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We derive the Gibbs energy including the anharmonic contribution due to phonon-phonon interactions
for an extensive set of unary fcc metals (Al, Ag, Au, Cu, Ir, Ni, Pb, Pd, Pt, Rh) by combining density-
functional-theory (DFT) calculations with efficient statistical sampling approaches. We show that the
anharmonicity of the macroscopic system can be traced back to the anharmonicity in local pairwise
interactions. Using this insight, we derive and benchmark a highly efficient approach which allows the
computation of anharmonic contributions using a few T ¼ 0 K DFT calculations only.
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For predicting real-world materials properties based on
quantum mechanical ab initio approaches, it is crucial to
take finite temperature effects accurately into account. This
can be done by combining thermodynamic with statistical
mechanics concepts employing specifically the partition
function with ab initio computed total energies [1,2]. A
major challenge in doing so is the large number of
configurations necessary to converge thermodynamic aver-
ages. Simple estimates show that brute force sampling
requires on the order of 107 ab initio computed configu-
rations to get the desired accuracy [3]. Therefore, from the
advent of ab initio guided materials design, sophisticated
approaches have been suggested and employed to approxi-
mate free energies at finite temperatures with a minimum of
sampling effort.
The presently most popular approach to compute

thermodynamic properties from ab initio is the quasihar-
monic (QH) approximation [4,5], for which the total energy
of any atomic configuration is given by

EQH ¼ 1

2

XN
IJ

~uIΦIJ ~uJ: ð1Þ

Here, N is the number of atoms, each ΦIJ is a 3 × 3
volume-dependent force constant matrix between atom I
and J, and ~uI is the displacement vector of atom I from its
equilibrium position. Evaluating force constant matrices is
nowadays almost routine within density-functional theory
(DFT). Knowing them, the free energy can be straightfor-
wardly obtained [6].
A drawback of the QH approach is that its accuracy is

difficult to assess. Traditionally, anharmonic contributions

beyond quasiharmonicity have been assumed to be small
[7], most likely because accurate tools to compute them
were missing. Only recent methodological advances,
mainly based on thermodynamic integration techniques
[8–10], allowed us to reduce the number of sampling
configurations by 3–4 orders of magnitude providing,
thereby, access to the numerically exact free-energy sur-
face. Studies based on these approaches showed that
anharmonic contributions may not only quantitatively
but even qualitatively change thermodynamic quantities
[11]. Yet, the computations are still too expensive to be
performed on a regular basis.
To avoid the computational cost of the numerically exact

solution via statistical sampling, approaches have been
developed to get an approximate description of the poten-
tial energy surfaces which go beyond Eq. (1). A main route
in this direction is the treatment of anharmonic phonon-
phonon interactions using second quantization [12–14],
where the sum in Eq. (1) extends not only over pairwise
interactions but includes higher-order terms. Other
approaches use machine learning [15] or cluster expansion
[16] concepts for approximating the potential energy sur-
face or replace the T ¼ 0 K computed force constant
matrix by one that optimally describes the system at a
given temperature [17]. In contrast to statistical sampling, a
systematic convergence of these approaches proves chal-
lenging, making it difficult to assess their accuracy.
As a consequence of the difficulties arising when trying

to go beyond Eq. (1), systematic studies of anharmonicity
for a wide range of materials are missing. In particular, it is
unclear whether the huge configuration space can be
compressed to a few physically intuitive collective coor-
dinates. In this Letter we address this issue by systemati-
cally studying anharmonicity for a large set of fcc metals.
Having the numerically exact free energy at hand allows us
to confine the involved approximations to the choice of the
DFT exchange-correlation functional and to unveil the
importance of anharmonicity. Analyzing our ab initio
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molecular dynamics (MD) data, we gain a detailed under-
standing about the fundamental mechanism causing anhar-
monicity in these systems. This allows us to derive and
test a highly efficient novel approach that enables accurate
free-energy calculations over the whole temperature range
to meV precision using a few sampling points derived
at T ¼ 0 K.
We have calculated the total energies entering the

electronic, quasiharmonic, and anharmonic free energies
with the VASP code [18,19], projector augmented wave
(PAW) potentials [20], and the local density approximation
(LDA) as well as the generalized gradient approximation
(GGA) [21–23]. Spin polarization for Ni was included.
Details regarding the electronic and quasiharmonic con-
tributions were discussed previously [24]. The anharmonic
calculations were performed using the upsampled thermo-
dynamic integration using Langevin dynamics (UP-TILD)
method [3]. Convergence errors due to DFT related
parameters (e.g., k points, energy cutoff, supercell size)
and statistical sampling have been carefully checked and
are ensured to be below 1 meV=atom [25].
We focus first on the heat capacity which is a sensitive

