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Enhancing the optical cross section is an enticing goal in light-matter interactions, due to its fundamental
role in quantum and nonlinear optics. Here, we show how dipolar interactions can suppress off-axis
scattering in a two-dimensional atomic array, leading to a subradiant collective mode where the optical
cross section is enhanced by almost an order of magnitude. As a consequence, it is possible to attain an
optical depth which implies high-fidelity extinction, from a monolayer. Using realistic experimental
parameters, we also model how lattice vacancies and the atomic trapping depth affect the transmission,
concluding that such high extinction should be possible, using current experimental techniques.
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Strong coupling between light and matter has been a
long sought-after goal. Light-matter coupling can be
conveniently characterized in terms of extinction which
corresponds to the probability for a medium to remove a
photon from an incident field. For a single dipole, the
highest recorded extinctions, of order 10%, have been
achieved using individual molecules [1] and atoms [2,3];
single dipole extinction has also been demonstrated using
ions [4] and quantum dots [5]. The free-space extinction is
typically limited by the focusing strength of a lens or mirror
[2] and can be further enhanced using a waveguide or
cavity thereby attaining the so-called strong coupling
regime associated with cavity QED [6,7]. Replacing the
single dipole with a high density ensemble of dipoles can
have a dramatic effect on the optical response [8]. Coherent
scattering between dipoles results in collective behavior,
which can include enhanced or reduced scattering rates
(superradiance or subradiance, respectively) [9–12], line
shifts [11,13,14], and interference line shapes [15–17].
Recent experiments have shown that at high densities the
dipole-dipole interaction in random atomic ensembles can
significantly attenuate the optical extinction in both very
hot (∼100 K) [18] and cold [19–21] (∼100 μK) atomic
vapors. Placing scatterers in a regular array formation can
further enhance the cooperative response. Examples
include near perfect extinction and transmission through
arrays of gold nanorods [22], linewidth narrowing in
metamolecules [23], and extraordinary optical transmission
in hole arrays [24]. In addition to diffraction and interfer-
ence effects, the coupling to collective and plasmonic
modes plays a crucial role in explaining these phenomena
[25–27]. Cooperative broadening and shifts [15,28] as well

as subwavelength excitation [17] have been predicted in
analogous atomic dipolar arrays, with the advantages that
atomic systems allow easy access to the quantum regime,
have much higher Q factors, and significantly less non-
radiative decay than the aforementioned plasmonic sys-
tems. In this Letter, we show that atomic 2D arrays can also
exhibit extreme variation in transmission depending on
geometry. For certain magic lattice spacings, high-fidelity
extinction can occur, corresponding to an enhanced atom-
light coupling which may open the door to exciting new
applications in quantum simulation and information
processing. Unlike the photonic band gaps predicted in
3D atomic lattices [29,30], extinction in our system is due
to a subradiant mode rather than a gap in the density of
states.
Extinction, like many light-matter phenomena, is an

interference effect. The total electric field at position r,
EðrÞ ¼ E0ðrÞ þ

P
iEiðrÞ, is the sum of the driving field,

E0ðrÞ, and the fields radiated by the N scatterers,P
N
i¼1EiðrÞ; extinction of the driving field occurs when

the driving and scattered fields interfere destructively. The
scattered field from an electric dipole di located at ri is
EiðrÞ ¼ GðRiÞdi, where GðRiÞ is the dipole propagation
tensor [Eq. (S1) in the Supplemental Material [31]] and
Ri ¼ r − ri. This dipole moment, in turn, is driven by the
total local electric field, di ¼ αEðriÞ, where α is the dipole
polarizability. For a closed two-level J ¼ 0 → J ¼ 1
atomic transition (e.g., Sr [34] or Yb [35]), the polar-
izability takes the form α ¼ −α0=½ðΔ=γ0Þ þ i� where
α0 ¼ 6πε0=k30, ε0 is the permittivity of free space, λ0 ¼
2π=k0 is the wavelength of the dipole transition, 2γ0 is the
excited state decay rate, and Δ ¼ ω − ω0 is the detuning of
the driving frequency ω from the transition frequency ω0. A
similar treatment can applied to plasmonic nanoresonators
[36,37]. The linear response of di to E implies weak
driving and means our model is closely equivalent to a set
of damped driven classical oscillators [38]. The weak
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driving limit can, nonetheless, be used to predict the
extinction occurring in the quantum limit. Optimizing this
extinction involves matching the spatial [2,39,40] and
temporal [41] modes of the incident field to the field
scattered by the dipoles. The scattered field of a single
dipole has a very similar spatial mode profile to a Gaussian
beam tightly focused on that dipole [31]. The difference
between the two fields along the axis of propagation of the
Gaussian beam is simply a numerical factor k2w2

