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Estimating the expected value of an observable appearing in a nonequilibrium stochastic process usually
involves sampling. If the observable’s variance is high, many samples are required. In contrast, we show
that performing the same task without sampling, using tensor network compression, efficiently captures
high variances in systems of various geometries and dimensions. We provide examples for which matching
the accuracy of our efficient method would require a sample size scaling exponentially with system size. In
particular, the high-variance observable e−βW , motivated by Jarzynski’s equality, with W the work done
quenching from equilibrium at inverse temperature β, is exactly and efficiently captured by tensor
networks.
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Introduction.—Dynamical stochastic processes are used
throughout the natural and social sciences when inacces-
sible degrees of freedom are well represented by random
variables [1,2]. To calculate expected observable values,
numerical methods are usually required. Out of equilib-
rium, the typical method is the dynamical Monte Carlo
method [3–8]. Essentially, averaging over randomly
sampled paths provides an unbiased estimate for the
expected value of an observable. To obtain a fixed expected
fractional error, the number of paths sampled must scale
linearly with the variance divided by the square of the
expected value. For a multitude of important observables,
such as those appearing in the estimation of free energies
[9] and likelihoods of rare events [10–15], this ratio is large:
such observables are said to have high variance and
sampling methods struggle when applied to them.
Here, we present an approach that is very different to

sampling. We simultaneously follow all paths, which is
made efficient by using controlled data compression,
usually approximate but exact in special cases, based on
tensor networks. While tensor networks have previously
been used in conjunction with stochastic processes
[16–20], the question of how their performance relates
to variance has remained unanswered. Understanding this
is crucial if we are to know whether or not tensor networks,
which have had a revolutionary effect in simulating
quantum systems [21–27] and have been used to great
effect in solving partial differential equations [28–31],
provide a useful and perhaps essential complementary
technique to sampling in stochastic processes.
In this Letter, we address this question and our answer is

very clear: high variance does not limit the accuracy of
tensor network compression, and tensor networks can be

applied efficiently to tackle problems, even out of equi-
librium, for which sampling-based methods struggle. This
opens the door for the use of tensor network methods on a
wide variety of nonequilibrium stochastic systems for
which capturing high variance is essential. In particular,
we show that a distribution of weighted expectation values
of high-variance observable e−βW , with W the work done
quenching from equilibrium at inverse temperature β, is
represented exactly by a highly compressed tensor network.
We focus on an Ising system, an example of which is

shown in Fig. 1(a). It comprises N nodes, labeled by l, the
configuration zl of each taking one of d ¼ 2 discrete values
zl ¼ f−1; 1g. The configuration of all N nodes is given by
the N tuple z ¼ ðz1;…; zNÞ and the probability of being in
configuration z is PðzÞ. Tensor networks best suit systems
for which crucial quantities, like energy, are n bodied, with

FIG. 1 (color online). Tensor network compression. (a) An
Ising system whose degrees of freedom (blue circles with arrows)
interact, in this case, with a two-dimensional lattice geometry (red
lines). (b) The probability distributions PEðzÞ and Pðz; tÞ, and
Qðz; tÞ (see main text) at any time t are compressed by
representing them (approximately or, in special cases, exactly)
by a contraction of tensors (green circles) with the same geometry
as the interactions. Each black leg corresponds to an index of a
tensor, and the joining of two legs represents the contraction of
the two corresponding indices.
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n small. We consider the simplest nontrivial case of an
energy comprising single and two-body terms

EðzÞ ¼ −J
X

ðl;l0Þ∈E
zlzl0 − λ

X

l

zl; ð1Þ

where E are NE edges connecting interacting nodes.
Equilibrium.—The relationship between compressibility

and variance out of equilibrium builds on that in equilib-
rium. The equilibrium Gibbs distribution at inverse temper-
ature β is PEðzÞ ¼ e−βEðzÞ, normalized to the partition
function ZE ¼ P

ze
−βEðzÞ. It is always possible to represent

PEðzÞ (or any distribution) by a tensor network of the form
shown in Fig. 1(b)

