among the enormous amount
of theoretically possible data sets. Now, a data analysis
procedure associates with each observed data set a corre-
sponding region in state space. This tomography procedure
is said to yield confidence regions of confidence level
1 − ϵ if, for any true state ρtrue, the tomography procedure
associates with the observed data set a region which
contains ρtrue, except for some data sets with the total
probability ϵ. In other words, the complete tomography
procedure is successful except with the probability ϵ, in
which case the observed data set may cause the procedure
to report a bad region. These “exceptional data sets”may be
interpreted as misleading but highly unlikely situations. For
example, if we flip a fair coin many times and observe the
sequence of all “heads,” any reasonable inference scheme
would wrongly report that the coin is highly biased.
However this outcome only happens with disproportion-
ately small probability; introducing the parameter ϵ above
allows us to disregard such extremely unlikely cases.
The method of Ref. [28] is formulated using the estimate

density μBn [82], defined as

μBnðρÞ ¼ 1

cBn
ΛðρÞ; ð3Þ

where cBn is a normalizing factor such that
R
dρμBnðρÞ ¼ 1,

and where dρ is the Hilbert-Schmidt measure normalized
such that

R
dρ ¼ 1 [83,84]. The main result of Ref. [28] is a

criterion for certifying a procedure for yielding confidence
regions of confidence level 1 − ϵ. The criterion is the
following: the procedure should map to any tomographic
data (essentially) a region R in state space which satisfies

Z

R
μBnðρÞdρ ¼ 1 −

ϵ

polyðnÞ ; ð4Þ

i.e., which has high weight under the distribution μBn [85].

FIG. 1. Setup of quantum tomography. Measurements are taken
on n copies of a quantum system. The outcomes allow us to infer
what the state of the quantum system is. In this example a qubit is
measured using Pauli operators. Here, the experimental data are
most consistent with the state being j↑i, located at the top of the
Bloch sphere (in green). However, because only finite data are
collected, there is an uncertainty associated with this statement.
In the method of Ref. [28], a distribution μBnðρÞ (the red gradient)
is determined from the data, from which confidence regions can
be constructed (delimited by the dotted line). These are regions
in state space in which the state lies with high probability.
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Confidence regions for a figure of merit.—We may now
use this criterion to devise an explicit procedure for
constructing confidence regions, where the regions R are
chosen to be defined via level sets of a figure of merit.
A figure of merit fðρÞ may be any function of the

quantum state. For example, fðρÞ ¼ F2ðρ; jψRefihψRef jÞ
expresses the fidelity to a reference state jψRefi. The
reduced distribution of the estimate density μBnðρÞ onto
the figure of merit f is given by

μðfÞ ¼
Z

dρ μBnðρÞ δ(fðρÞ − f); ð5Þ

where δð·Þ denotes the Dirac delta function.
Now fix a threshold value f, and consider the region Rf

in state space consisting of all states whose figure of merit
is greater than or equal to f (Fig. 2). The weight of the
region Rf according to the distribution μBnðρÞ is exactly
given by

R
f0≥f μðf0Þdf0. Inverting this reasoning, for any ϵ,

we can find the maximum threshold value f required for a
region Rf to encompass a particular weight 1 − ϵ=polyðnÞ;
we know that this region is essentially a confidence region
by the criterion of Ref. [28]. [If the figure of merit is such
that smaller values of fðρÞ are desirable, such as the trace
distance to a reference state, then Rf is defined with f as an
upper, rather than lower, threshold value].
We arrive at a first important observation: if we find a

simple characterization of the function μðfÞ, then we are
capable of constructing confidence regions in terms of f for
any confidence level [86].
Determining μðfÞ numerically.—We propose a practical

procedure which determines a numerical estimate of μðfÞ.
We resort to a Monte Carlo–type scheme known as the
Metropolis-Hastings algorithm [87] (cf. also Refs. [88,89]).
This algorithm is a standard, well-tested scheme widely
used in computational physics—for instance, to simulate
the behavior of statistical systems at finite temperature
[90]—and there are standard methods for controlling the
uncertainties resulting from this procedure [91]. Using this
algorithm, we conduct a random walk in the quantum state
space and produce random samples distributed according to
the distribution μBnðρÞ. By collecting the values of fðρÞ at

the sampled points into a histogram, we obtain an estimate
for μðfÞ. (See the Supplemental Material [66] for details on
the random walk procedure).
Theoretical model for μðfÞ.—It turns out that, for a

selection of common figures of merit, we may understand
the numerical estimate of μðfÞ with a theoretical model.
Suppose fðρÞ is the fidelity to a pure reference state, the
expectation value of an observable, or the trace distance to
any reference state. Then, under some reasonable assump-
tions [92], we derive the following approximate theoretical
model for μðfÞ (see the Supplemental Material [66]):

