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We show that the interaction of the magnetic subsystem of a curved magnet with the magnet curvature
results in the coupling of a topologically nontrivial magnetization pattern and topology of the object. The
mechanism of this coupling is explored and illustrated by an example of a ferromagnetic Möbius ring,
where a topologically induced domain wall appears as a ground state in the case of strong easy-normal
anisotropy. For the Möbius geometry, the curvilinear form of the exchange interaction produces an
additional effective Dzyaloshinskii-like term which leads to the coupling of the magnetochirality of the
domain wall and chirality of the Möbius ring. Two types of domain walls are found, transversal and
longitudinal, which are oriented across and along the Möbius ring, respectively. In both cases, the effect of
magnetochirality symmetry breaking is established. The dependence of the ground state of the Möbius ring
on its geometrical parameters and on the value of the easy-normal anisotropy is explored numerically.
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Curvature-driven modification of physical properties of
systems with nontrivial geometry is the subject of intensive
research in various areas of physics [1,2], e.g., electronic
properties of graphene [3], molecular alignment in liquid
crystals [4], physics of superconductors [5,6], and macro-
molecular structures [7]. In physics of nanomagnetism, it is
possible to distinguish two groups of curvature-induced
effects, namely, magnetochiral effects [8–10] and topo-
logically induced magnetization patterning [10,11]. The
first family unites the phenomena of curvature-induced
chiral symmetry breaking [12]. The latter typically origi-
nates from the Dzyaloshinskii-like term appearing in the
curvilinear form of the exchange interaction [13,14].
Effects of the second group appear in curvilinear magnets,
where orientation of the anisotropy axis is determined by
the geometry, e.g., along the normal direction. Thereby,
magnetic vortices appear in the ground state of the spherical
magnetic shell with easy-surface anisotropy [10], domain
walls appear in the ground state of a Möbius ring with easy-
normal anisotropy [11].
Up to now, these two families of effects were considered

to be independent. Here, we demonstrate that geometry of
the Möbius ring unites these two families of curvature
effects; namely, the topologically induced magnetization
patterns experience the chirality symmetry breaking. The
Möbius ring is a nonorientable surface, hence, its topology
forces a discontinuity of any normal vector field. This is the

origin of the domain structure formation for theMöbius ring
with strong easy-normal anisotropy, similar to the nuclea-
tion of disclination lines in chiral nematics [15]. The domain
wall for theMöbius geometrywas obtained numerically [11]
within the model of a classical Heisenberg ferromagnet.
Constrained by the topology, we name such a magnetization
structure as a topologically induced domain wall. We
demonstrate analytically that the topological properties of
a domain wall on a Möbius ring depend on the topological
properties of the underlying surface, namely, the magneto-
chirality of the domain wall is determined by the chirality of
the Möbius ring. Additionally, using the full scale micro-
magnetic simulations with magnetostatic interaction taken
into account, we confirm these results and also build a
ground states diagram for Möbius rings.
First, we formalize the notion of the Möbius ring of

finite thickness. The two-dimensional Möbius ring can be
parametrized in the form ςðχ; ξÞ ¼ xðχ; ξÞx̂þ yðχ; ξÞŷþ
zðχ; ξÞẑ with

xþ iy ¼
�
Rþ ξ cos

χ

2

�
eiχ ; 0 ≤ χ < 2π;

z ¼ Cξ sin
χ

2
; −

w
2
≤ ξ ≤

w
2
; ð1Þ

where R and w denote the radius and width of the ring,
respectively, see Fig. 1. The curvilinear coordinates χ and ξ
correspond to the azimuthal angle and position along the
ring width, respectively. The Möbius ring chirality C ¼ �1
determines orientation of the ring twist, when moving
along the azimuthal direction, namely, counterclockwise
(C ¼ þ1) or clockwise (C ¼ −1).
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Using (1), we introduce the orthonormal curvilinear
basis as eα ¼ gα=jgαj, where gα ¼ ∂ας and α ∈ fχ; ξg.
The vector of the normal is n ¼ eχ × eξ, see Fig. 1.
As a result, the three-dimensional Möbius ring of finite

thickness h is now defined as the following space domain:

rðχ; ξ; ηÞ ¼ ςðχ; ξÞ þ ηn; −
h
2
≤ η ≤

h
2
; ð2Þ

where the third curvilinear coordinate η determines the
position along the ring thickness. The definition (2) is valid
for the case of small thickness: h ≪ R − ðw=2Þ.
To describe the space distribution of the unit magneti-

