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A novel investigation of the nature of intermittency in incompressible, homogeneous, and isotropic
turbulence is performed by a numerical study of the Navier-Stokes equations constrained on a fractal
Fourier set. The robustness of the energy transfer and of the vortex stretching mechanisms is tested by
changing the fractal dimension D from the original three dimensional case to a strongly decimated system
with D = 2.5, where only about 3% of the Fourier modes interact. This is a unique methodology to probe
the statistical properties of the turbulent energy cascade, without breaking any of the original symmetries of
the equations. While the direct energy cascade persists, deviations from the Kolmogorov scaling are
observed in the kinetic energy spectra. A model in terms of a correction with a linear dependency on the
codimension of the fractal set E(k) ~ k=5/3+3~P explains the results. At small scales, the intermittency of
the vorticity field is observed to be quasisingular as a function of the fractal mode reduction, leading to an
almost Gaussian statistics already at D ~ 2.98. These effects must be connected to a genuine modification
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in the triad-to-triad nonlinear energy transfer mechanism.
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Understanding and controlling the energy transfer pro-
cess in turbulent flows is a key problem for a broad range
of fields, such as astrophysics [1], atmospheric or ocean
sciences [2], mathematics and engineering [3]. The main
obstacle hampering theoretical, numerical, and phenomeno-
logical advancements is intermittency: the presence of strong
non-Guassian and out-of-equilibrium velocity fluctuations
in a wide range of scales [4-8]. The energy cascade is
fully chaotic, nonlinear, and driven by the vortex-stretching
mechanism, i.e., the tendency of the flow to amplify vorticity
in thin, long filaments. A long debate exists whether or not
the presence of such geometrical structures is correlated to
the non-Gaussian statistics observed at small scales [4].
Many authors have focused on a vortex-by-vortex analysis,
looking for the signatures of quasisingularities or extreme
events due to specific dynamical properties of the Navier-
Stokes (NS) equations [9-15]. Other approaches are based
on a Fourier description, such as closure [16,17] and
renormalization-group theories [18-20].

In this Letter, we investigate the origin of intermittency
in turbulent flows by a novel strategy. The idea consists
of modifying the nonlinear interactions of Navier-Stokes
equations, without introducing extra forces and without
breaking the symmetries of the original equations, such as
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statistical homogeneity, isotropy, and rescaling properties
in the inviscid limit. To achieve this, we adopt a recently
proposed numerical methodology [21] to solve NS equa-
tions on a preselected, multiscale (fractal) set of Fourier
modes. This allows us to control the number of degrees
of freedom participating in the nonlinear dynamics by
changing one free parameter only, the fractal dimension of
the Fourier set, D. For D = 3, the original problem is
recovered. In the sequel, we describe the methodology,
the numerical setup, and the main results concerning the
quasisingular effect of fractal mode reduction on the
small-scale intermittency.

Methodology.—Fractal mode reduction is realized via
the Fourier decimation operator PP, acting in the space of
divergece-free velocity fields as follows [21]. We define
v(x, ) and u(k, ) as the real and Fourier space represen-
tation of the velocity field in D = 3, respectively. The
decimated field vP(x, t) is obtained as

VP(x.1) =PPy(x.1) = Y _e®pau(k.r). (1)

kez?
The random numbers y) are quenched in time and are

B { 1, with probability &, 2)
<=0, with probability 1 — iy, k = |k|.

The choice for the probability & « (k/ko)P=3, with 0 <
D < 3 ensures that the dynamics is isotropically decimated
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to a D-dimensional Fourier space. The factors h; are
chosen independently and preserve Hermitian symmetry
Yk = 7k so that PP is self-adjoint. The NS equations for
the velocity field decimated on a fractal Fourier set are
then defined as

O,vP = PPN(VP,vP) + vV2vP + £P. (3)

At each iteration the nonlinear term N(v,v) = —v-Vv —
Vp is projected on the quenched fractal set, to constrain
the dynamical evolution to evolve on the same Fourier
skeleton at all times. Similarly, the initial condition and
the external forcing must have a support on the same set
of Fourier modes. Let us notice that the projection acts
as a self-similar Galerkin truncation. In the (L?) norm,
Iv]l o [ |v(x)|>dx, the self-adjoint operator PP commutes
with the gradient and viscous operators. Since PPvP = vP,
it then follows that both energy and helicity are conserved in
the inviscid and unforced limit, exactly as in the original
problem with D = 3. As a result of the Fourier decimation,
the velocity field is embedded in a three dimensional space,
but effectively possesses a number of Fourier modes that
grows slower with decreasing D. The degrees of freedom
inside a sphere of radius k go as #q.¢(k) ~ kP.