PEðzÞ ¼
X

i

Y

l

A½l�zl
il

; ð2Þ

that shares the same geometry as the interactions. Here, A½l�
is a tensor associated with node l. It has a physical index zl
and kl auxiliary indices il, one for each edge connected to
l, and each taking one of χ values, which may in principle
be large. The sum is over the values taken by all auxiliary
indices, which is just a sum over an NE tuple i of indices.
The Gibbs distribution is important because the tensor
network representation is exact for χ ¼ d (see
Supplemental Material [32]). This implies that

P
ld

klþ1

numbers may be used to represent dN others, providing a
significant yet exact compression if the degrees kl are
limited, as in lattice systems with local interactions.
As well as compression, tensor networks offer a means

of calculating the partition function ZE, since ZE ¼
P

zPEðzÞ ¼
P

i

Q
l T

½l�
il

with transfer tensors T ½l� ¼
P

zlA
½l�zl [33–36]. For a one-dimensional (1D) chain,

the partition function ZE relates to a product of transfer
matrices and requires OðNd2Þ or OðNd3Þ resources to
compute for open or periodic boundaries, respectively. In
higher dimensions (if the tensor network has a large
treewidth [37,38]) the tensor contractions cannot, in gen-
eral, be performed both exactly and efficiently, but efficient
strategies exist to perform them approximately. Levin and
Nave [35] demonstrated that this can be done accurately for
two-dimensional (2D) noncritical lattice systems using
tensor renormalization group [39,40].
Contrastingly, estimating the partition functionZE directly

by evaluating the sum ZE ¼ P
zPEðzÞ through random

sampling is made difficult by the fact that, in general, the
variance of observables requiring estimation grows quickly
with system size [9]. The tensor network representations of
PEðzÞ and ZE show that high variance does not imply
difficulty in equilibrium, away from criticality.
Nonequilibrium.—Out of equilibrium, the dynamics of a

Markovian system [41] depends only on its current
configuration, and the evolution of the distribution
Pðz; tÞ is described by a master equation of the form

∂Pðz; tÞ
∂t ¼

X

z0
Hðz; z0; tÞPðz0; tÞ: ð3Þ

Each non-negative off diagonal element Hðz; z0; tÞ for
z ≠ z0 is the Poisson rate of a transition from z0 to z at
time t, and together these fix the nonpositive diagonals
Hðz; z; tÞ ¼ −

P
z0≠zHðz0; z; tÞ such that the normalization

of Pðz; tÞ is conserved. H is commonly referred to as the
Hamiltonian.
To simulate such dynamics using nonequilibrium tensor

network methods, we represent Pðz; tÞ at any time by a
tensor network, as in Eq. (2), with a small χ. Doing so
assumes that this representation, while not necessarily
exact, is accurate. There is no guarantee of this accurate
compressibility on all occasions, but it is expected in
many situations. For example, consider a quench from
one Hamiltonian Hðz; z0; 0Þ ¼ H0ðz; z0Þ to another
Hðz; z0; τÞ ¼ H1ðz; z0Þ ≠ H0ðz; z0Þ, where the system
begins in the stationary state P0ðzÞ satisfyingP

z0H0ðz; z0ÞP0ðz0Þ ¼ 0. For much later times t ≫ τ (on
the time scale h−1, where h is some Hamiltonian-specific
convergence rate), the system will converge to another
stationary state P1ðzÞ satisfying

P
z0H1ðz; z0ÞP1ðz0Þ ¼ 0.

Numerous examples have revealed that stationary states of
local stochastic processes are accurately compressible via
tensor network representations [16–20]. Thus, in such
quenches both initial and long-time distributions P0ðzÞ
and P1ðzÞ are accurately compressible. Unlike for quantum
systems [42], compression errors are limited even when a
system is driven away from equilibrium. The example on
which we focus here is that of a thermalizing (equilibrating)
Hamiltonian Hðz; z0; tÞ ¼ HEðz; z0Þ for which the Gibbs
distribution is stationary,

P
z0HEðz; z0ÞPEðz0Þ ¼ 0, and it is

the energy EðtÞ that is quenched by varying the bias λðtÞ
appearing in Eq. (1).
The probability distribution Pðz; tÞ over configurations

contains only partial information about the full probability
distribution over the possible paths through configuration
space taken by the stochastic process. As such, the expected
values of only certain observables may be calculated
from Pðz; tÞ. These include observables whose values
OðzÞ depend on the configuration z of the system at a
single time t, thus having expected value hOðtÞi ¼P

zOðzÞPðz; tÞ. We call such observables configuration
dependent and use the example of the magnetization
MðzÞ ¼ P

lzl. The values of some other observables
depend on the full path taken by the system and their
expected values cannot be calculated from Pðz; tÞ. We call
such observables path dependent, and use the example of
the work doneWðtÞ ¼ −