0=3 where
k ¼ 2π=λ is the beam wave number (we assume the
rotating wave approximation and, hence, k≃ k0), and
the beam waist w0 is the 1=e radius at the focus.
Maximizing the overlap would require a tightly focused
beam [2,39] (using, e.g., a high numerical aperture lens)
with waist of order w0 ≃ 0.3λ—far beyond the reach of
conventional free-space lenses. The alternative we propose
in this Letter is to replace the single dipole with a
monolayer of dipoles, which can exhibit near 100%
extinction without the need for such strong focusing. If
combined with Rydberg blockade, this could be employed
to realize a high-fidelity photonic gate [42].
The case of many dipoles is less trivial than for a single

dipole, since now the local field experienced by each dipole
is both the external driving field and also the fields scattered
by the other N − 1 dipoles, EðriÞ ¼ E0ðriÞ þ

P
j≠iEjðriÞ.

For an inhomogeneously broadened ensemble (e.g., a high-
temperature thermal vapor [13]), the sum of scattered fieldsP

j≠iEjðriÞ can be replaced by an ensemble averaged mean
field, resulting in, e.g., a geometry-dependent cooperative
Lamb shift [13,43,44]. The case we are interested in here is
the homogeneously broadened regime (where atomic
motion can be ignored [15,45]), for which the recurrent
scattering between dipoles must be included [44].
Substituting di ¼ αEðriÞ into the equation for the local
fields results in a set of coupled linear equations,

di ¼ α

�
E0ðriÞ þ

X
j≠i

GðRijÞdj

�
; ð1Þ

where Rij ¼ ri − rj. These can be solved numerically for
modest N with arbitrary dipole positions and driving fields
[15,45–47].
To measure transmission and extinction, we calculate the

total power passing through a lens downstream of the
dipolar ensemble. The power is related to the Poynting
vector,

P ¼ ε0c2

2

Z
L
ℜ½E ×B�� · dA; ð2Þ

where c is the speed of light,B ¼ k̂ × E=c is the B field for
an E field with propagation unit vector k̂, and dA ¼ dAẑ is
the lens differential area element. We place the lens at zL ¼
150 λ centered on x, y ¼ 0. The lens radius RL ¼ 90 λ is
large enough to avoid finite size effects [31] while having a
realistic numerical aperture (NA ¼ RL=zL ¼ 0.6). The
driving field incident on the focusing lens has circular
polarization vector ϵ̂þ ¼ ðx̂þ iŷÞ= ffiffiffi

2
p

. Strong focusing

introduces small contributions from ϵ̂− ¼ ðx̂ − iŷÞ= ffiffiffi
2

p
and ϵ̂z, which we account for [2,31]. The excited states
mJ ¼ f0;�1g are treated as degenerate; however, driving a
closed mJ↔mJ þ 1 transition gives quantitatively similar
values for the optimal extinction. We define transmission as
the ratio of the power through the lens in the presence (P)
and absence (P0) of the dipoles, T ¼ P=P0 ¼ e−σN2D ,
where σ is the extinction cross section, and N2D is the
2D number density. Extinction is defined as ϵ≡ 1 − T. For
low densities (N2D ≪ λ−20 , orN3D ≪ λ−30 in 3D ensembles),
the local field at each dipole is dominated by the external
driving field since the scattered fields from neighboring
dipoles in the far field decay with 1=ðk0RijÞ, where
Rij ¼ jRijj. In this case, the total extinction cross section
is simply the cross section of an independent two-level
atom, σind ¼ σ0=½1þ ðΔ=γ0Þ2�, where σ0 ¼ 3λ20=ð2πÞ. As
mentioned in the introduction, recent experiments in dense
(N3D ≫ λ−30 ) atomic vapors [18–21] have shown that
dipole-dipole interactions reduce the cross section below
the noninteracting value (σ < σind), increasing the trans-
parency of the medium.
As displayed in Fig. 1, we start by considering resonant