zation vector mðrÞ, it is convenient to introduce the angular
parametrization associated with the local curvilinear basis

m ¼ ðsin θ cosϕÞeχ þ ðsin θ sinϕÞeξ þ ðcos θÞn; ð3Þ

with the magnetization angles θ ¼ θðχ; ξÞ and ϕ ¼ ϕðχ; ξÞ.
We start with the case of strong easy-normal anisotropy,

when the formation of the topologically induced domain
walls is expected [11]. Two types of domain walls are found
using full scale micromagnetic simulations, namely, trans-
versal (t) and longitudinal (l), see Fig. 2(c) and Fig. 2(e),
respectively. We analyze the properties of the topologically
induced domain walls under two assumptions: (i) the
magnetostatic contribution is negligibly small as compared
with the anisotropy contribution, (ii) the ring thickness h is
small enough to ensure the magnetization uniformity along
the normal direction n. Thus, the total energy of the system
reads E ¼ h

R ðEex þ EanÞdS, where dS is the curvilinear
element of the surface area. Here, Eex ¼ A

P
i¼x;y;zð∇miÞ2

is the exchange contribution with A being the exchange
constant, and Ean ¼ −Kðm · nÞ2 is the easy-normal
anisotropy density with K > 0 being the anisotropy con-
stant. In terms of the angular variables (3), the anisotropy
term reads as

Ean ¼ −Kcos2θ: ð4Þ

The exchange energy density for an arbitrary curvilinear thin
ferromagnetic film can be presented in the form [13]

Eex

A
¼ ½∇θ − ΓðϕÞ�2 þ

�
sin θð∇ϕ −ΩÞ − cos θ

∂ΓðϕÞ
∂ϕ

�
2

:

ð5Þ

FIG. 2 (color online). Diagram of ground states of magnetic Möbius rings with fixed radius R ¼ 100 nm and width w ¼ 80, see
(a). The magnetization distributions of possible ground states are shown in the middle part in a large scale: (b) vortex state (marked by
disks on the diagram), (c) state with single transversal Bloch domain wall (open squares), (d) state with three transversal Bloch walls
(filled triangles), (e) states with longitudinal domain wall (filled squares). The detailed structures of the transverse and longitudinal
domain walls are shown in (c0) and (e0), respectively.

FIG. 1 (color online). Geometrical notations of the problem: the
2D Möbius ring with radius R and width w is defined para-
metrically by (1) and the corresponding 3D Möbius ring of finite
thickness h is determined by (2). Möbius rings with opposite
chiralities C are shown.
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Here, the del operator is used in its curvilinear form
∇≡ ðgααÞ−1=2eα∂α, where gαβ ¼ gα · gβ are elements of
the metric tensor, and the Einstein summation rule is applied
here and everywhere below. Vector Γ ¼ Γαeα is tangential
to the surface, and it is defined as

ΓðϕÞ ¼ kHαβk·
���� cosϕsinϕ

����; kHαβk ¼
���� bαβffiffiffiffiffiffiffiffiffiffiffiffiffigααgββ
p

����;

where bαβ ¼ n · ∂βgα are elements of the second funda-
mental form and the vector Ω represents the modified spin
connection Ω ¼ ðgααÞ−1=2ðeχ · ∂αeξÞeα.
Basic properties of the t wall can be analyzed using the

ansatz

θt ¼ 2 arctan epðχ−XÞ=σ; ϕt ¼ Cp
π

2
; ð6Þ

which describes the structure of a typical Bloch domain
wall [16] aligned across the Möbius ring [17]. It contains
two variational parameters, namely, azimuthal angle X
which determines the position of the t wall and its angular
width σ. The quantity p ¼ �1 determines the wall of kink
(p ¼ þ1) or antikink (p ¼ −1) type. The magnetochirality
C ¼ �1 determines the direction of the magnetization
reorientation within the domain wall, when moving along
the azimuthal direction: counterclockwise (C ¼ þ1) or
clockwise (C ¼ −1). The usage of the ansatz (6) for a
Möbius ring has a restriction σ ≪ X ≪ 2π − σ.
Now, we substitute ansatz (6) into (4) and (5) and perform

the integration over the curvilinear surface area with the
area element dS ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detðgαβÞ
p

dχdξ. Using the natural con-
dition σ ≪ 1 and applying the narrow ring approximation
w=R ≪ 1, one can write the total energy of the t wall as
follows:

Et

2Ah
≈
w
R

�
1

σ
þ CC

π

2
þ σ

�
cosX −

1

4

	�
þ σ

Rw
δ2

þ const;

ð7Þ

where δ ¼ ffiffiffiffiffiffiffiffiffiffi
A=K

p
, and the constant terms do not depend on

the variational parameters and on the chiralities.
Remarkably, according to (7), a coupling between the

chirality of theMöbius ringC and themagnetochirality of the
t wall C takes place. The t walls with opposite chiralities
possess different energies withΔEt ¼ 2πAhw=R (the twall
with chirality C ¼ −C has lower energy). We note that the
energy (7) is independent of p.
The energy (7) reaches its minimum at the following

values of the variational parameters X0 ¼ π, σ0 ≈ δ=R. In
accordance with the parametrization (1), the equilibrium
position of the domain wall X0 ¼ π corresponds to the
“vertical” place on the Möbius ring, see Figs. 1 and 2(c).

The law Et ∝ cosX is well reproduced by full scale
micromagnetic simulations [18].
To consider the l wall, see Fig. 2(e), we use the

analogous ansatz

θl ¼ 2 arctan epðξ=dÞ; ϕl ¼ π
Cþ p

2
; ð8Þ

which describes a Bloch domain wall aligned along the
Möbius ring. It should be noted that the lwall cannot be of
Neel type due to topological reasons. The domain wall
width d is a variational parameter. Using the condition
d ≪ w ≪ R, we obtain the following expression for the
total energy of the l wall state:

El

4πAh
≈
R
d
−
π

2
CCþ c0

d
R
þ dR

δ2
þ const; ð9Þ

where c0 ¼ 1=4þ π2=96 ≈ 0.353. Accordingly to (9), the
chiralities coupling appears for the l wall as well as for the
case of the t wall. The l walls with opposite chiralities are
separated by the energy gap ΔEl ¼ 4π2Ah (the domain
wall with C ¼ C has lower energy). The equilibrium value
of the domain wall width is d ≈ δ.
For both domain wall types, the effect of the magneto-

chirality symmetry breaking originates from the effective
Dzyaloshinskii-like term ED

ex ¼ −2AðΓ · ∇θÞ in the curvi-
linear form of the exchange energy (5). This is consistent
with the phenomenon of domain wall chiral symmetry
breaking due to Dzyaloshinskii-Moriya interaction in
planar systems [19].
It should be noted that the chirality coupling terms in (7)

and (9) originate from the strip twisting, hence, they are not
unique for the Möbius geometry and will appear even when
considering a straight strip with a twist (local or uniformly
distributed). We choose the Möbius geometry because, in
this case, two curvature effects are united, namely, the
chirality symmetry breaking appears for a topologically
induced pattern.
The curvature-induced magnetochirality effects are

already known for domain structure (twisting of domains)
[8], spin waves (asymmetry in the spin waves propagation
in nanotubes) [12]. Its analogy with the Dzyaloshinskii-
Moriya interaction was discussed in Ref. [12]. The
presented approach highlights the origin of these magneto-
chiral effects.
According to (7) and (9), the total energy of a t wall is

always lower than the total energy of a lwall. However, the
carried out analysis is valid for the case of very strong
anisotropy, when the magnetostatic interaction can be
neglected. To consider cases when the magnetostatic con-
tribution is comparable or greater then the anisotropy
interaction, we perform the full scale micromagnetic sim-
ulations with threemagnetic interactions taken into account.
Thus, the total energy density reads E ¼ Eex þ Ean þ Ed.
Here, Ed ¼ −MsðHd ·mÞ=2 is the magnetostatic energy
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density, withMs being the saturation magnetization andHd
being the stray field. To clarify the role of the magnetostatic
contribution, we study the change of the ground state of the
system under variation of two parameters, namely, thickness
h and a quality factor Q ¼ K=ð2πM2

sÞ, the latter relates the
anisotropy to the magnetostatic contribution [20].
For our study, we fix the ring radius to R ¼ 100 nm

and width to w ¼ 80 nm. The calculations are performed
for amagneticmaterial withA¼1.3×10−11 J=m,Ms¼8.6×
105A=m. Additionally, we introduce the easy-normal
anisotropy with constant K varying [21] in the way that
Q ∈ ½0; 2.2�. The thickness is varied [22] within the range
h ∈ ½5; 40� nm. For a certain set of parameters, we use the
MAGPAR code [23] to numerically minimize the total
magnetic energy of the system E ¼ R