R
t
0 dsM(zðsÞ)_λðsÞ by varying λðtÞ

between times 0 and t.
Although not previously considered in the literature,

the expected values of some path-dependent observables
can indeed be calculated using tensor networks and, as we
will show, provide us with a stark example of exact

PRL 114, 090602 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

6 MARCH 2015

090602-2



compressibility in the face of high variance out of equi-
librium. The idea is to represent the relevant path-
dependent information locally in time, not with Pðz; tÞ,
but through the distribution of weighted conditional
expected values Qðz;tÞ¼Pðz;tÞhOðz;tÞi. Here, hOðz; tÞi
is the expected value an observable has accumulated by
time t conditioned upon the system arriving at configura-
tion z at that time. The expected value of interest hOðtÞi ¼P

zQðz; tÞ is then obtained from Qðz; tÞ. It follows from
Eq. (3) that the distribution Qðz; tÞ evolves as

∂Qðz; tÞ
∂t ¼

X

z0
H0ðz; z0; tÞQðz0; tÞ; ð4Þ

with H0ðz; z0; tÞ ¼ Hðz; z0; tÞ þ _oðz; tÞδðz; z0Þ, where
_oðz; tÞ is the rate of increase of the natural logarithm of
the observable at configuration z and time t.
It is desirable to predict, as we have for Pðz; tÞ, the

accuracy of compressing Qðz; tÞ at any time during its
evolution using tensor networks. Consider the quench in
λðtÞ between times 0 and τ, starting from equilibrium. The
distributions are initially equal Qðz; 0Þ ¼ Pðz; 0Þ; thus, the
accurate compressibility of the latter implies the same of
the former. Additionally, _oðz; tÞ is only nonzero for times
t < τ and the stochastic evolution is ergodic. Thus after a
sufficiently long time t ≫ τ (relative again to convergence
time scale h−1), the configurations will have mixed such
that hOðz; tÞi ¼ hOðtÞi is independent of z and thus once
againQðz; tÞ ¼ hOðtÞiPðz; tÞ is as accurately compressible
as Pðz; tÞ.
Numerical examples.—We demonstrate these behaviors

for a system undergoing thermalizing Glauber dynamics
[43] via local transitions,

HEðz; z0Þ ¼ hðz; z0Þ½1þ e−βðEðz0Þ−EðzÞÞ�−1;
for z ≠ z0. Here, hðz; z0Þ ¼ hðz0; zÞ are symmetric rates
equaling a nonzero rate h only where z and z0 differ by the
configuration of a single node. The energy is quenched via
the parameter λðtÞ varying from λ0 to λ1 over time 0 ≤ t ≤ τ
according to a smoothed tanh ramp (see Supplemental
Material [32]), as drawn in Fig. 2(b). We focus
on configuration-dependent observable eMðtÞ, and path-
dependent observables e−2βWðtÞ and e−βWðtÞ. All have
variance over mean squared growing exponentially with
system sizeN. Initially, we consider the Ising nodes to be in
an open 1D chain, illustrated in Fig. 2(a).
To assess the accuracy of compression, we exactly

calculate distributions Pðz; tÞ and Qðz; tÞ for small
N ¼ 8 at time t, then calculate the error in the expected
value of observables induced by compressing the distribu-
tions as a tensor network. The errors shown in Figs. 2(c)
and 2(d) for eMðtÞ and e−2βWðtÞ, respectively, show that,
despite large variances, expected values are relatively
unaffected by tensor network compression. The distribu-
tions are exactly compressible at t ¼ 0 and thus no error

occurs, as expected. The errors due compression initially
increase as λðtÞ varies, then decrease exponentially to small
values again on a time scale ∼h−1. Interestingly, errors
begin to decrease even at times t < τ prior to the end of the
quench. For χ ≳ 4, the compression is near exact at all
times. We arrive at similar conclusions for other types of
variation tried, e.g., linear, variations in J, and other
observables.
A striking example is found in the path-dependent

