
Is the Angular Momentum of an Electron Conserved in a Uniform Magnetic Field?
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We show that an electron moving in a uniform magnetic field possesses a time-varying “diamagnetic”
angular momentum. Surprisingly this means that the kinetic angular momentum of the electron may vary
with time, despite the rotational symmetry of the system. This apparent violation of angular momentum
conservation is resolved by including the angular momentum of the surrounding fields.

DOI: 10.1103/PhysRevLett.113.240404 PACS numbers: 03.65.-w, 11.30.-j, 41.75.-i, 42.50.Tx

Introduction.—There is an intimate relation between
angular momentum and rotational symmetry, as encapsu-
lated by Noether’s theorem [1]. In particular, if a system is
symmetric under rotation about a given axis, the angular
momentum along that axis will be conserved. This is the
case with free electron vortices, which in the last few years
were predicted and observed in electron microscopes [2–5].
Electronvortex beams in field-free space have a cylindrically
symmetric wave function and maintain a constant orbital
angular momentum in the direction of propagation [2].
Based on the same argument of rotational symmetry it

would seem that for an electron exposed to a uniform
magnetic field its orbital angular momentum in the direc-
tion of the field must be conserved. This is indeed true of
the angular momentum about the axis of the classical
cyclotron orbit, and, furthermore, the energy eigenstates
of an electron in a uniform magnetic field—the Landau
states—have constant angular momentum [6,7].
On the other hand, it is known that the kinetic angular

momentum of an electron, which describes its mechanical
motion, is not necessarily constant even when the electron
interacts with external fields which are rotationally sym-
metric [8]. The balance and redistribution of momentum
and angular momentum between matter and fields is a
fundamental problem of great general interest [9–12].
Recent investigations of vortex electron states in uniform

and quasiuniform magnetic fields have revealed that the
angular velocity of the electron depends not only on the
field strength but also on the azimuthal quantum number
and the radial position [7,13,14]. Furthermore, in these
quantum states the average radial position of the electron
is not in general constant, but rather changes as the wave
function diffracts [14–16]. This contrasts sharply with the
classical orbit in a uniform magnetic field, leading to the

question of whether the angular momentum of the electron
is in fact conserved.
In this Letter, we show that for an electron in a nonsta-

tionary state, the changing radius of the electron’s prob-
ability distribution in fact gives rise to a time-varying
kinetic angular momentum. The canonical angular momen-
tum however remains constant. The apparent violation of
angular momentum conservation is resolved by considering
the angular momentum in the fields surrounding the
electron. We show that the total kinetic angular momentum,
including that of the fields, is conserved, as indeed it
must be.
Results.—We consider an electron moving in a uniform

magnetic field, and take the direction of this field to define
the z axis. The (nonrelativistic) Hamiltonian for this system
can be written in the form

H ¼ 1

2m
ðpkinÞ2; ð1Þ

where pkin ¼ mv ¼ pcan − eA is the kinetic momentum,
pcan ¼ −iℏ∇ is the canonical momentum, e ¼ −jej is the
charge of the electron, and m its mass. We choose a vector
potential which in cylindrical polar coordinates (ρ;ϕ; z) has
the form

A ¼ Bρ
2
ϕ̂ ⇒ B ¼ ∇ ×A ¼ Bẑ: ð2Þ

We note, for later reference, that this choice of vector poten-
tial corresponds to the Coulomb gauge, in that ∇ ·A ¼ 0.
The Hamiltonian (1) can then be rewritten as [17]

H ¼ 1

2m
ðpcanÞ2 þ 1

2
mω2

Lρ
2 þ ωLLcan

z ; ð3Þ

where ωL ¼ −eB=ð2mÞ is the Larmor frequency and

Lcan
z ¼ ðr × pcanÞz ¼ −iℏ

∂
∂ϕ ð4Þ

is the z component of canonical orbital angular momentum.
As the z component of linear momentum pkin

z ¼ pcan
z

commutes with the Hamiltonian, the motion of the electron
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in the z direction is unaffected by the magnetic field. This
means that for an electron beam propagating along the z axis
we need only consider the z component of angular momen-
tum. Furthermore, as the Hamiltonian, in our chosen gauge,
is independent of ϕ it commutes with the canonical angular
momentum ½Lcan

z ; H� ¼ 0 and, hence,Lcan
z is conserved [15].

