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We show that model molecules with particular rotational symmetries can self-assemble into network
structures equivalent to rhombus tilings. This assembly happens in an emergent way, in the sense that
molecules spontaneously select irregular fourfold local coordination from a larger set of possible local
binding geometries. The existence of such networks can be rationalized by simple geometrical arguments,
but the same arguments do not guarantee a network’s spontaneous self-assembly. This class of structures
must in certain regimes of parameter space be able to reconfigure into networks equivalent to triangular
tilings.
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The self-assembly of molecules at surfaces has practical
application because it allows us to influence the properties
of those surfaces [1,2]. It is also of fundamental interest:
self-assembly at surfaces has provided insight into the
general question of how to encourage the self-assembly
of a desired structure while avoiding the self-assembly of
undesired structures [3–7]. In several cases, basic consid-
erations of molecular symmetry and geometry have been
shown to be key to understanding the outcome of self-
assembly at surfaces. For example, a wide range of
molecules whose atomic details differ but whose inter-
actions possess threefold rotational symmetry form honey-
comb networks and polygon variants thereof, both in and
out of equilibrium [8–13]. Molecules whose binding
geometries are equivalent to those of rhombus tiles form
rhombus tilings of the plane [14–17].
In those examples, the restriction of preferred molecular

binding geometries to only those characteristic of a par-
ticular network encourages formation of that network and
helps prevent the formation of other possible networks.
Here we demonstrate in simulations an example of network
self-assembly that happens instead in an emergent fashion.
Collections of mutually attractive model molecules having
particular rotational symmetries spontaneously select only
a subset of possible local binding geometries. By doing so,
they self-assemble into extended networks equivalent to
rhombus tilings of the plane [18–24].
To provide context for this result we consider in Fig. 1

the regular Platonic tilings, which are coverings of the
plane by nonoverlapping regular triangular, square, and
hexagonal tiles [25]. The vertices of such tilings possess
sixfold, fourfold, and threefold rotational symmetry,
respectively. Other authors have shown that the networks
equivalent to such tilings can be realized by the self-
assembly of model molecules whose interactions possess

the appropriate rotational symmetries [26–28]. By way of
illustration, we show pictures in the figure of such networks
and the equivalent tilings, self-assembled in our simulations
from collections of “patchy particles” [29,30] in two
dimensions. The particles in question are hard disks that

FIG. 1 (color online). Platonic tilings of triangles, squares, or
hexagons result from regular six-vertices, four-vertices, or three-
vertices, respectively, and can self-assemble from collections of
building blocks with the corresponding rotational symmetries
[26–28]. The four-vertex can be made irregular and results in a
tile, a rhombus, whose sides are of equal length. As we show in
this Letter, irregular four-vertex networks equivalent to rhombus
tilings spontaneously self-assemble from building blocks with
M-fold rotational symmetry, where M ≥ 4 is even and not a
multiple of six.
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possess M-fold rotational symmetry of their interactions:
disks attract each other in a pairwise fashion via M
regularly placed “patches” of opening angle 2w. Two
engaged patches result in a favorable binding energy
−ϵkBT. Disk interactions are “square well” in both angle
[31] and range; see Sec. S1. By slowly cooling collections
of such disks (Sec. S2) we observe the spontaneous
assembly of the networks shown.
Thermodynamically, it is clear why disks form these

networks and not other ones. Disks within these networks
have all their patches engaged and so possess the least
possible energy. Networks are also geometrically unstrained
—on average, disk patch bisectors point along the lines
connecting vertices—and so disks retain as much rotational
and vibrational entropy as possible. Lack of strain is possible
because the rotational symmetries of the network vertices
and disk interactions are identical, and because the resulting
tile has all sides of equal length, enabling its formation by
disks possessing a single preferred (average) interaction
distance. Dynamically, assembly is successful because slow
cooling allows disks to select low-energy local binding
environments before interactions become strong enough to
cause kinetic trapping.
Given that the networks equivalent to the Platonic tilings

are built from regular vertices and tiles, it is natural to ask if

one can arrange for the self-assembly of irregular variants
of these networks. The six-vertex, if deformed, gives
rise (locally) to triangles whose sides are not all of equal
length. A single type of molecule could therefore not
form a network of such vertices without strain, unless it
possessed multiple preferred interaction ranges (see, e.g.,
Refs. [32,33]). But the four-vertex is different. As shown in
Fig. 1, a four-vertex harboring two types of internal angle ϕ
and θ is equivalent to a rhombus tile possessing these two
internal angles. A rhombus has all sides equal, and so, in
principle, a single model molecule with the appropriate
rotational symmetry and a single preferred interaction
range could form an unstrained network equivalent to a
tiling of such rhombuses.
This is what we show in the lower right-hand panels of