Ed3r. To obtain the
ground state among the variety of possible metastable states,
we applied a large number of various initial states [24] for the
minimization procedure in each case. The results are
presented in Fig. 2.
We conclude, from Fig. 2(a), that the ground state of the

system with low anisotropy is a vortex magnetization
distribution, with the magnetization vectors tangentially
aligned to the Möbius surface, see Fig. 2(b). This is the
typical situation for magnetically soft nanomagnets with
symmetric shape, where the vortex state dominates as a result
of competition between exchange and magnetostatic inter-
actions only, e.g., in magnetic nanodisks [25] and nanorings
[26]. The vortex states with magnetochiralities of opposite
signs are energetically equivalent for the Möbius ring.
In the opposite case of high easy-normal anisotropy, the t

wall appears as the ground state, see Figs. 2(c) and 2(c′).
According to Fig. 2(c′), the t wall magnetochirality
C ¼ −1 is opposite to the Möbius ring chirality C ¼ þ1.
This confirms the conclusion about the coupling of
chiralities of the object and magnetization pattern, which
follows from (7). Moreover, change of the Möbius ring
chirality to the opposite one leads to the corresponding
switching of the magnetochirality of the t wall [18].
We found that the number of t walls increases with

increasing thickness. For instance, states with three t walls
are found, see Fig. 2(d). We find out that only an odd
number of t walls is possible. The appearance of a multi-
domain structure is the typical consequence of magneto-
static interaction, because the creation of domains leads to
stray field energy minimization.
For the Möbius rings of small thickness, the transition

between the vortex state and t wall state appears for Q ≈ 1.
However, for larger thicknesses there is a range ofQ, where
the state with the l wall is the ground state, see Figs. 2(a)
and 2(e). According to Fig. 2(e), the l wall magneto-
chirality C ¼ þ1 coincides with the Möbius ring chirality
C ¼ þ1. This supports the conclusion about the object-
pattern chirality coupling, which follows from (9). Similar
to the case with the twall, the alternation of the Möbius ring
chirality to the opposite one leads to the corresponding flip

of the magnetochirality of the l wall [27]. The l wall is an
asymmetric Bloch domain wall [28], see Fig. 2(e′). The
influence of magnetostatics leads to an asymmetric defor-
mation of the Bloch domain wall such that, for thick
samples, the vortex formation along the wall is obtained
[28], see Fig. 2(e′).
The achieved effect of the coupling of chiralities of the

vector (director) field subsystem and the curvilinear sub-
strate is a general one for systems with an exchange-like
interaction. For instance, it is expected for nematics in one
constant approximation [29]. As it was recently demon-
strated [15], the immersing of the Möbius shaped particle in
the liquid crystal induces linear topological defects in the
director field of the nematic. The induced defect has the
form of a closed disclination loop encircling the Möbius
strip [15]. The sign of strength of this loop is opposite
inside and outside the Möbius strip, and therefore, the
loop can be characterized by the chirality. We expect the
coupling of chiralities of the disclination loop and
the Möbius strip analogously to the chirality coupling in
the magnetic system described above.
The presence of the topologically protected domain wall

in the Möbius strip out of out-of-plane magnetized material
can be used to realize nonvolatile magnetic storage media.
As was demonstrated above, the t wall state is doubly
degenerated with respect to the binary quantity p ¼ �1.
For a domain wall on an orientable surface, the quantity p
plays the role of the topological charge which is conserved.
However, alternation of p is not forbidden in the Möbius
geometry, e.g., by application of the pulse of the magnetic
field along z axis (if the domain wall is situated in the
“vertical” part of the Möbius strip). Furthermore, the
possibility of controlling the chirality of the domain walls
by local twists or curvatures could be of potential interest
for the racetrack memory devices [30]. For the latter, it was
recently established that the chirality of domain walls in
magnetic nanostrips determines their mobility and propa-
gation direction [31,32]. It should also be noted that, for the
case of strong magnetoelastic coupling, one can expect a
“feedback” effect: the chiral magnetization structure can
induce a mechanical twisting of a flexible stripe. This can
be especially important for applications in flexible and
stretchable magnetoelectronic devices [33].
In summary, we demonstrate that the combined