This idea, introduced for the first time in Ref. [21], has
been used to test the hypothesis that two-dimensional
turbulence in the inverse energy cascade approaches a
quasiequilibrium state [22]. Fourier decimation methods
are not new for hydrodynamics: we mention protocols
with a specific degree of mode reduction [23-25], and
the extreme truncation criterion of shell models for the
turbulent energy cascade [26]. Results are puzzling. For NS
equations at small Reynolds numbers [23], intermittency
strongly depends on the amount of scales resolved in the
inertial range. However, in the case of shell models,
intermittency is observed to be a function of the effective
dimension [27], and coinciding with the one measured in the
original NS equations [28], when energy and helicity are the
two inviscid invariants. Note that fractal Fourier mode-
reduction changes also the relative population of local-to-
nonlocal triadic interactions [5], since triads with all modes
in the high wave number range have a larger probability to be
decimated. Furthermore, being an exquisitely dynamical
approach, it is different from a posteriori filtering tech-
niques, largely exploited to analyze turbulent data [29].

A pseudospectral method is adopted to solve Egs. (3)ina
periodic box of length L = 27 at resolution N = 1024 and
20483, dealiased with the two-thirds rule; time stepping
is implemented with a second-order Adams-Bashforth
scheme. A large-scale forcing [30] keeps the total kinetic
energy constant in a range of shells, 0.7 < |k| < 1.7,
leading to a steady, homogeneous, and isotropic flow.
We performed direct numerical simulation (DNS) runs
by changing the fractal dimension 2.5 < D < 3, the spatial
resolution, the viscosity, and the realization of the fractal,

TABLE I. DNS parameters. D, fractal dimension; N, grid
resolution; M,, percentage of surviving Fourier modes; 7,
Kolmogorov length scale in unit of the grid spacing
Ax = L/N; Ny, number of large-scale eddy-turnover-times in
the steady state; E, total Kinetic energy (v?)/2; v, viscosity; Re,
Reynolds number Re = E'/2L /v, where the integral scale £ is
estimated from the kinetic energy spectrum.

D 3 2999 299 299 298 298 28 25
N 1024 1024 1024 2048 1024 2048 1024 1024
M, 100% 99% 93% 92% 81% 85% 25% 3%
n 075 0.75 095 0.70 0.75 0.70 0.90 0.65
Ny 10 10 11 0 11 7 10 20
E 3.1 31 31 33 33 35 41 54

vx10* 60 60 60 20 60 20 60 15
Rex 1073 39 39 38 11.8 39 121 40 154

quenched mask. Table [ summarizes the relevant
parameters.

Results.—The starting point of our analysis is the shell-
to-shell energy transfer in the Fourier space. Following the
notation adopted in Ref. [5], we write the energy spectrum

for a generic flow in dimension D as
0= [ Phn, [ Eauut). @

where the decimation factor yy takes into account that the
Fourier mode k is active with probability /. Similarly, we
can write for the energy flux across a Fourier mode k,
P(k) = [i, o @k 0E(ky):

HD(k):AI kd3kl}’k,/d3k2d3k37k27’k3s(kl|k2vkS),
1<

(5)

where the explicit form of the symmetric triadic corre-
lation function is [31]: S(k;|k,.k3)=—Im[((k;-u(k3))
x(u(k)-u(k,)))+((ki-u(k,)) (u(k;)-u(ks)))]. Suppo-
sing a power-law behavior of the velocity fluctuations
u(k) ~ k=, we can predict a self-similar scaling of the
energy flux as TP (k) ~ A3P+13¢1P (k). In this expres-
sion, the rescaling factor A°P is due to the integral over the
variables (K, K, k3), while 1'73¢ comes from the triadic
nonlinear term. If a constant energy flux develops in the
inertial range of scales, the following dimensional relation
holds:

a=D+1/3— EP(k) ~ PEF k), (6)

where EX*! (k) ~ k3/3 is the Kolmogorov 1941 spectrum
expected for the original case with D = 3. In the previous
dimensional argument, the tiny intermittent corrections to
the spectrum scaling exponent are neglected [32], while
prefactors are omitted for simplicity. The relation (6) is
obtained by noticing that, because of homogeneity, we have
that (u(k;)-u(k,)) « F(k;)5(k; + k,), and by also
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FIG. 1 (color online). (Top) Log-log plot of the mean kinetic
energy spectra for different D; in the inset, the mean kinetic
energy fluxes. (Bottom) Compensated energy spectra
EP (k)k>/3=3+P ys the wave number k; in the inset, the compen-
sation is done with the Kolmogorov prediction, EP (k)k>/3.

noticing that the decimation projector verifies the identity
(yk)?> = yk- As a result, the dynamical effect of Fourier
decimation is to make the energy spectrum shallower than
the Kolmogorov one for three-dimensional turbulence, also
predicting the existence of a critical dimension D = 7/3,
when the spectrum becomes ultraviolet divergent [4] in the
limit of zero viscosity. By decreasing D in the presence
of a forward energy cascade, the system has fewer modes
available to transfer the same amount of energy (see
Table 1), and the velocity field becomes increasingly
rougher.

In the upper panel of Fig. 1, we plot the energy spectra
and the associated energy fluxes, for all DNS. It shows
that when increasing the grid resolution for fixed D, from
N =1024 to N = 2048, no appreciable differences are
observed, indicating that the presence of a forward energy
cascade appears robust and Reynolds independent. In the
lower panel we also show that the spectra compensate well
with the prediction (6), while they fail to satisfactorily
compensate with the classical K41 prediction when D < 3.
We stress that the latter result is significant for D = 2.5 and
D = 2.8 only. For the other dimensions D, the effect is so

small that it might fall within the intermittent correction of
the original Navier-Stokes case at D = 3. Moreover, the
effect of the quenched disorder is robust: spectra obtained
with different realizations of the mask do not show any
statistically significant difference (not shown).

Figure 1 (upper inset) shows that, when decreasing the
fractal dimension D, the mean energy transfer towards
small scales is almost unchanged; i.e., the hypothesis
leading to the relation (6) is well verified. On the other
hand, temporal fluctuations of the energy flux increase with
decreasing D (not shown).

It might be argued that the effect of fractal Fourier
decimation is purely geometrical and that the main
dynamical processes are unchanged. To show that this is
not the case, it is useful to analyze the effect of a static
Fourier decimation. This can be done by considering
snapshots of D = 3 turbulence, and applying the fractal
decimation as an a posteriori filter. It is immediate to
realize that the effect of the static decimation on the
spectrum is ED (k) ~ kP~3EX41(k), implying that the geo-
metrical action of the decimation goes in the opposite
direction of the dynamical one.

We now consider the dynamical effect of the fractal
Fourier decimation on the small-scale structures, by focus-
ing on the statistics of the vorticity field in the real space. In
Fig. 2 we plot the probability density function (PDF) of the
vorticity field, normalized with its standard deviation. We
note that already at D = 2.99, vorticity fluctuations have
changed their intensity of 1 order of magnitude, despite
the fact that the mean enstrophy is practically unchanged.
Even more remarkable, intermittent fluctuations disappear
already at D = 2.8, where a quasi-Gaussian vorticity PDF
is measured. The transition towards Gaussianity is better
quantified considering the vorticity kurtosis. In Fig. 3, we
compare results of the fractally decimated NS equations,
with those obtained from the application of the a posteriori
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FIG. 2 (color online). Probability density function of the
vorticity component @,, normalized to its standard deviation.
Data refer to simulations at resolution N = 1024. In the inset,
mean square vorticity (w?) versus the fractal dimension
deficit, 3 — D.
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FIG. 3 (color online). Lin-log plot of vorticity kurtosis vs the
dimension deficit 3 — D. The upper curve is obtained from the
application of the a posteriori static mask on D = 3 velocity field
snapshots. The lower curve comes from the Fourier decimated
DNS. Data for D = 2.99 and D = 2.5, with a different realization
of the fractal projection, are indistinguishable. Data at resolution
N = 2048 are also plotted.