Fig. 1. However, the model molecule in question possesses
not irregular fourfold rotational symmetry but regular
tenfold rotational symmetry. Cooling collections of this
molecule (with patches of half-width w ¼ 5°) results in
self-assembly of the pattern shown. In this pattern, disks
engage only four of their ten patches: the irregular four-
vertex has emerged spontaneously. By comparing the left
and center panels of Fig. 2(a), which show a larger piece of
this network, we see that domains of parallel-pointing
rhombuses result when disks engage four patches whose

FIG. 2 (color online). Rhombus tilings emerge from particular regular rotational symmetries of building block interactions. (a) Region
of rhombus tiling self-assembled from ten-patch disks (w ¼ 5°), in disk (left) and polygon (center) views. This tiling is similar to the
“tilted” rhombus phase [14,16,34] (right) that results from the self-assembly of mutually attractive rhombus tiles with internal angles
2π=5 and 3π=5. (b) Geometry used to motivate the observation that unstrained rhombus tilings can form from regular M-patch disks,
where M is even and not a multiple of six. (c) In simulations, disks of this nature spontaneously self-assemble into rhombus tilings if
cooled slowly. Here we plot the largest number of convex polygons of size s ¼ 3 or 4 obtained upon cooling collections of M-patch
disks with w ¼ 2°. Inspection of configurations reveals the four-gons at the labeled values ofM to be rhombuses (see snapshots right and
Figs. S2 and S3.)
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bisectors are separated by angles ð2; 3; 2; 3Þ × π=5, in
order. Boundaries between parallel-pointing domains result
when engaged patch bisectors possess angular separations
ordered instead as ð2; 2; 3; 3Þ × π=5. The resulting tiling
is similar to that made by the self-assembly of rhombus-
shaped tiles possessing internal angles 2π=5 and 3π=5
(right; see Sec. S3).
Thus, collections of model molecules with tenfold

rotational symmetry spontaneously select local irregular
fourfold coordination and so self-assemble into an
extended network. This example turns out to be a particular
case of a more general phenomenon, as we now describe.
We can ask from what regular rotational symmetries are
rhombus tilings possible geometrically, focusing on the
narrow-patch limit in which patch bisectors must point
along the lines connecting network vertices. In Fig. 2(b) we
show a picture of a ten-patch disk that forms the vertex of a
self-assembled rhombus tiling (for the purposes of the
following argument we shall ignore that fact that disk
patches in this picture are of finite width). The angles ϕ and
θ are the two internal angles of the rhombus. Because these
angles meet at a vertex, they satisfy

2ðϕþ θÞ ¼ 2π: ð1Þ
Imagine now that this disk has not ten but M patches, and
let the angles ϕ and θ correspond to the intervals separating
an integer numbers of patches, say, α and β, respectively.
That is, let ϕ ¼ 2πα=M and θ ¼ 2πβ=M. Inserting these
expressions into Eq. (1) gives

αþ β ¼ M=2: ð2Þ
Because α and β are integers, M=2 must be an integer, and
so M must be even. Thus, it is geometrically possible for
disks with even-numbered rotational symmetry to form
unstrained rhombus tilings. Thinking now of the potential
self-assembly of such tilings, we note that ifM is a multiple
of six then disks can also form an unstrained triangular
tiling, and this—being made from six-vertices rather than
four-vertices—will be energetically preferred to the rhom-
bus tiling. Simple geometric arguments therefore suggest
the possibility of having rhombus tilings self-assemble
from model molecules with M-fold rotational symmetry,
where Mð≥ 4Þ is even and not a multiple of six.
In Fig. 2(c) we show using simulations ofM-patch disks

that this possibility can be realized: collections of such
molecules do self-assemble into rhombus tilings if cooled
slowly.We plot the largest numberNmax

s of polygons (drawn
atop networks; see Sec. S1) having s sides that were seen
over the course of long cooling simulations. Networks
self-assembled at the labeled values ofM contain numerous
four-gons. Inspection of networks (see, e.g., snapshots at
right of Fig. 2(c) and Fig. S2) reveals these four-gons to
be rhombuses, arranged into rhombus tilings. The tilings
predicted by geometry to exist are therefore kinetically

accessible: disks self-assemble into rhombus tilings in
preference to any of the many possible disordered networks.
Rhombuses in tilings can also be of more than one shape,