(Δ ¼ 0) transmission through a 2Dmonolayer of uniformly
randomly distributed atoms. The black dotted line plots the
predicted transmission when ignoring dipole-dipole inter-
actions, corresponding to the 2D limit of the familiar Beer-
Lambert law T ind ¼ expð−σindN2DÞ. In agreement with
experiment [18–21], the transmission increasingly deviates

FIG. 1. Resonant optical transmission of a Gaussian beam
through a random 2D monolayer of N ¼ 100 interacting dipoles.
As the 2D number density N2D increases, the interacting
monolayer (blue solid line) deviates from T ind (black dotted
line), which assumes each dipole is a noninteracting opaque disk
of cross sectional area σ0. Each data point is averaged over 100
realizations. The beam waist is w0 ≃ 2.5λ, and the collection lens
has radius RL ¼ 90λ0 and position zL ¼ 150 λ0. (Inset) Weak
cancellation of the total electric field magnitude jEj in the xz
plane downstream of the monolayer (N2D ≃ 1.5λ−20 ). x and z vary
between �6λ0 and �30λ0, respectively. The Gaussian beam
propagates with vector k̂L ¼ ẑ. The black dashed line shows the
1=e beamwidth and the white circles the atom positions.
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from the noninteracting Beer-Lambert value as the density
increases. Shifts diverging as 1=R3

ij between closely spaced
dipoles result in a broadening and weakening of the overall
cross section line shape, reducing the resonant extinction
(increasing transmission). It might, therefore, seem that
interactions make the extinction worse. However, if we
introduce spatial ordering to the atoms by confining them to
a fixed regular (triangular) array, with one atom per site, we
see in Fig. 2 that the transmission can be significantly lower
than both the noninteracting and randomly distributed
cases. Such an array could be realized in, e.g., an optical
lattice in the Mott-insulator phase [48,49] or spatial light
modulator dipole trap array [50]. For a particular magic
lattice spacing (a ¼ 0.87λ0), the extinction (1 − T) is
greater than 99%, corresponding to almost an order of
magnitude increase in cross section (σ ≃ 7σ0). Limits on
the scattering cross section were discussed in [51]. The
efficient cancellation of the electric fields downstream of
the lattice can be seen in the inset of Fig. 2, which is
contrasted with the poorer extinction and significant
scattering out of the beam in the random monolayer (inset,
Fig. 1). The transmission minimum also corresponds to a
reflection maximum observable in the inset of Fig. 2, as
well as by calculating the power reflected back through the
focusing lens at z ¼ −zL (reflection R ≫ 98%). By slightly
changing the lattice spacing (a ¼ 0.87λ0 → 1.05λ0),
the transmission increases from < 1% to ≃90%.
Consequently, the monolayer can be switched between
distinct transmission and reflection states, in the same
spatial mode, which is the ideal starting point for a gate or
all-optical transistor.

We now address why there is a magic spacing that
produces optimal extinction. In Fig. 3, we plot the trans-
mission as a function of detuning at the points labeled A, B,
and C in Fig. 2. The behavior of the interacting line shapes
(blue solid lines) is determined by the eigenmodes of Eq. (1).
Each eigenmode contributes a shift Δl and linewidth γl
proportional to the real and imaginary parts of its eigenvalue,
respectively [15,37]. The transmission behavior in Fig. 2
corresponds to the value of the transmission at Δ ¼ 0,
indicated by the vertical dashed lines in Fig. 3. In Fig. 3(a)
the line shape is dominated by two nearly degenerate modes
with half-widths γl ¼ 0.37γ0 centered at Δl ≃ 0. Extinction
cross section scales inversely with linewidth, so subradiance
(γ < γ0) results in an enhanced extinction. This combined
with the maximal extinction at Δ ¼ 0, results in the trans-
mission minimum at a ¼ 0.87λ0 (point A in Fig. 2). By
changing the detuning of the driving field, however, we can
select a range of spacings over which large extinction is still
possible [ϵ > 98% for 0.67 < a=λ0 < 0.92; see the inset in
Fig. 3(a)]. Figures 3(b) and 3(c) correspond to the local
transmission maxima at points B and C in Fig. 2. While the
peak extinction inFig. 3(b) is still around 80%, it is shifted off
resonance, so the extinction at Δ ¼ 0 is small. In Fig. 3(c),
the line shape is centered on Δ ¼ 0, although it is now
superradiant (γ ≃ 2γ0), and so the peak extinction is reduced.
Large peak extinctions on resonance (Δ ¼ 0) are also

