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Statistical learning of materials properties or functions so far starts with a largely silent, nonchallenged
step: the choice of the set of descriptive parameters (termed descriptor). However, when the scientific
connection between the descriptor and the actuating mechanisms is unclear, the causality of the learned
descriptor-property relation is uncertain. Thus, a trustful prediction of new promising materials,
identification of anomalies, and scientific advancement are doubtful. We analyze this issue and define
requirements for a suitable descriptor. For a classic example, the energy difference of zinc blende or
wurtzite and rocksalt semiconductors, we demonstrate how a meaningful descriptor can be found
systematically.
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Using first-principles electronic-structure codes, a large
number of known and hypothetical materials have been
studied in recent years, and currently, the amount of
calculated data increase exponentially with time. The
targets of these studies are, for example, the stable structure
of solids or the efficiency of potential photovoltaic,
thermoelectric, battery, or catalytic materials. Utilizing
such data like a reference book (query and read out what
was stored) is an avail. Finding the actuating mechanisms
of a certain property or function and describing it in terms
of a set of physically meaningful parameters (henceforth
termed descriptor) is the desired science. A most impres-
sive and influential example for the importance and impact
of finding a descriptor is the periodic table of elements,
where the elements are categorized (described) by two
numbers, the table row and column. The initial version had
several “white spots,” i.e., elements that had not been found
at that time, but the chemical properties of these elements
were roughly known already from their position in the
table. Interestingly, the physical meaning of this two-
dimensional descriptor became clear only later. Below
we will use an example from materials science to discuss
and demonstrate the challenge of finding meaningful
descriptors: the prediction of the crystal structure of binary
compound semiconductors, which are known to crystallize
in zinc blende (ZB), wurtzite (WZ), or rocksalt (RS)
structures. The structures and energies of ZB and WZ
are very close and for the sake of clarity we will not
distinguish them here. The energy difference between ZB
and RS is larger, though still very small, namely just

0.001% or less of the total energy of a single atom. Thus,
high accuracy is required to predict this difference. This
refers to both steps, the explicit calculations and the
identification process of the appropriate descriptor (see
below). The latter includes the representation of the
descriptor-property relation.
For brevity, we only write “property,” characterized by a

number Pi in the following, with i denoting the actually
calculated material, but we mean the materials function(s)
as well. In general, the property will be characterized by a
string of numbers, but here we like to keep the discussion
simple. Analogously, the multidimensional descriptor is
denoted as a vector di, with dimension Ω. The generali-
zation of the discrete data set fPi; dig to a continuous
function PðdÞ has been traditionally achieved in terms of
physical models, or mathematical fits. Scientific under-
standing of the descriptor d and of the relationship between
d and P is needed for deciding with confidence what new
materials should be studied next as the most promising
novel candidates and for identifying interesting anomalies.
In 1970, Phillips and van Vechten (Ph-vV) [1,2] ana-

lyzed the classification challenge of ZB or WZ versus RS
structures. They came up with a two-dimensional descrip-
tor, i.e., two numbers that are related to the experimental
dielectric constant and nearest-neighbor distance in the
crystal [1,2]. Figure 1 shows their conclusion. Clearly, in
this representation ZB or WZ and RS structures separate
nicely: Materials in the upper left part crystallize in the RS
structure, those in the lower right part are ZB or WZ. Thus,
based on the ingenious descriptor d ¼ ðEh; CÞ one can
predict the structure of unknown compounds without the
need of performing explicit experiments or calculations.
Several authors have taken up the Ph-vV challenge and
identified alternative descriptors [3–5]. We will come back
to this below.
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In recent years, the demand for finding the function PðdÞ
employed statistical learning theory, which is the focus of
this Letter. This strategy has been put forward by several
authors in materials science [14–18], as well as in bio- and
cheminformatics (see, e.g., Ref. [19] and references
therein). Most of these works employed the kernel ridge
regression (KRR) approach. For a Gaussian kernel, the
fitted property is expressed as a weighted sum of
Gaussians: PðdÞ ¼ P

N
i¼1 ci exp ð−∥di − d∥22=2σ2Þ, where

N is the number of training data points. The coefficients ci
are determined by minimizing