measure of the Gibbs energy surface and an experimentally
extensively studied quantity. Figure 1(a) shows for the
example of Ag the strong impact of anharmonicity:
Employing the QH approximation (dashed curves for
GGA and LDA) overestimates the final heat capacity by
1.4kB and 0.4kB (i.e.,37% and 10%) at the melting point.
Including anharmonicity (solid curves) reduces the dis-
crepancy between theory and experiment and, more impor-
tantly, the difference between LDA and GGA which has
been identified in previous studies [3,26] as a reliable
ab initio error measure (confidence interval) by more than a
factor of 2. Figure 1(b) summarizes the GGA heat capacity
contributions (electronic, quasiharmonic, anharmonic) for
all studied elements and allows us, thus, to extract generic
trends. All three contributions are roughly of the same order
of magnitude, implying that neglecting anharmonicity (up
to 1.2kB for LDA) or any of the other contributions would
result in severe modifications. For Au, strong anharmonic

together with many-body effects have been recently
revealed to be crucial for an accurate thermodynamic
description [26]. Thus, even for high-symmetry closed
packed fcc metals where anharmonic effects have been
generally expected to be small, they are seen to be essential.
The corresponding contributions to the Gibbs energy are
shown in Fig. 1(c). We systematically observe anharmonic
free energies to be about half the magnitude of the
quasiharmonic free energies. The absolute anharmonic
values of up to 25 meV (18 meV) for GGA (LDA) can
easily modify phase transition temperatures by several
hundred kelvin.
To understand the physical origin of the unexpectedly

large anharmonicity, we carefully analyzed our MD data.
We found that a particularly useful quantity for this
purpose is the MD distribution of the first nearest-neighbor
vectors ~d1NN. The corresponding QH and fully DFT-based
distributions projected onto the (001) plane are shown in
Fig. 2(a) for a MD run of Ag at the melting temperature.
The QH distribution shows a characteristic ellipsoidal
shape which is symmetric in longitudinal and transversal
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FIG. 1 (color online). (a) DFT heat capacity of Ag [quasiharmonic (qh), electronic (el), anharmonic (ah)] up to melting temperature
Tmelt, in comparison to experiment [27–31] and CALPHAD data [32]. (b) GGA heat capacity and (c) Gibbs energy contributions as a
function of homologous temperature. In (b) and (c), the qh data represent only the contribution beyond the purely harmonic part.
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FIG. 2 (color online). Results from an MD run for Ag at the
melting temperature. (a) QH and fully DFT-based distribution of
the projected nearest-neighbor vector ~d1NN with the center of
reference at (0,0) (red quadrant). (b) Gauss-broadened first
nearest-neighbor distribution functions ρ1NN (dashed lines;
broadening parameter 0.04 Å−1) and corresponding effective
potentials veff (solid lines) obtained from full DFT (red) and
QH (black) MD runs as a function of the first nearest-neighbor
distance d1NN around the effective equilibrium deq;eff1NN correspond-
ing to the minimum of veff .
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direction, ~eL and ~eT . For the fully DFT-based MD, only the
transversal direction is symmetric, whereas a clearly non-
symmetric (anharmonic) behavior becomes evident in the
longitudinal direction. Going towards the atom located at
the origin gives rise to a sharp, almost planar edge beyond
which the probability to find a neighboring atom drops
essentially to zero, whereas on the opposite site a signifi-
cant probability exists.
The observed distribution indicates that the functional

dependence of the first nearest-neighbor distance is a good
measure to represent anharmonicity. We therefore compute
the Gauss-broadened first nearest-neighbor distribution

function ρ1NNðdÞ ¼
P

jδðj~dj1NNj − dÞ with j running over
all first nearest-neighbor vectors of all MD time steps. In
contrast to the fully symmetric QH distribution shown in
Fig. 2(b) (black dashed line), the DFT distribution (red
dashed line) shows a pronounced decrease (increase) of
configurations smaller (larger) than the equilibrium dis-
tance. The redistribution of probabilities observed in the
DFT MD case shown in Fig. 2 is fundamentally inacces-
sible in any harmonic description. It provides direct insight
into the mechanism by which atomic correlation is able to
lower the energy of the system and, thus, is the origin of
anharmonicity: By shifting shorter bond configurations
to on average longer bonds, the system very effectively
avoids the strong Pauli repulsion while having to pay only
the price for stretched bonds where the corresponding
interaction is softer [33]. This picture becomes even
clearer when the atomic distribution function is used to
construct the corresponding effective potential veff ¼
−kBT ln ρ1NNðdÞ [see solid black and red lines in
Fig. 2(b)]. As expected, the full DFT effective potential
(red line) is harder (softer) than the QH one for distances
shorter (longer) than the equilibrium bond length. In fact,
the thus constructed temperature-dependent nearest-
neighbor effective potential closely resembles the well-
known features of a Morse potential that is often used to
describe the strength and anharmonicity of a T ¼ 0 K
chemical bond.
Being able to relate finite temperature anharmonicity to

the physically intuitive concept of local pairwise inter-
actions, the question arises whether the corresponding
interatomic potential can be directly derived from a few,
ideally T ¼ 0 K calculations. Inspired by the distribution
shown in Fig. 2(a), we use a local unitary transformation,
Uloc, which is an N × N block matrix with elements