observable e−βWðtÞ. The observable has received particular
attention due to its featuring in several nonequilibrium
identities in statistical physics, such as that by Jarzynski
[44]. Crucially for our discussion, the nonequilibrium
distribution Qðz; tÞ ¼ Pðz; tÞhOðz; tÞi for this special case
has an equilibrium structure Qðz; tÞ ¼ PtðzÞZtðβÞ=Z0ðβÞ
[44], where we have used shorthands of the form PtðzÞ for
the Gibbs distribution corresponding to λðtÞ and ZtðβÞ for
the corresponding partition function (where from now on
we normalize the Gibbs distribution to 1). It immediately
follows from our discussion of systems in equilibrium that
Qðz; tÞ, despite containing information about nonequili-
brium high-variance observables, has an exact highly
compressed χ ¼ d tensor network representation at all
times t. This can be used to efficiently and accurately
calculate not only hOðtÞi but a range of properties of the
work distribution during such dynamics. Note that this
exact behavior is particular to e−βWðtÞ and doesn’t even
extend to its square e−2βWðtÞ.
We have so far demonstrated accurate single-time

compressibility. We next examine how this extends to a
dynamical tensor network simulation, where compression
of Pðz; tÞ or Qðz; tÞ occurs not only at a single time but at
all times during their evolution. While one might expect the

FIG. 2 (color online). Accurate compression out of equilibrium.
(a) An N-node open Ising chain with exchange J and bias λ.
(b) The bias λðtÞ is varied, driving the system away from
equilibrium. (c) The fractional error ϵ1 between calculating
heMðtÞi using probability distribution Pðz; tÞ and its compressed
tensor network approximation of dimension χ (see Supplemental
Material [32]). A dashed line marks the end of the quench at time
t ¼ τ. (d) Similarly, the fractional error ϵ2 between calculating
he−2βWðtÞi by summingQðz; tÞ and its compressed tensor network
approximation. The parameters used are βλ0 ¼ 0, βλ1 ¼ 1,
hτ ¼ 10, βJ ¼ 1, and N ¼ 8.
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compression errors at single times to accumulate, we find
this is mitigated by the ergodicity of the evolution (unlike in
quantum systems). For example, errors in Pðz; tÞ will not
change the distribution to which it converges, and thus the
significance of transient errors diminish, rather than accu-
mulate, in time. In what follows, the specific algorithm we
use to perform the evolutions of Eqs. (3) and (4) is time-
evolution block decimation (TEBD) [20,45,46]. The TEBD
algorithm uses a time step δt resulting in an error, beyond
that due to compression, of OðNδt2Þ and requires time
OðNχ3δt−1Þ (see the Supplemental Material [32]).
We first calculated heMi and he−2βWi, where M ¼ MðτÞ

and W ¼ MðτÞ are values at the end of the quench t ¼ τ.
There are no exact values available to compare against for
large systems, but the compressibility expected from
Figs. 2(c) and 2(d) is confirmed by our TEBD results in
Figs. 3(a) and 3(b), respectively. The calculated expected
values converge approximately exponentially with increas-
ing χ, reaching acceptably converged values by χ ≲ 5,
despite the variance over mean squared being very large for
the N ¼ 200 considered.
We next calculated he−βWi. Since compression is exact

for this observable if χ ≥ 2, the error ϵ3 is purely due to the
finite time step δt and, as stated above, scales as ϵ3 ∝ N.
Meanwhile the estimated variance over mean squared v3
scales with eOðNÞ, as shown in Fig. 3(c). It is then
particularly clear with this example that, to achieve the
same fractional accuracy (namely, ϵ3 ∝ N) as we efficiently
obtain, a naïve sampling method would require a sample
size and thus time eOðNÞ in contrast to the TEBD algorithm

that requires time OðNÞ. Explicitly, our N ¼ 200, χ ¼ 2,
hδt ¼ 10−4, hτ ¼ 10 calculation takes less than an hour
and achieves an error ϵ3 ≈ 10−6. We do not compare this
against the cpu time of any one sampling algorithm, as this
choice is likely to be unrepresentative. Instead, we note
that, since v3 ≈ 1011, our accuracy would require ≈1017
samples to reproduce, and so matching our cpu time would
require each path to be sampled in ≈10−13 s.
As our final example, we demonstrate both the diversity

of information stored in the distribution Qðz; tÞ and the
application of our method to 2D lattice geometries,
specifically, a N ¼ 64 × 64 square periodic lattice. We
consider hOðtÞiS ¼