Consider an electron wave function with cylindrical
symmetry so that

Ψ ¼ uðρ; z; tÞeilϕ: ð5Þ

We make no assumption about the form of the function u,
so that in general this will not be an energy eigenstate.
This state is, however, an eigenstate of Lcan

z and hence the
expectation value of its angular momentum has the time-
independent value

hLcan
z i ¼ lℏ: ð6Þ

This is eminently reasonable as the system is symmetric
under rotation about the z axis, so that according to
Noether’s theorem the z component of the angular momen-
tum should be conserved.
In the presence of a magnetic field, the kinetic orbital

angular momentum differs from its canonical counterpart:

Lkin
z ¼ ðr × pkinÞz ¼ Lcan

z þmωLρ
2 ð7Þ

[8], where we have used the definition of the kinetic linear
momentum and the specific form of the vector potential (2).
We see that the field-dependent contribution to the kinetic
angular momentum is associated with a rotation of the
electron probability distribution at constant angular veloc-
ity ωL. This is consistent with Larmor’s theorem [18] and
can be interpreted as a diamagnetic response of the electron
to the external magnetic field [19].
The expectation value of the kinetic orbital angular

momentum can be expressed as

hLkin
z i ¼ lℏþ hIziωL; ð8Þ

where we have used the fact that the expectation value of
the z component of the electron’s moment of inertia is

hIzi ¼ mhρ2i: ð9Þ

This means that the kinetic angular momentum of the
electron will be constant only if the radial probability
distribution is constant. The squared radius ρ2 does not
commute with the Hamiltonian, however, meaning this
quantity is not a constant of motion [6]. This means that, in
contrast with the classical motion, the mean value hρ2i will
not, in general, be a constant.
It can be seen from the form of the Hamiltonian (3) that

the radial coordinate exhibits a harmonic motion. This can

be understood as the radial diffraction of the electron wave
function in a harmonic potential generated by the inter-
action with the magnetic field [15]. The energy associated
with the motion perpendicular to the magnetic field remains
constant and has the expectation value

E⊥ ¼
�
H −

1

2m
ðpkin

z Þ2
�
: ð10Þ

We will obtain the time behavior of the radial width, and
later also of the kinetic orbital angular momentum, from
Heisenberg’s formalism:

∂2hρ2iðtÞ
∂t2 ¼ −

1

ℏ2
h½½ρ2; H�; H�iðtÞ

¼ −ω2
cðhρ2iðtÞ − ~ρ2Þ; ð11Þ

where ωc ¼ 2ωL ¼ −eB=m is the classical cyclotron

frequency and ~ρ2 ¼ ðE⊥ − ωLlℏÞ=ðmω2
LÞ is the constant

steady-state value which depends on the energy, the
canonical angular momentum, and the magnetic field. It
can be seen from (11) that the mean-square radius oscillates

sinusoidally about the value ~ρ2 at the cyclotron frequency.
Setting t ¼ 0 to correspond to a stationary point of this
oscillation, we have

hρ2iðtÞ ¼ ~ρ2 þ ðhρ2ið0Þ − ~ρ2Þ cosðωctÞ: ð12Þ
According to the relation (8) this is intrinsically linked to an
oscillation of the kinetic angular momentum:

hLkin
z iðtÞ ¼ ~Lkin

z þ ðhLkin
z ið0Þ − ~Lkin

z Þ cosðωctÞ; ð13Þ
where the steady-state value of the kinetic angular
momentum

~Lkin
z ¼ lℏþmωL

~ρ2 ¼ 2

ωc
E⊥ ð14Þ

coincides with the classical value of the kinetic angular
momentum for an electron with rotational kinetic energy
E⊥. In general, the angular momentum oscillates sinus-
oidally about the classical value, with the same frequency
ωc as the classical cyclotron motion. Only if the kinetic
angular momentum is equal to the classical value does its
expectation value remain constant. In this sense (14)

defines the steady-state value ~ρ2.
We can obtain an exact solution for (12) in the case when

at t ¼ 0 the wave function (5) has the Laguerre-Gaussian
form

Ψn;lð0Þ ¼ LGn;l ∝
�
ρ

ffiffiffi
2

p

ρ0

�jlj
exp

�
−
ρ2

ρ20

�
Ljlj
n

�
2ρ2

ρ20

�

× exp ½iðlϕþ kzzÞ�; ð15Þ
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where l ∈ Z, n ¼ 0; 1; 2;…, and Ljlj
n is an associated