μðfÞ ≈ Cðf − hÞme−a2ðf−hÞ2−a1ðf−hÞ; ð6Þ

with three fit parameters, a1, a2, and m (with m ≥ 0),
and one constant normalization factor C; h is a constant
depending only on the choice of the figure of merit.
Specific values of the constant h for some figures of merit
are summarized in Table I.
The parameters ða2; a1; mÞ are then mapped onto new

parameters which are more representative of the shape of
the function. The latter is viewed as a “skewed” Gaussian
(see the Supplemental Material [66]). The parameter f0
determines the position of the peak, the parameter Δ is
the half width of the “deskewed”Gaussian, and γ character-
izes the deviation from a perfect Gaussian. The parameters
ðf0;Δ; γÞ are the quantum error bars.
Application to experimental data.—We have applied the

algorithm to experimental data from two superconducting
qubits prepared in a Bell state according to the setup
described in Refs. [10,93]. The data were kindly provided
by the authors of Ref. [10]. The two qubits were measured
using slightly noisy individual Pauli operators, with a total
of n ¼ 55 677 measurements. The numerical estimation of
μðfÞ corresponding to the fidelity to the target Bell state is
depicted in Fig. 3. (See the Supplemental Material [66] for

FIG. 2. Construction of confidence regions from the distribu-
tion μðfÞ on the figure of merit. High weight intervals with
respect to μðfÞ (left plot) correspond to high weight regions in
state space with respect to μBnðρÞ (right diagram) which are
(essentially) confidence regions, according to Ref. [28].

TABLE I. Theoretical fit model for some selected figures of
merit. Here, jψRefi denotes any pure state, and ρRef any pure or
mixed state. We use the notationDðρ; σÞ for the trace distance and
hAiρ ¼ trðAρÞ for the expectation value of an observable A. The
value a is an extremal value of hAiρ for valid density matrices ρ
close to the region of interest, and x should be chosen as
x ¼ a − f (x ¼ f − a) if a is a maximal value (minimal value).
If the extremum point of A is far from the region of interest, the
logarithm term in the model can be dropped, as the exponential
will dominate the volume term, and a can be absorbed into the
other factors.

ln μðfÞ ≈ −a2x2 − a1xþm ln xþ c, where

Figure of merit fðρÞ x ¼
F2ðρ; jψRefihψRef jÞ ¼ hψRef jρjψRefi 1 − f

Dðρ; ρRefÞ ¼ 1
2
∥ρ − ρRef∥1 f

Observable hAiρ a − f or f − a
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details of the analysis of the experiment, including the
modeling of the measurements [94] into effective POVM
operators).
Quantum error bars.—The quantum error bars (f0, Δ, γ)

displayed in Fig. 3, are a concise and useful description
of the error analysis, from which reliable operational
statements can be made. Indeed, they provide the necessary
information for constructing confidence regions for any
given confidence level.
Also, as seen in Fig. 3, our error bars have the intuitive

interpretation as representing the spread of the figure of
merit according to μðfÞ. As such, the error bars are much
smaller than the size of a confidence region for a small
epsilon in the worst-case scenario, and they are in fact
of comparable size to those obtained by bootstrapping
[22,24,27,41,95] (see the Supplemental Material [66]).
Discussion.—Our work bridges the apparent gap

between carrying out a mathematically rigorous, well-
justified error analysis and using an ad hoc procedure
yielding smaller error bars. The quantum error bars provide
a convenient and precise representation of the information
provided by the tomography procedure.
While the fit model for μðfÞ is subject to some

assumptions and approximations, it applies well to many
examples studied by the authors in developing this work—
for n ∼ 100 total measurements already—and has been
tested with up to five qubits. Note that the numerical
procedure is not subject to these assumptions, and a
deviation from the fit model could easily be noticed in
some extreme examples considered (for example, with

goodness-of-fit measures). A further detailed discussion
on the reliability of our method is presented in the
Supplemental Material [66].
It is relatively straightforward to apply our method

to experimental setups consisting of a few qubits. Our
procedure is restricted neither to particular measurement
settings nor to specific quantum states, and it applies, for
example, to adaptive tomography. In general, noise in the
measurement procedure has to be modeled into effective
POVM effects analogously to our approach for the two
superconducting qubits. (In contrast, other approaches do
not require this [96–98]). We have developed a software
which implements our procedure [99] that is expected to be
directly applicable to most experimental settings.
For worst-case scenarios such as quantum cryptography

[100], it is still desirable to improve the methods for
explicitly constructing confidence regions. We do antici-
pate that the bounds used in Ref. [28] may be tightened to
yield smaller confidence regions for the same confidence
level. If the construction is not altered, the procedure
presented here would not require any change, as the same
histograms may still serve for constructing confidence
regions using the tightened proof.
We also insist that our results do not rely on any particular

interpretation of “probability,” such as a Bayesian or fre-
quentist one. This is because we consider experiments
which can, in principle, be repeated arbitrarily many times,
which is a regime where these interpretations are equivalent
[28]. Nonetheless, the Bayesian viewpoint is convenient, as
the distribution μðfÞ happens to coincide with the Bayesian
posterior corresponding to an agent starting the tomography
procedure with a Hilbert-Schmidt uniform prior.
Furthermore, even though our results are formulated in

the context of quantum state tomography, the same pro-
cedure may be applied to quantum process tomography
[101,102]. Indeed, the Choi-Jamiołkowski isomorphism
implies that determining a quantum process is mathemati-
cally the same as determining a bipartite quantum state.
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