P
z∈SPðz; tÞhOðz; tÞi=Pz∈SPðz; tÞ,

the expected value of OðtÞ ¼ e−βWðtÞ given the system’s
configuration z is in subset S at time t, where S is the set
configurations in which one node has value z1 ¼ 1. The
observable has a very large variance. Its conditional
expected value can be rewritten hOðtÞiS ¼

P
z∈SQðz; tÞ=P

z∈SPðz; tÞ. The numerator
P

z∈SQðz; tÞ corresponds to a
high-variance observable but can nevertheless be efficiently
evaluated using equilibrium techniques for Gibbs distribu-
tions, due to the equilibrium structure of the nonequili-
brium distribution Qðz; tÞ. In this case, we use the tensor
renormalization group method [35] with intermediary
dimension χ ¼ 3 (see Supplemental Material [32]), which
suffices as the model parameters are far from criticality. The
denominator

P
z∈SPðz; tÞ is simply the low-variance

expected value of an observable taking value unity when
zðtÞ ∈ S, otherwise zero. This can be accurately calculated
using our tensor network methods or the more common
dynamical Monte Carlo methods [5–7]. We used the latter,
with sample size ∼1.5 × 104 (see Supplemental Material
[32]). The result is plotted in Fig. 3(d). Also plotted is rSðtÞ,
the ratio of the expected value hOðtÞiS to its value were the
system in equilibrium at all times. This emphasizes that,
despite exploiting an equilibrium structure, the dynamics
being simulated is truly irreversible.
Discussion.—We have shown that tensor networks pro-

vide a way to overcome the challenges faced by sampling
methods when estimating expected values of high-variance
observables out of equilibrium, even finding an exactly
compressible nonequilibrium example. While advanced
techniques for variance reduction exist, such as sequential
importance sampling [10–13] and branching methods
[14,15], using these techniques usually requires judicious
choices specific to the models to be simulated based on
prior intuition about the process. No such intuition or
choices are needed for a tensor network calculation.
However, whether tensor networks remain accurate and
efficient for geometries beyond 1D and 2D lattices, and
other models, e.g., describing frustration or disorder, must
still be established.
Finally, let us comment on how our findings relate to the

wider use of tensor networks. While outstanding efficiency
is possible using dynamical tensor network algorithms for

FIG. 3 (color online). Compression and variance. (a) The
fractional error ϵ1 of the calculated expected value heMi relative
to the χ ¼ 10 result. (b) The analogous error ϵ2 for observable
e−2βW . (c) The variance over mean squared v3 of e−βW as a
function of hτ and N, obtained by calculating he−2βWi using χ ¼
10 and δt ¼ 10−2, and using an exact result for he−βWi. (d) For a
periodic N ¼ 64 × 64 system, the expectation value hexp−βWðtÞiS,
conditional on one spin taking value z1 ¼ 1 at t (full line). Also,
the ratio rSðtÞ of this value relative to that for a reversible quench
(dashed line). Unless stated otherwise, the parameters used are
βλ0 ¼ 0, βλ1 ¼ 1, hτ ¼ 10, βJ ¼ 1, N ¼ 200, and hδt ¼ 10−3.
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finite 1D pure quantum systems, there is an ongoing effort
from the community to reach larger dimensions χ and sizes
N in 2D. Reference [47] gives a state-of-the-art demon-
stration in which the ground state of an N ¼ 21 × 21
system with d ¼ 2 is calculated using χ ¼ 8. Meanwhile
we have seen here that often very small dimensions χ are
required to simulate classical systems, even during real
time dynamics. Further, since only one copy of PðzÞ is
needed in classical algorithms, compared to two copies of
the wave function in quantum algorithms, those that take
time, e.g., Oðχ6Þ for quantum systems, will instead take
time, e.g., Oðχ3Þ for classical systems. It may therefore be
the case that classical stochastic systems are currently in an
even better position than quantum systems to benefit from
current high-dimensional tensor network algorithms.
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