possible in square (ϵ > 98% at a ¼ 0.79λ0; Fig. 4) and

FIG. 2. Resonant optical transmission of a Gaussian beam
through a triangular 2D array of N ¼ 102 interacting dipoles
(blue solid line). Unlike the random monolayer in Fig. 1, the
transmission goes below and above T ind (black dotted line). A, B,
and C correspond to the lattice spacings used in Fig. 3. (Inset) At
a ¼ 0.87λ0 (N2D ≃ 1.5λ−20 ), the dipole and driving fields almost
perfectly cancel downstream of the lattice, resulting in less than
1% transmission over the collection lens. The same parameters
for the beam, lens, and inset are used as in Fig. 1.

FIG. 3. Transmission as a function of detuning through an
N ¼ 102 triangular lattice of interacting dipoles. The lattice
spacings in (a)–(c) correspond to those labeled A, B, and C in
Fig. 2 (inset: a=λ0 ¼ 0.67; 0.92). The solid lines plot the full
interacting transmission for the same beam and lenses as Fig. 1.
The dotted lines show T ind (i.e., assuming no interactions). The
vertical dashed lines at Δ ¼ 0 have dash lengths ΔT ¼ 0.05.
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hexagonal (ϵ > 98% at a ¼ 0.6λ0) lattices with N ∼ 100,
providing further choice of trapping geometry. The com-
plexity of the long-range many body coupling responsible
for this behavior means an analytic treatment is beyond the
scope of this Letter. We do, however, observe trends; for
example, the position of the magic lattice spacing increases
with packing efficiency (a=λ0 ¼ f0.6; 0.79; 0.87g for hex-
agonal, square, and triangular lattices, respectively).
When considering a possible realization of this in an

atomic experiment, it is necessary to consider how effects
such as finite trapping depth [Fig. 4(a)] and imperfect
filling [Fig. 4(b)] affect the extinction. We model finite
trapping depth V0 by treating each atomic wave function as
a ground-state harmonic oscillator [31,52]. Averaging
hundreds of realizations, atomic positions are sampled as
Gaussian random variables centered on each lattice site
with standard deviation related to V0. Typical trap depths in
Mott-insulator experiments lie in the range V0 ¼
ð20–50ÞER [35,53–55] (ER is the recoil energy [31]),
although V0 ∼ 103ER is possible [53,54]. Filling efficiency
greater than 90% can be achieved [54–57], which when
combined with a trap depth of V0 ¼ 50ER [Fig. 4(b), inset],
still gives a significant range in transmission [ð21� 5Þ% to

ð72� 2Þ% between a≃ 0.8λ0 and a≃ 0.95λ0]. The
extinction is also robust to small changes in the direction
of incidence of the laser; rotating the incident laser 10° from
the normal of a 10 × 10 square lattice still produces a peak
extinction of over 90%.
The number of lattice sites does not have to be large to

observe strong extinction; a 4 × 4 perfect square lattice
peaks at ϵ ¼ 96% (for w0 ¼ λ). With 100% filling, increas-
ing the atom number increases the peak extinction. The
optimal beamwidth for maximizing the extinction scales
with

ffiffiffiffi
N

p
(w0 ≃ 2.5λ [58] optimizes the extinction for

square and triangular lattices with N ≃ 100). However,
for 50% filling as in Fig. 3(b), adding more lattice sites
(e.g., 200 sites with 100 vacancies) makes little difference
to the transmission, meaning high filling factors are
essential for high extinction.
In conclusion, we have demonstrated numerically how

the strong cooperative response of a 2D lattice of interact-
ing dipoles can allow for very high extinctions (close to
100%) without the need for high densities, large atom
numbers, or strong focusing. The cavitylike dependence on
spacing between atoms in these periodic lattices results in a
strong dependence on the lattice spacing. Thanks to its
efficient packing, the triangular lattice performs best, with a
highly tunable transmission of between < 1% and 90% for
a small change in lattice spacing. This work demonstrates
further that the presence of interactions significantly
modifies the optical response of a medium. Building on
previous works in random gases [18,20,21,45], we have
shown that adding structure to the atom positions can
significantly enhance such effects. By combining with
Rydberg blockade, one could realize a dipolar QED
analogue of the strong coupling regime in cavity QED,
with potential applications for quantum nonlinear optics.
The data presented in this Letter can be found

in Ref. [59].
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