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We introduce and illustrate a new approach to the unknotting problem via the dynamics of vortex strings
in a nonlinear partial differential equation of reaction-diffusion type. To untangle a given knot, a Biot-
Savart construction is used to initialize the knot as a vortex string in the FitzHugh-Nagumo equation.
Remarkably, we find that the subsequent evolution preserves the topology of the knot and can untangle an
unknot into a circle. Illustrative test case examples are presented, including the untangling of a hard unknot
known as the culprit. Our approach to the unknotting problem has two novel features, in that it applies field
theory rather than particle mechanics and uses reaction-diffusion dynamics in place of energy
minimization.
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The fundamental problem in knot theory is to determine
whether a closed loop embedded in three-dimensional
space is knotted. This unknotting problem, and more
generally the identification of knots, leads to deep math-
ematical connections throughout the natural sciences from
quantum field theory [1] to the properties of DNA [2].
There has been considerable recent interest in knotted
vortex strings in field theory in a range of areas from fluid
dynamics [3] to ultracold atoms [4], with superfluid vortex
strings providing a canonical example. However, in such
systems there are reconnection events (where crossing
strings exchange partners) that change the knot type and
eventually all knots completely untie, accompanied by the
production of a set of unknotted circles. A very recent
comprehensive analysis of the untying pathways of initially
knotted superfluid vortex strings suggests that some uni-
versal mechanisms are at work [5]. An exception to this
class of field theories is the Skyrme-Faddeev model [6],
where static minimal energy knotted vortex strings exist
[7], stabilized by a topological charge. However, even in
this system, reconnection events take place; therefore, the
knot type is not conserved during energy relaxation, and
indeed an optimal minimal energy knot can appear via
reconnection from the unknot.
The ubiquitous reconnection of vortex strings in non-

linear physical fields has reduced their impact on knot
theory. In the present Letter we propose a novel application
of vortex strings to knots by considering a reaction-
diffusion system in which the vortex strings appear to be
averse to reconnection. In particular, we present some

illustrative test case examples of unknots that untangle
without reconnection, to yield a circular unknot. The
dynamics of vortex strings in this system is therefore in
remarkable contradistinction to the universal properties
discussed in Ref. [5]. Studying knots via topology pre-
serving vortex string dynamics is a new paradigm con-
necting classical field theory, knot theory, and partial
differential equations. In contrast to conventional knot
untangling methods, which apply particle mechanics and
energy minimization, our approach is novel in its applica-
tion of field theory and reaction-diffusion dynamics to this
problem. The use of reaction-diffusion systems as a
computation device is a current hot topic in the field of
novel and emerging computing paradigms [8] and our
approach to knot untangling provides a new application in
this field.
The reaction-diffusion equation of interest in this Letter

is the FitzHugh-Nagumo system, which is a simple
mathematical model of cardiac tissue as an excitable
medium [9]. The nonlinear partial differential equations
are given by
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where uðr; tÞ and vðr; tÞ are the real-valued physical fields
defined throughout three-dimensional space with coordi-
nate r, and where t denotes time. The remaining variables
are constant parameters that we fix to be ε ¼ 0.3, β ¼ 0.7,
γ ¼ 0.5 from now on.
In two-dimensional space this system, with the param-

eter values given above, has rotating vortex solutions, often
called spiral waves [9], with a period T ¼ 11.2 and u and v
wave fronts in the form of an involute spiral with a
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wavelength λ ¼ 21.3. Characteristic time and length scales
are determined by the parameters T and λ and, in particular,
the vortex core can be assigned a radius λ

2π. The center of the
vortex is the point at which j∇u × ∇vj is maximal, and this
quantity is localized in the vortex core.
Motivated by the observed short-range repulsive force

between vortex cores, it was conjectured many years ago
[10] that knotted vortex strings in the three-dimensional
system might preserve their topology under FitzHugh-
Nagumo evolution. Numerical support for this conjecture
was obtained [11] by simulations on long time scales
(thousands of vortex rotation periods) for the simplest knot
and link (the trefoil knot and the Hopf link). However,
investigations of more complicated vortex string geom-
etries or potential applications to knot theory have
remained elusive because of the difficulties in obtaining
more general initial conditions beyond symmetric repre-
sentations of simple knots.
In this Letter, we remove this obstacle by adapting a

recent scheme [12], introduced for superfluid vortices, to
the FitzHugh-Nagumo system. The method involves a
Biot-Savart construction and allows the creation of initial
conditions for a vortex string with arbitrary shape and
topology. In detail, given any nonintersecting closed curve
K, one imagines this curve to be a wire carrying a constant
current and computes the associated magnetic field BðrÞ
using the Biot-Savart law