Uloc
IJ ¼ νIJ; ΦIJνIJ ¼ ~EIJνIJ; ð2Þ

where ΦIJ corresponds to the quasiharmonic force constant
matrix between atom I and J as in Eq. (1), νIJ is the

corresponding matrix of eigenvectors, and ~EIJ the vector of
eigenvalues. Applying the 3 × 3 matrix Uloc

IJ on a Cartesian
basis, Axyz ¼ ð~ex; ~ey; ~ezÞ, results in a local basis

Aloc
IJ ¼ ðUloc

IJ Þ−1 · Axyz ·Uloc
IJ ; Aloc

IJ ¼ ð~eL; ~eT1; ~eT2Þ;
ð3Þ

with a longitudinal direction ~eL and two transversal vectors
~eT1 and ~eT2 [orthogonal to ~eL, compare Fig. 2(a)] for every
atom pair. Using this new basis, the asymmetry in the DFT
distribution function can be captured already from T ¼ 0 K
calculations. For that purpose, we start with a perfect
crystal with all atoms in equilibrium positions. We then
displace atom I by a displacement u along each of the
three principal vectors of Aloc

IJ and map the T ¼ 0 K force
~F0 K
J and corresponding energy potential on the neighbor

atom J as

FaðuÞ ¼ ~F0 K
J ðu~eaÞ · ~ea; VaðuÞ ¼

Z
u

0

Faðu0Þdu0;
ð4Þ

with a ¼ L; T1; T2. Crystal symmetries are employed to
reduce the number of T ¼ 0 K calculations required to
obtain the force and energy parametrizations to the irre-
ducible ones. Having the parametrization of the forces and
potentials available, the forces and energy for any atomic
configuration, e.g., during a MD simulation, can be
approximated. For example, the energy reads

ELA ¼ 1

2

XN
J

Xn
I

½VLðuIJÞ þ VT1ðuT1Þ þ VT1ðuT2Þ�; ð5Þ

with n the number of nearest neighbors, uIJ ¼ j~dIJj − deqIJ,

uT1 ¼ ~dIJ · ~eT1, uT2 ¼ ~dIJ · ~eT2, ~dIJ the vector between

FIG. 3 (color online). Application of the local anharmonic (LA)
approximation to Ag. (a) Longitudinal T ¼ 0 K DFT forces
(open red circles) obtained by displacing an atom from its T ¼
0 K equilibrium position, deq;0 K

1NN , towards and away from its next-
nearest neighbor. The red solid line shows a fit according to the
LA approximation and the black solid line using the QH
approach. The necessary displacement range at T ¼ 0 K is
dictated by the shown distance distribution at the melting
temperature (red dashed line and shaded area). (b) Comparison
between full DFTand LA forces (red dots), and between full DFT
and QH forces (black dots) for configurations obtained from a
fully DFT-based MD run at the melting temperature.
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atom I and J, and with deqIJ the equilibrium distance of these
atoms at T ¼ 0 K. Since the proposed method is based on
probing the local anharmonic potential, we refer to the
formalism as the local anharmonic (LA) approximation.
A crucial difference between the LA approximation and

the conventional QH direct-force-constant approach, where
the force constantsΦIJ are formally restricted to the limit of
infinitesimally small displacements (typical QH displace-
ments are ≈0.01 Å), is that significantly larger displace-
ments are sampled during the LA parametrization [u in
Eq. (4)] to accurately reproduce the anharmonic character.
The magnitude of the displacements is dictated by the
distribution function at the given temperature [see red
dashed line in Figs. 2(b) and 3(a)] and can reach values
of > 1 Å, i.e., 2 orders of magnitude larger than those of
the QH method. The resulting distance dependence, in
particular, of the longitudinal component is no longer a
linear function but highly anharmonic.
Figure 3(a) shows an example of the LA approximation.