P
N
i¼1½PðdiÞ − Pi�2þ

λ
PN;N

i;j¼1 cicj exp ð−∥di − dj∥22=2σ2Þ, where ∥di − dj∥22 ¼PΩ
α¼1ðdi;α − dj;αÞ2 is the squared l2 norm of the difference

of descriptors of different materials, i.e., their “similarity.”
The regularization parameter λ and σ are chosen separately,
usually with the help of leave-some-out cross validation
[20], i.e., by leaving some of the calculated materials out in
the training process and testing how the predicted values for
them agree with the actually calculated ones.
In essentially all previous materials studies the possibly

multidimensional descriptor was introduced ad hoc, i.e.,
without demonstrating that it was the best (in some sense)
within a certain broad class (see Ref. [17] for an impressive
exception). In this Letter, we describe an approach for
finding descriptors for the accurate prediction of a given
property of a class of materials, where we restrict ourselves
to ab initio data.
For the example shown in Fig. 1, statistical learning is

unnecessary, because one can determine the classification
by visual inspection of the 2D plot. In this Letter, we add
the quantitative energy difference between ZB and RS to
the original Ph-vV challenge. In general, the descriptor will
be higher dimensional. Additionally, the scientific question
will be typically more complex than the structural classi-
fication. We define the conditions that a proper descriptor

must fulfill in order to be suitable for causal “learning” of
materials properties, and we demonstrate how the descrip-
tor with the lowest possible dimensionality can be iden-
tified. Specifically, we will use the least absolute shrinkage
and selection operator (LASSO) for feature selection [21].
All data shown in this study have been obtained with

density-functional theory using the local-density approxi-
mation (LDA) for the exchange-correlation interaction.
Calculations were performed using the all-electron full-
potential code FHI-aims [7] with highly accurate basis sets,
k meshes, and integration grids. For the task discussed in
this Letter, the quality of the exchange-correlation func-
tional is irrelevant. Nevertheless, we stress that the LDA
provides a good description of the studied materials. In
particular, we have computed equilibrium lattice constants
and total energies for all three considered lattices (ZB, WZ,
RS) of a set of 82 binary materials. The full list of these
materials and all calculated properties can be found in the
Supplemental Material [6], and all input and output files
can be downloaded from the NoMaD repository [22].
Furthermore, we calculated several properties of the iso-
lated neutral atoms and dimer molecules (see below).
Let us start with a simple example that demonstrates the

necessity of validation in the search for descriptors. The
nuclear numbers of a binary semiconductor AB, ZA and ZB,
unambiguously identify the lowest energy structure: They
define the many-body Hamiltonian, and its total energies
for the different structures give the stable and metastable
structures. Figure 2 (top) displays the total-energy
differences of the ZB and RS structures as function of
ZA and ZB. When using the KRR approach, the data can be
fitted well (see Supplemental Material [6]) when the whole
set is used for learning. However, the predictive power of
KRR based on the descriptor d ¼ ðZA; ZBÞ is bad, as tested
by leave-some-out cross validation (see Table I and
Supplemental Material [6]). Obviously, the relation
between d ¼ ðZA; ZBÞ and the property that we need to
learn is by far too complex.
For a descriptor, we consider the following properties to

be important, if not necessary.
(a) A descriptor di uniquely characterizes the material i as

well as property-relevant elementary processes.
(b) (b) Materials that are very different (similar) should be

characterized by very different (similar) descriptor
values.

(c) The determination of the descriptor must not involve
calculations as intensive as those needed for the
evaluation of the property to be predicted.

(d) The dimension Ω of the descriptor should be as low as
possible (for a certain accuracy request).

Although the Ph-vV descriptor d ¼ ðEh; CÞ fulfills con-
ditions (a), (b), and (d), it falls short on condition (c). In
contrast, d ¼ ðZA; ZBÞ fails for conditions (b) and (d).
In order to identify a good descriptor, we start with a

large number M of candidates (the “feature space”) for the

FIG. 1 (color online). Experimental ground-state structures of
68 octet binary compounds, arranged according to the two-
dimensional descriptor introduced by Phillips [2] and van
Vechten [1]. Because of visibility reasons, only 10 materials
are labeled for each structure. See the Supplemental Material for
more details [6].
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components of d. We then look for the Ω-dimensional
(Ω ¼ 1; 2;…) descriptor d that gives the best linear fit of
PðdÞ: PðdÞ ¼ dc, where c is the Ω-dimensional vector of
coefficients. It is determined by minimizing the loss
function ∥P − Dc∥22, where D is a matrix with each of
the N rows being the descriptor di for each training data

point, and P is the vector of the training values Pi. We
emphasize that the choice of a linear fitting function for
PðdÞ is not restrictive since, as we will show below,
nonlinearities are included in a controlled way in the
formation of the candidate components of d. The function
PðdÞ is then determined by only Ω parameters.
The task is now to find, among all the Ω-tuples of

candidate features, the Ω-tuple that yields the smallest
∥P − Dc∥22. Unfortunately, a computational solution for such
a problem is infeasible (NP-hard) [23]. LASSO [21] provides
sparse (i.e., low-dimensional) solutions by recasting the
NP-hard problem into a convex minimization problem

argmin
c∈RM

∥P − Dc∥22 þ λ∥c∥1; ð1Þ

where the use of the l1-norm (∥c∥1 ¼
P

M
α¼1 jcαj) is crucial.