Laguerre polynomial. The index n specifies the number
of radial nodes in the wave function, while ρ0 is the width
of the Gaussian envelope. The Laguerre-Gaussian wave
functions can be used to describe electron vortex beams
which have intrinsic orbital angular momentum lℏ [2] as
well as electron beams with no intrinsic orbital angular
momentum in the case when l ¼ 0.
The mean-square radius of the Laguerre-Gaussian wave

function (15) is equal to

hρ2in;lð0Þ ¼
1

2
ð2nþ jlj þ 1Þρ20 ð16Þ

[20]. As this depends on the radial index n, it follows that
the kinetic angular momentum of the electron also depends
on n, which is not the case in the absence of a magnetic
field. The steady-state mean-square radius for the same
electron energy obtained from (10) and (14) is

~ρ2n;l ¼ 1

4
ð2nþ jlj þ 1Þ

�
1þ

�
ρB
ρ0

�
4
�
ρ20; ð17Þ

where ρ2B ¼ 2ℏ=ðmjωLjÞ ¼ 4ℏ=jeBj. As the phase of the
wave function (15) does not depend on ρ, we have

∂hρ2in;lð0Þ
∂t ¼ 1

ℏ
Imh½ρ2; H�in;lð0Þ ¼ 0; ð18Þ

meaning that this wave function corresponds to a stationary
point of the oscillation. The time evolution of hρ2in;l
can therefore be obtained by substituting (16) and (17)
into (12).
In the special case when ρ0 ¼ ρB the Laguerre-Gaussian

wave functions in (15) become the Landau energy eigen-
states and we obtain the constant values of hLkin

z in;l
expected in this case [7]. In general, however, the angular
momentum will oscillate around the classical value, as
illustrated in Fig. 1(a) for different ratios ρ0=ρB and in
Fig. 1(b) for different quantum numbers l corresponding to
canonical angular momenta lℏ. If the canonical angular
momentum is in the opposite direction to the magnetic field
then the kinetic angular momentum may even change
direction, as clearly seen for l ¼ −4 in Fig. 1(b). We note
that the moment of inertia increases with the radial quantum
number n, resulting in larger amplitude oscillations, and
that a reversal of the direction of the magnetic field
corresponds to a shift of the phase of the oscillations
by 180°.
As we have seen, the kinetic angular momentum may

change with time despite the fact that the system is entirely
rotationally symmetric—seemingly contradicting Noether’s
theorem. In order to restore angular momentum conserva-
tion we have to include the angular momentum contained
in the field.

The combination of the externally imposed magnetic
field and the electric field of the electron itself gives rise to a
nonzero angular momentum density ε0r × ðE × BÞ [11].
The z component of the field angular momentum is

Lkin field
z ¼

Z
dVε0½r × ðE ×BÞ�z

¼
Z

dVε0ð∇ ·EÞðr ×A⊥Þz ð19Þ

[21], where A⊥ is the (manifestly gauge invariant) trans-
verse part of the vector potential, defined by ∇ ·A⊥ ¼ 0.
In rewriting the second line we have used the fact that
the electric field of the electron is longitudinal, that is,
∇ ×E ¼ 0. To complete our resolution we need only note
that the first Maxwell equation is

∇ · E ¼ ϱ

ε0
¼ e

ε0
jΨj2; ð20Þ

FIG. 1 (color online). Time evolution of the expectation
value of the electron’s kinetic orbital angular momentum for
Laguerre-Gaussian states with n ¼ 0 and a magnetic field in
the positive z direction (B > 0). This is shown in (a) as a function
of the initial width ρ0 for l ¼ 1, and in (b) for different values
of l assuming ρ0 ¼ 1.5ρB.
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where ϱ is the charge density, so that

Lkin field
z ¼ eB

2
hρ2i: ð21Þ

Using (8) and (21) the total kinetic angular momentum of
the electron plus the field is, therefore,