BðrÞ ¼ 1

2

Z
K

ðr − lÞ × dl
jr − lj3 ; ð2Þ

where l is a coordinate on K. The scalar potential ΦðrÞ,
defined byB ¼ ∇Φ is then computed by fixing a base point
r0 and performing the line integration

ΦðrÞ ¼
Z
C
Bðr0Þ · dr0; ð3Þ

where C is a curve that starts at r0 and ends at r whilst
avoiding K. Finally, the initial FitzHugh-Nagumo fields u
and v are obtained from the scalar potential using the
formulas

u ¼ 2 cosΦ − 0.4; v ¼ sinΦ − 0.4: ð4Þ

The subtraction of the constants in Eq. (4) is motivated by
the fact that the center of a vortex is roughly associated with
the field values ðu; vÞ ¼ ð−0.4;−0.4Þ. The scaling factor of
2 reflects the property that the fields outside the core of a
single planar vortex perform a periodic oscillation in the
ðu; vÞ plane with a range in the u direction that is roughly
twice that in the v direction.
After a time scale of the order of a vortex rotation period

T, the above construction generates a vortex string alongK.
Figure 1 displays an example numerical implementation of
this construction in a region of size 200 × 200 × 150 and
after a time t ¼ 60, where the FitzHugh-Nagumo equations
are evolved numerically using standard methods with
Neumann boundary conditions. The vortex string is dis-
played by plotting the isosurface where j∇u ×∇vj ¼ 0.1,
and the same method is used to display all the vortex strings
presented in this Letter. The field u in a planar slice is also
displayed to illustrate the spiral wave fronts that emanate
from the vortex string.
Figure 2 displays the knot already shown in Fig. 1, but

more clearly as a projection without the u field in the ðx; yÞ
plane. This knot has 10 crossings in the given projection but
is in fact an unknot known as the culprit [13]. It is an
example of a hard unknot, which means that the number of
crossings must first be increased in the process of untan-
gling this unknot into a circle. The resulting evolution is
shown (to scale) in the remainder of Fig. 2 and is available
as a movie file culprit.mpg in the Supplemental Material
[14]. This result demonstrates that FitzHugh-Nagumo

FIG. 1. The vortex string of the culprit unknot and the field u in
a planar slice.

FIG. 2. The vortex string at t ¼ 60, 1000, 2000, 3000, 4000, and 4600, untangling the culprit unknot.
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dynamics successfully untangles this unknot, preserving
the topology while evolving the geometry to the circular
unknot. It is the first example, in any field theory, of vortex
string dynamics that untangles a knot and is free from
reconnection. This field theory method seems at least as
powerful as the other three-dimensional untangling strat-
egies, such as energy minimization, all of which seem
significantly more powerful than combinatorial untangling
strategies, which are known to have trouble with configu-
rations like the culprit.
A second unknot example, with more initial crossings

than the culprit, is displayed (to scale) in Fig. 3, using the
same size grid. This figure illustrates the process in which
this unknot with 13 initial crossings is successfully
untangled without reconnection. The evolution is available
as a movie file unknot13.mpg in the Supplemental
Material [14].
As a final test of our new approach, we consider the knot

displayed in the first image in Fig. 4. The initial knot has 7
crossings in this projection and, as every gentleman will
recognize, this is a knot used to tie a cravat, if the two loose
ends are then joined. The subsequent evolution is displayed