The larger we choose λ > 0, the smaller the l1-norm of the
solution of Eq. (1) and vice versa. There is actually a smallest
λ̄ > 0, such that the solution of Eq. (1) is zero. If λ < λ̄, one or
more coordinates of c become nonzero.
We note that the so-called “feature selection” is a

widespread set of techniques that are used in statistical
analysis in different fields [24], and LASSO is one of them.
LASSO was successfully demonstrated in Ref. [17], for
identifying the low-dimensional representation of the for-
mation energy of an alloy, within the cluster expansion of
the Hamiltonian. Obviously, when a well-identified basis
set, such as the cluster expansion, is not available for the
property to be modeled, the feature space must be con-
structed differently. In this Letter, we start from scientific
insight, i.e., defining physically motivated primary features
that form the basis for a large feature space. We then search
for a low-dimensional descriptor that minimizes the RMSE,
given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=NÞ∥P − Dc∥22

p
, for our N ¼ 82 binary

compounds. The property P that we aim to predict is
the difference in the LDA energies between RS and ZB for
the given atom pair AB, ΔEAB. The order of the two atoms
is such that element A has the smallest Mulliken electro-
negativity: EN ¼ −ðIPþ EAÞ=2. IP and EA are atomic
ionization potential and electron affinity.
For constructing the feature space, i.e., the candidate

components of the descriptor, and then selecting the most

FIG. 2 (color online). Calculated energy differences between
RS and ZB structures of the 82 octet binary AB materials,
arranged by using the nuclear numbers ðZA; ZBÞ as descriptor
(top) and according to our optimal two-dimensional descriptor
(bottom). In the bottom panel, seven ZB materials with predicted
ΔEAB > 0.5 eV are outside the shown window (see Supplemen-
tal Material [6]).

TABLE I. Root-mean-square error (RMSE) and maximum absolute error (MaxAE) in eV for the least-squares fit of all data (first two
lines) and for the test set in a leave-10%-out cross validation (L-10%-OCV), averaged over 150 random selections of the training set (last
two lines). The errors for ðZA; ZBÞ and ðrσ ; rπÞ [3] are for a KRR fit at hyperparameters ðλ; σÞ that minimize the RMSE for the L-10%-
OCV (see Supplemental Material [6]). The errors for the Ω ¼ 1; 2; 3; 5 (noted as 1D, 2D, 3D, 5D) descriptors are for the LASSO fit. In
the L-10%-OCV for the latter descriptors, the overall LASSO-based selection procedure of the descriptor (see text) is repeated at each
random selection of the test set.

Descriptor ZA; ZB rσ ; rπ 1D 2D 3D 5D

RMSE 2 × 10−4 0.07 0.14 0.10 0.08 0.06
MaxAE 8 × 10−4 0.25 0.32 0.32 0.24 0.20
RMSE, CV 0.19 0.09 0.14 0.11 0.08 0.07
MaxAE, CV 0.43 0.17 0.27 0.18 0.16 0.12
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relevant of them, we implemented an iterative approach. At
first we defined primary features. These are (for atom A):
IPðAÞ and EAðAÞ, HðAÞ, and LðAÞ, i.e., the energies of the
highest-occupied and lowest-unoccupied Kohn-Sham lev-
els, as well as rsðAÞ, rpðAÞ, and rdðAÞ, i.e., the radii where
the radial probability density of the valence s, p, and d
orbitals are maximal. The same was done for atom B. In
addition to these atomic data, we offered information on
AA, BB, and AB dimers, namely, their equilibrium distance,
binding energy, and HOMO-LUMO Kohn-Sham gap.
Altogether, these are 23 primary features.
Next, we define rules for linear and nonlinear combi-