Lkin total
z ¼ lℏ ¼ Lcan

z ; ð22Þ

which is conserved, as it should be. Adding the kinetic
angular momentum of the field to that of the electron
has restored the unique and conserved total angular
momentum.
Effect of gauge transformations.—We have worked

throughout in the Coulomb gauge and uncovered the result
that the canonical angular momentum of the electron is
equal to the total angular momentum (with the value lℏ).
We can and should ask what we would have found had we
worked in a different gauge. The kinetic angular momen-
tum of the field is, as we have seen, gauge invariant. To
underline this point, we note that it depends only on the
magnetic field B and the mean-square radius hρ2i, both of
which are gauge invariant. Making a gauge transformation
does change, however, both the vector potential and the
phase of the wave function. The natural way to introduce a
gauge transformation in quantum theory is through a local
change in the phase of the wave function:

Ψ → eiχðr;tÞΨ: ð23Þ

In this case, the action of our canonical momentum operator
on the state changes to

pcanΨ → −iℏ∇eiχðr;tÞΨ ¼ eiχðr;tÞð−iℏ∇þ ℏ∇χÞΨ: ð24Þ

This change is counterbalanced by the corresponding
transformation of the vector potential

A → Aþ ℏ
e
∇χ ð25Þ

so that the kinetic momentum pkin is unchanged. The z
component of the canonical angular momentum is similarly
changed by a gauge transformation to

Lcan
z → −iℏ

∂
∂ϕþ ℏ

∂χ
∂ϕ : ð26Þ

Interestingly, the expectation value of this quantity for
our cylindrically symmetric state will still be lℏ,
as jeiχðr;tÞΨj2 ¼ jΨj2 is independent of ϕ, and, in particular,
hℏ∂χ=∂ϕi ¼ 0.
Discussion.—The magnitude of the diamagnetic contri-

bution to the kinetic angular momentum is strongly

dependent on the length scale. As can be seen from (8),
it is characterized by the constant −e=2 ¼ 7.60×
10−4ℏ T−1 nm−2. In an atomic bound state with rms radius
1 Å, even in a field of strength 1 T the diamagnetic angular
momentum is negligible compared to a single unit of
canonical angular momentum. However, for unbound elec-
trons, which can be distributed over a much larger area, the
diamagnetic angularmomentum can become significant, and
may be the dominant contribution, both to the electron’s
kinetic angular momentum and to E⊥. This can certainly be
the case in transmission electron microscopes, where the
electron beam may have a radius hρ2i1=2 ∼ 1 nm–100 μm
and a field∼1 T is providedby the objective lens.Note that in
an electron microscope the radial dynamics occur in a
reference frame moving with the electron along the z axis
[2], and so can be observed as a function of the propagation
distance [14,16].
While the creation of electron vortices has aroused a

considerable interest in the orbital angular momentum of
electron beams [22–24], little attention has been given
previously to the angular momentum which arises in a
magnetic field. Our diamagnetic angular momentum will
occur with any electron beam, even those with no canonical
orbital angular momentum. The canonical angular momen-
tum is a manifestation of the cylindrical symmetry and
is restricted to integer multiples of ℏ. In contrast, the
diamagnetic contribution, and hence the kinetic angular
momentum of the electron, may take any value.
It is interesting to ask why our electron carries two

distinct angular momenta and where each of these might
be expected to appear in experiment. The total angular
momentum contains a part Lkin

z that may be ascribed
to the electron, and a second part Lkin field

z that depends
on both the externally imposed magnetic field and
the electric field due to the electron. This latter part may
be assigned either to the field, which gives the kinetic
momentum, or to the electron, giving the canonical momen-
tum. This situation is reminiscent of the linear momentum
of a photon in a dielectric medium, where two rival
momenta, due to Abraham and Minkowski, are the kinetic
and canonical momenta [25]. As with the photon, we can
associate the canonical and kinetic momenta of the electron
with wavelike and particlelike properties, respectively.
Hence, an electron interference pattern should reveal the
eilϕ dependence associated with the canonical angular
momentum [26]. Absorption of an electron by an initially
neutral target, however, should transfer the kinetic angular
momentum of the electron to the rotational motion of the
target, with the remaining angular momentum retained by
the electric field of the now charged target.
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