static mask on three-dimensional turbulence. The dynami-
cal decimation makes a very fast transition towards a
Gaussian behavior, such that at D = 2.98 the kurtosis
has decreased by 30%, to already approach the Gaussian
value at D = 2.8. In the case of the a posteriori static
decimation, vorticity kurtosis assumes the Gaussian value
only at D = 2.5, while staying almost unchanged in the
range D > 2.98. Such a strong difference clearly indicates
that constraining the dynamics to a subset of modes is
critical for the complete development of intermittency in
real space.

In Fig. 4, we plot the kurtosis of the longitudinal velocity
increment K(6v,) = ((6,v-t)*)/((5,v-£)?)%. Notice the
sharp transition leading to an almost scale-independent,
nonintermittent behavior for D < 3. Moreover, at fixed
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FIG. 4 (color online). Lin-log plot of longitudinal velocity
increment kurtosis K(6v,) vs the scale separation normalized by
the Kolmogorov scale, r/5. For all data sets, error bars are within
the symbol width.

fractal dimension, the effects of increasing the Reynolds
number is to further reduce the intermittent corrections.

Conclusions.—Fractal mode reduction is a new route to
design numerical simulations to tackle the problem of
intermittency and to potentially develop multiscale models
of turbulence. The first nontrivial result is the robustness of
the energy flux under mode reduction. An inertial range of
scales with a constant-flux solution is observed when D is
changed and few Fourier modes survive, at least in the
parameter range investigated here. This is in agreement
with the observation that Galerkin truncations do not alter
the inviscid conservation of quadratic quantities, preserving
the existence of exact scaling solutions for suitable third-
order correlation functions (see appendix of Ref. [33]). The
Fourier spectrum gets a power law correction that can be
predicted by a dimensional argument. Second, and more
striking, small-scale intermittency is quickly reduced for
D < 3 and it almost vanishes already at D = 2.98. As a
consequence, the presence or absence of some of the
Fourier modes strongly modify the fluctuations of all the
others, suggesting the possibility that intermittency is
the result of percolating dynamical properties across the
whole Fourier lattice [34].

Because of the spectrum modification, the scaling
exponent of the second order longitudinal structure func-
tion becomes ({, + (D —3), where {, is the measured
exponent in the D = 3 homogeneous and isotropic case.
This observation would suggest that, for the dimension
deficit 3 — D < 1, one may obtain corrections to the scaling
exponents proportional to 3 — D, and the anomalous
exponents might be computed perturbatively in the dimen-
sion deficit. If this is the case, the critical dimension D, is
estimated as the value of D where the dimensional scaling
is recovered, namely, {, + D, —3 =2/3. It gives D, ~
2.96 not far from the value of D at which intermittency is
observed to vanish in the DNS. However, there is no reason
to assume that anomalous exponents can be computed
perturbatively in 3 — D. In fact, as mentioned above,
intermittency might well be the result of multiscale inter-
actions in Fourier space, needing all degrees of freedom to
develop. Hence, in the presence of even a tiny decimation,
NS singular solutions responsible for the anomalous scal-
ing no longer exist. This would also explain why we
observe, Fig. 4, a reduction of intermittency by increasing
the resolution at fixed D. Additionally, phenomenological
cascade models [4] would be unable to explain the results,
as well. In the light of our results, Fourier decimation can
also be seen as a way to introduce a control parameter and
modify the scaling properties of the system, similarly to
what happens for NS equations stirred by a random, power-
law forcing [35-39]. In the latter case, perturbative or
semianalytic calculations [40,41] give indications on the
reasons why anomalous corrections should cancel out for
specific values of the control pararameter. Also, in Ref. [37]
it is numerically shown that when the random injection
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becomes the dominant scaling contribution in the inertial
range, a transition to a Gaussian statistics is observed for
the velocity increments. In the present case, however, the
connections between the observed transition to a Gaussian
behavior, and a possible renormalized perturbation theory
are to be explored.
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