(to scale) in the remaining images in Fig. 4 and is available
as a movie file cravat.mpg in the Supplemental Material
[14]. Again there are no reconnections and the dynamics
simplifies the geometry of the knot to reveal a trefoil knot
with 3 crossings.
Vortex string reconnections are certainly not forbidden in

the FitzHugh-Nagumo model and we have been able to
force reconnections by initializing a vortex string with
segments that are initially separated by less than a core
diameter, so that reconnection takes place before the
rotating spiral wave vortices have completely formed.
However, the dynamics appears to be averse to creating
this situation from fully formed vortices that have attained
separations beyond a vortex core diameter (as illustrated in
Fig. 1). By a suitable choice of scale, any given knot can be
initialized so that all segments are separated by more than a
core diameter, as we have done for the illustrative test case
examples presented in this paper. For these, and a number
of similar examples that we have investigated for a variety
of initial knots, we find no evidence of string reconnection,
providing the initial knot has a minimal distance between
segments that is greater than a vortex core diameter.
The examples we have studied so far are simple enough

that the absence of string collisions and reconnections can
be verified manually, but to investigate the untangling of
more complex examples, such as the notoriously difficult
Ochiai unknot [15], would require the implementation of
some form of automatic string collision detection, to be
certain that the knot topology is preserved. It could be that
sufficiently complicated knots, beyond those studied so far,
are not immune to vortex string reconnection, and it would
be interesting to investigate this further and determine
which, if any, types of knot are capable of inducing this
phenomenon.
Methods have been developed to reduce the field theory

dynamics to an effective dynamics of the vortex string
[16,17], but they apply only in the regime of slight
curvature and twist. It is therefore a challenging open
problem to develop an effective string dynamics that is
capable of reproducing the untangling motion described in
the present Letter and to explain the aversion to string
reconnection.
Simulated annealing methods have been developed in

mechanical models of knots [18] to resolve the problem of
the knot conformation becoming trapped in a local energy

FIG. 3. A vortex string is displayed at the times t ¼ 200, 500,
900, 1200, 1500, 1800, 1900, 2100, and 2500, during the
untangling of a 13-crossing unknot.

FIG. 4. The vortex string at t ¼ 60, 400, 760, 1600, 2200, and 2720, illustrating the simplification of a trefoil knot.
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minimum. As our approach is based on reaction-diffusion
evolution, rather than energy minimization, there is no
issue regarding the knot conformation becoming trapped in
a local energy minimum. The relevant question for
reaction-diffusion evolution is whether the flow has multi-
ple attractors that can trap the knot conformation or if there
is only one unknotted attracting steady state. This is an
interesting mathematical problem that requires further study
to determine whether this approach is an improvement on
energy minimization methods, with regard to trapped con-
formations. As untangling via reaction-diffusion evolution
appears to explore very different untangling pathways and
knot geometries to energy minimization, this may lead to
some new understanding of the properties of physical knots,
such as those found in DNA, which may also utilize
chemical or other messengers to exchange information
between different arcs of the knot, as modeled by wave
interactions in reaction-diffusion dynamics.
By adapting a new construction of vortex string initial

conditions to the FitzHugh-Nagumo equation, we have been
able to investigate the reaction-diffusion evolution of com-
plex vortex string geometries with arbitrary topology.
Remarkably, in contrast to other field theories, we find that
the vortex strings preserve their knot topology and evolve
without reconnection to untangle a knot into a simplified
geometrical form. The fact that very complicated initial
geometries untangle without reconnection is unexpected and
generates a new open problem: to explain how reaction-
diffusion dynamics, which has no conserved quantities, is
able to preserve the knot topology while simultaneously
simplifying the geometry. The implications of an under-
standing of this behavior could have relevance in a range of
topics in physics, chemistry, biology, and mathematics.
The theory of gradient flows for energy functionals on

knots has various significant technical challenges even to
simply construct equations for the flow and to prove that
short time solutions exist (see for example the work [19] on
the gradient flow for the Möbius energy). A significant
advantage of the reaction-diffusion flow of vortex strings is
the absence of all these difficulties.
Finally, there are several chemical and biological sys-

tems supporting spiral wave vortices, from the oscillating
Belousov-Zhabotinsky redox reaction to the chemotaxis of
slime mold. All are described by similar reaction-diffusion
equations that possess vortex strings, so it is not beyond
the realms of possibility that in the future a chemical or

biological system might be engineered that could untan-
gle knots.
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