The longitudinal anharmonic forces (open red circles)
derived from T ¼ 0 K DFT displacements are highly
nonlinear. Trying to fit a linear function, as inherently
done within the QH approximation (black solid line), is
bound to introduce a large error. Rather, we generally find
that a Morse potential provides an accurate description of
the longitudinal DFT T ¼ 0 K forces (red line). A direct
assessment of the quality of our LA approximation can be
obtained by comparing finite-temperature forces extracted
during a full DFT-MD run with forces computed for the
identical configurations but using the LA approximation.
Such a comparison is shown in Fig. 3(b) for Ag at its
melting temperature (red dots). A dramatically improved
correlation for the LA as compared to the QH approxima-
tion is observed.
To compute anharmonic free energies, the LA approxi-

mation can be used following two principle routes: (i) direct
computation of LA anharmonic free energies using Eq. (5)
by performing a thermodynamic integration from the

quasiharmonic reference to the LA potential at negligible
computational cost or (ii) calculation of the numerically
exact DFT free energy using the LA potential as a reference
system for thermodynamic integration to the DFT energy
surface. Following the first route, we have computed for all
studied elements the LA potential by a few (typically 4)
DFT displacements at T ¼ 0 K , i.e., without any computa-
tionally expensive DFT MD. The free energy in the LA
approximation is given by Fah

LA ¼ ~Fah
LA þ ΔELA

DFT, where
~Fah
LA is the free energy obtained by thermodynamic inte-

gration from QH to the derived LA potential and ΔELA
DFT is

an averaged difference between LA and DFT energies
obtained from a few uncorrelated snapshots taken from a
computationally inexpensive LA MD. We find ΔELA

DFT to
converge for all studied elements within a few (< 5)
uncorrelated structures to better than 1 meV. The accuracy
achievable using route (i) in comparison to the fully
ab initio computed anharmonic free energy [cf. Fig. 1(c)]
is shown in row 3 of Table I, ΔFah

LAðLþT1Þ. Errors are on the
order of a fewmeVfor all elements highlighting the accuracy
that can be achieved by applying the LA approachwith a few
(here < 10) T ¼ 0 K DFT calculations.
Following the second route (ii), we have computed

numerically exact DFT free energies by thermodynamic
integration with the LA approximation as reference.
Since the LA forces faithfully reproduce the DFT forces
[Fig. 3(b)], the LA reference and the original system span
very similar configuration spaces allowing us to obtain a
very fast statistical convergence. The speed-up factors
with respect to the previously applied QH reference given
in Table I reveal that the computational effort can be
reduced by about 2 orders of magnitude. For the free
energy of Ag this resulted in a reduction from 4504 to less
than 9 CPU hours [34] at the melting temperature and is
now comparable to a QH calculation (∼6 CPU hours).
This example illustrates that the LA method opens the
path towards routine, numerically exact ab initio free
energies.

TABLE I. (Rows 1–3): Error in the free energy (in meV=atom and at Tmelt) for the various approximations with respect to the
numerically exact DFT free energy. (Row 1): QH approximation. (Row 2): LA approximation using a first nearest-neighbor longitudinal
Morse parametrization only. (Row 3): As row 2, but augmented with a transversal function in ~eT1 direction corresponding to the second
largest eigenvalue in Eq. (2). (Rows 4 and 5): Speed-up factors for the thermodynamic integration when replacing the QH by the LA
reference. The speed-up is defined by nQH=nLA, where nQH and nLA are the MD steps necessary to reach a given standard error (typically
1 meV=atom) with a QH and LA reference.

Al Ag Au Cu Ir Ni Pb Pd Pt Rh

ΔFah
QH 4 16 27 9 17 6 2 6 22 10

ΔFah
LAðLÞ 6 1 25 1 6 0 1 3 24 3

ΔFah
LAðLþT1Þ 1 1 3 0 6 0 1 1 4 3

LAðLÞSpeed-up 8 244 37 200 22 158 29 67 23 49

LAðLþT1ÞSpeed-up 52 523 213 256 22 158 29 198 39 49
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In conclusion, we computed statistically well-converged
anharmonic free energies with DFT accuracy for a wide
range of fcc metals. Using this computationally expensive
data set we were able to identify the magnitude and origin
of anharmonicity in these materials. Based on this insight
we extended the well-established quasiharmonic by the
local anharmonic approximation, which allows us to obtain
fully converged anharmonic energies at a fraction of the
cost needed by previous approaches. We note that the LA
approach may also be employed to study spectrally
resolved anharmonic properties such as phonon renormal-
ization and linewidths or thermal conductivity. First results
on phonon linewidths are very promising and will be
extended in future studies. The LA approach is not
restricted to crystalline bulk systems but can be equally
well used to compute the anharmonicity of alloys, defects,
surfaces, etc. and promises a computational effort that is
similar to quasiharmonic calculations.
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