nations of the primary features. One can easily generate a
huge number of candidate descriptors, e.g., all thinkable
but not violating basic physical rules. In the present study,
we used about 10 000 candidates grouped in subsets that
are used in the different iterations (see Supplemental
Material [6]). A more detailed discussion will be given
in Ref. [25]. In the language of KRR, this approach designs
a kernel, done here by using physical insight. Not surpris-
ingly, LASSO (and actually any other method) has diffi-
culties in selecting among highly correlated features [26].
In these cases, it is not ensured that the first Ω selected
features form the best Ω-dimensional descriptor. Although
checking correlations between pairs is straightforward and
computationally reasonably inexpensive, discovering cor-
relations between triples and more-tuples is computation-
ally prohibitive. Therefore, we adopted a different strategy:
The first 25–30 features proposed by LASSO were selected
and a batch of least-squares fits performed [when the
descriptor is fixed, i.e., the nonzero components of c are
fixed, Eq. (1) reduces to a linear, least-squares, fit], taking
in turn as D each single feature, each pair, etc. We
confirmed that this strategy always finds the best descriptor
by running the mentioned extensive search for several
different subsets of hundreds of features.
Our procedure identifies as best (i.e., lowest RMSE) 1D,

2D, and 3D descriptors, the first, the first two, and all three
of the following features:

IPðBÞ−EAðBÞ
rpðAÞ2

;
jrsðAÞ− rpðBÞj
exp½rsðAÞ�

;
jrpðBÞ− rsðBÞj
exp½rdðAÞ�

:

ð2Þ

Note that, mathematically, the descriptor does not
necessarily need to build up incrementally in this way;
e.g., the 1D one may not be a component of the 2D one.
However, in our study, it does. The RMSE and MaxAE for
the 1D, 2D, 3D descriptors are reported in Table I. By
adding further dimensions to the descriptor, the decrease of
the RMSE becomes smaller and smaller.
We tested the robustness of our descriptor by performing

a leave-10%-out cross validation (L-10%-OCV). Thereby,
the overall procedure of selecting the descriptor is repeated
from scratch on a learning set obtained by randomly

selecting 90% of the materials. The resulting fitted linear
model is applied to the excluded materials and the
prediction errors on this set, averaged over 150 random
selections, are recorded. The results are shown in Table I.
Not only the RMSE, but also the selection of the descriptor,
proved very stable. In fact, the 2D descriptor was selected
100% of the times, while the 1D descriptor was the same in
90% of the cases.
The errors for the 2D descriptor introduced by Zunger

(Refs. [3,5] and Supplemental Material [6]), based on sums
and absolute differences of rs ’s and rp’s, are also reported
in Table I. The cross-validation error of the linear fit with
our 2D descriptor is as small as the highly nonlinear KRR
fit with Zunger’s 2D descriptor. However, our descriptor
bears the advantage that it was derived from a broad class of
options by a well-defined procedure, providing a basis for a
systematic improvement (with increasing Ω). Our LASSO-
derived descriptor contains physically meaningful quan-
tities, like the band gap of B in the numerator of the first
component and the size mismatch between valence s and p
orbitals (numerators of the second and third component).
We note that the components of the descriptors are not
symmetric with respect to exchange between A and B.
Symmetric features were included in the feature space, but
never emerged as prominent, and, for the selected descrip-
tors, symmetrized versions were explicitly constructed,
tested, and systematically found to perform worse. This
reflects that the symmetry was explicitly broken in the
construction of the test set, as the order AB in the
compound is such that ENðAÞ < ENðBÞ. Furthermore,
we find that d orbitals appear only in the third or higher
dimension. In Fig. 2 (bottom) we show the calculated and
predicted ΔEAB, according to our best 2D descriptor. It is
evident that our 2D descriptor fulfills all above noted
conditions, where conditions (a), (c), and (d) are in fact
ensured by construction.
In order to further test the robustness and the physical

meaningfulness of the identified descriptor, we performed
tests by perturbing the value of the property ΔEAB by
adding uniform noise in the interval ½−0.1; 0.1� eV. The 2D
descriptor of Eq. (2) was identified 93% of the times, with
an increase of the RMSE by 10% only. More details are
reported in Ref. [25]. This test shows that the model allows
for some uncertainty in the measured property. Larger noise
terms, however, destroy the reliable identification of the
descriptor (see Ref. [25]). This analysis implies that the
descriptor identified by LASSO contains the important
physically meaningful ingredients for the prediction of
ΔEAB, even though a physical model that justifies the PðdÞ
mapping is not transparent.
Finally, we comment on the causality of the learned

descriptor-property relationship. The simplicity of our
model is in sharp contrast with what is yielded by, for
instance, KRR, where as many fit parameters as observed
points are, in principle, necessary. As an indication of
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having identified a causal (physically meaningful) descrip-
tor for the property ΔEAB, we use the stability of the
selection of the descriptor upon both L-10%-OCV and
perturbation of the values of the property, under the
condition that the PðdÞ dependence has a small number
of fit parameters and a simple functional form [see Eq. (2)
and Supplemental Material [6]).
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