curvature-induced effect appears for the Möbius shaped
magnetic nanoring with easy-normal anisotropy, namely,
the chirality symmetry breaking takes place for both types
of the topologically induced domain walls, transversal
and longitudinal. This effect is driven by the effective
Dzyaloshinskii-like term, which originates from the curvi-
linear form of the exchange interaction. It is also shown that
the “vertical” part of the ring is the equilibrium position of
the transverse domain wall.
Experimental verification of the predicted effects is

foreseeable as a micrometer sized single crystal Möbius
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ring is already realized experimentally [34]. The exper-
imental realization can be addressed to all-electrical mea-
surements by monitoring the quantum spin Hall effect [35]
or topological Hall effect [36] in the Möbius ring.
This work completes the broad theoretical studies

of various physical phenomena for the Möbius geometry
[37–46] by including magnetic phenomena.

We thank Professor Vladimir M. Fomin (IFW Dresden)
for inspiring discussions. This work is financed in part via
the ERC within the EU Seventh Framework Programme
(ERC Grant No. 306277) and the EU FET Programme
(FET-Open Grant No. 618083). O. V. P. acknowledgements
the support from DAAD (Code No. 91530902-FSK).

*vkravchuk@bitp.kiev.ua
[1] M. J. Bowick and L. Giomi, Adv. Phys. 58, 449 (2009).
[2] A. M. Turner, V. Vitelli, and D. R. Nelson, Rev. Mod. Phys.

82, 1301 (2010).
[3] F. de Juan, A. Cortijo, M. A. H. Vozmediano, and A. Cano,

Nat. Phys. 7, 810 (2011).
[4] G. Napoli and L. Vergori, Phys. Rev. Lett. 108, 207803

(2012).
[5] V.Vitelli andA.M.Turner, Phys.Rev.Lett.93, 215301 (2004).
[6] V. M. Fomin, R. O. Rezaev, and O. G. Schmidt, Nano Lett.

12, 1282 (2012).
[7] R. S. Forgan, J.-P. Sauvage, and J. F. Stoddart, Chem. Rev.

111, 5434 (2011).
[8] C. Dietrich, R. Hertel, M. Huber, D. Weiss, R. Schäfer, and

J. Zweck, Phys. Rev. B 77, 174427 (2008).
[9] M. Yan, C. Andreas, A. Kakay, F. Garcia-Sanchez, and R.

Hertel, Appl. Phys. Lett. 100, 252401 (2012).
[10] V. P. Kravchuk, D. D. Sheka, R. Streubel, D. Makarov, O. G.

Schmidt, and Y. Gaididei, Phys. Rev. B 85, 144433 (2012).
[11] M. Yoneya, K. Kuboki, and M. Hayashi, Phys. Rev. B 78,

064419 (2008).
[12] R. Hertel, SPIN 03, 1340009 (2013).
[13] Y. Gaididei, V. P. Kravchuk, and D. D. Sheka, Phys. Rev.

Lett. 112, 257203 (2014).
[14] D. D. Sheka, V. P. Kravchuk, and Y. Gaididei, J. Phys. A 48,

125202 (2015).
[15] T. Machon and G. P. Alexander, Proc. Natl. Acad. Sci.

U.S.A. 110, 14174 (2013).
[16] L. D. Landau and E. M. Lifshitz, Phys. Z. Sowjetunion 8,

153 (1935) [Ukr. J. Phys. 53, 14 (2008)].
[17] We did not consider a case of Néel domain wall here,

because only walls of Bloch type are found by using full
scale micromagnetic simulations.

[18] We checked it for parameters h ¼ 5 nm, Q ¼ 1.72.
[19] M. Heide, G. Bihlmayer, and S. Blügel, Phys. Rev. B 78,

140403 (2008).
[20] A.Hubert andR.Schäfer,MagneticDomains: TheAnalysis of

Magnetic Microstructures (Springer–Verlag, Berlin, 1998).
[21] The largest value of the anisotropy constant is limited by the

chosen average mesh size 3 nm which is determined by the
computational possibilities.

[22] The lower bound corresponds to a quasi-2D case when the
magnetization is uniform along the normal direction, and the
upper bound is determined by the condition of usage of (2).

[23] W. Scholz, MAGPAR 0.9, 2010, http://www.magpar.net/
static/magpar/doc/html/index.html.

[24] We use 12 different initial states, namely, four different
states with random magnetization distributions, six states
uniformly magnetized along directions �x̂, �ŷ, �ẑ, respec-
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