consistent with the fact that Eq. (2) constrains only the sum
of α and β: anM-patch disk can in general make rhombuses
of more than one type ðα;M=2 − αÞ, by which we mean a
rhombus with internal angles ðα;M=2 − αÞ × 2π=M.
Taking α ≤ β, sterically allowed, strain-free rhombuses
are characterized by integers α satisfying M=6< α≤M=4
[steric constraints alone, for the disk parameters used
in this work (see Sec. S1), dictate a lesser lower bound
of α > ðM=πÞ arcsinð5=11Þ ≈M=6.66]. For instance, the
ten-patch disk makes only the (2,3) rhombus: the (1,4)
rhombus is forbidden sterically. But for 16 patches and
upwards, rhombuses in tilings can be of more than one
type. For example, the 20-patch disk forms the (4,6) and
(5,5) rhombuses [a boundary between these tile types is
shown in the middle snapshot of Fig. 2(c)]; the 28-patch
disk forms the (5,9), (6,8), and (7,7) rhombuses. We see the
sterically allowed, unstrained rhombuses in roughly equal
numbers in our simulations, indicating that they are free-
energetically equivalent. Tilings that result from cooling
simulations are also imperfect, in the sense that they
contain nonrhombic grain boundaries that result from the
dynamic process of self-assembly (the more so as M
increases).
These emergent rhombus tilings must be polymorphic

with at least one other solid phase in certain regimes of
parameter space. To see this, we note than in simulations
thus far we have focused on model molecules with specific
orientational interactions, i.e., narrow patches, because
rhombus tilings are free of geometrical strain and so
can, in principle, form from disks whose patches are of
infinitesimal width (we checked that the expected rhombus
tilings self-assemble, for M ≤ 32, for the finite but narrow
half-width w ¼ 0.5°). However, real molecules possess
finite flexibility of binding and so are better modeled by
disks whose patches have appreciable width [13,35]. In
the limit of wide patches, when the whole circumference
of the disk is sticky (i.e., when w ¼ π=M), networks
equivalent to triangular tilings must result. Somewhere
between the wide- and narrow-patch limits, then, polymor-
phism must occur.
We verified that this is so for ten-patch disks. In Fig. 3(a)

we show that cooling collections of ten-patch disks with
patches of half-width w≲ 10° results in tilings of four-gons
(which we verified by eye to be rhombuses), while disks
with wider patches form triangular tilings. Nmax

s again
denotes the largest number of s-gons observed over the
course of long cooling simulations. Triangular tilings for
w ≈ 10° are irregular and become regular as w approaches
π=10 ¼ 18°. Near w ¼ 10° we observe polymorphism:
the first tiling to assemble is the rhombus one, which, as
temperature is reduced (as ϵ is increased), converts to a
triangular tiling.
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This conversion occurs because disks in networks
equivalent to rhombus tilings are unstrained geometrically
and so possess more rotational and translational entropy
than do disks in strained triangular tilings. But disks
forming triangular tilings make six contacts rather than
four and so are energetically preferred. Triangles therefore
emerge at low temperature. A related energy-versus-
entropy competition between open and close-packed latti-
ces has been demonstrated for patchy silica spheres [36]. In
Fig. 3 we show the phase boundary between triangle and
rhombus tilings, which we calculated at zero pressure using
mean-field theory (see Sec. S4). Above the line ϵ0ðwÞ,
triangular tilings are lower in free energy than rhombus
tilings [37]. Figure 3(c) shows a rhombus-to-triangle tiling
transformation involving disks of patch half-width
w ¼ 11°. We therefore predict that emergent rhombus
tilings formed by molecules with sufficient flexibility of
binding should reconfigure in response to changes of
temperature.
We note finally that the Archimedean tilings, which are

made from regular vertices and harbor two tile types,
cannot be prepared in an unstrained manner using disks
with regular M-fold symmetry. Self-assembly of
Archimedean tilings can be achieved instead using irregular
patch placement [27] or an odd number of suitably wide
patches [28,38,39] (or the equivalent effective coordination
[40,41]); see Sec. S5.

We have shown that model molecules with particular
rotational symmetries can self-assemble into rhombus
tilings in an emergent way, by spontaneously selecting
irregular fourfold local coordination from a larger set of
possible local binding motifs. We predict that such tilings,
if made from molecules with sufficient binding flexibility,
could reconfigure in response to changes of temperature,
which may have energy-transfer or phase-change applica-
tion. Experimentally, cyclic porphyrin polymers [42] can be
synthesized with the required rotational symmetries and
therefore offer a possible route to the realization of the
rhombus tilings identified here [43].
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FIG. 3 (color online). Rhombus-triangle polymorphism. (a) Cooling collections of ten-patch disks result in self-assembly of the
rhombus phase when interactions are orientationally specific and of the triangle phase as interactions approach the isotropic limit.
Between these limits the two phases can coexist and interconvert, with rhombuses favored by entropy and triangles by energy (see also
Fig. S4). (b) The rhombus-triangle phase boundary calculated at zero pressure using mean-field theory [Eq. (S6)]. Small symbols for
w ¼ 11° describe the results of direct coexistence simulations, which are consistent with the mean-field estimate (see Sec. S4).
(c) Rhombus-to-triangle transformation at parameter set ðϵ ¼ 7; w ¼ 11°Þ, where Eq. (S6) predicts the bulk free-energy density of the
triangle phase to be 2.2kBT less than that of the rhombus phase.
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