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We simulate transport of a solute through three-dimensional images of different rock samples, with

resolutions of a few microns, representing geological media of increasing pore-scale complexity: a

sandpack, a Berea sandstone, and a Portland limestone. We predict the propagators (concentration as a

function of distance) measured on similar cores in nuclear magnetic resonance experiments and the

dispersion coefficient as a function of Péclet number and time. The behavior is explained using continuous

time random walks with a truncated power-law distribution of travel times: transport is qualitatively

different for the complex limestone compared to the sandstone or sandpack, with long tailing, an almost

immobile peak concentration, and a very slow approach to asymptotic dispersion.
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Introduction.—Despite the range of significant applica-
tions of solute transport, including improved oil recovery,
the long-term fate of nuclear waste repositories, and secure
storage of carbon dioxide [1], even the qualitative behavior
of most rocks is uncertain. Vast carbonate sedimentary
basins contain more than half the world’s current oil re-
serves [2] yet experimental data on dispersion and trans-
port in carbonates is scant. Although driven by the
interplay of two simple physical processes—advection
and diffusion—the resultant macroscopic behavior is sur-
prisingly rich. Experiments on packed beds, sand columns,
sandstone and carbonate cores [3–10], and field studies
[11,12] have shown that transport is characterized by early
breakthrough of the solute, a long tailing of the concentra-
tion at late times and—in many cases—a virtually immo-
bile peak concentration. Transport cannot be described by
a traditional advection-dispersion formulation; instead
other theories, including multirate mass transfer models
and continuous time random walks (CTRW), have been
employed to describe the evolution of a dissolved species
over time [13,14]. Network modeling has been used to
provide an explanation for the power-law dependence of
dispersion coefficient as a function of Péclet number (Pe ¼
uavL=Dm, where uav is the average flow speed, L is the
characteristic length, and Dm is the molecular diffusion
coefficient), reconciling experiment, pore-scale modeling,
and CTRW theory for Berea sandstone [15,16]. However,
for more complex porous media the relationship between
pore structure, velocity field, and transport remains
unknown, particularly for heterogeneous carbonates. We
compute transport through micro-CT images of the pore
space with a streamline-based random-walk simulator and

demonstrate the qualitatively different signature of trans-
port through the major porous rock types encountered in
the subsurface: sandpacks, sandstones, and carbonates.
Model.—We simulate incompressible steady viscous

flow directly on pore-space images obtained from micro-
CT scanning by solving the Stokes equation �r2v ¼ rP
subject to no-slip velocity boundary conditions. v is the
velocity, P is pressure, and � is the fluid viscosity. We use
a standard predictor-corrector method [17] in conjunction
with the finite difference technique using grid blocks ob-
tained from a binarized pore-space image. We apply a
streamline-based algorithm with a new semianalytic for-
mulation near solid boundaries. We satisfy r � v ¼ 0 with
a parabolic variation of velocity perpendicular to a solid
boundary and bilinear dependence parallel to the solid
within each grid block [18]. An ensemble of particles is
moved by advection along streamlines; we calculate the
time needed for a particle inside a pore-space voxel to exit,
�t. The time step is dt. If �t > dt the particle remains
within the voxel, whereas for �t < dt the particle enters a
new block. A random-walk method is used to capture
molecular diffusion: a particle instantaneously jumps
over a mean-free path � ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
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in a random direction.
We apply a reflection boundary condition on the surface of
the solid voxels. The flow domain is cubic. We impose a
uniform pressure drop (1.172 kPa for a typical velocity of
1:3 mm=s) across two opposing faces and use periodic
boundary conditions for the other faces. If a particle exits
the inlet or outlet, it is randomly reassigned to the opposite
face—flux-weighted during the advective step and area
weighted for the diffusive step [16]. The dispersion coef-
ficient DL is computed by calculating the variance of the
distance traveled by particles in the main direction of flow
DL ¼ 1

2d�
2=dt, where �2 is the variance of the particle

displacement, xi, �
2 ¼ h½xiðtÞ � hxiðtÞi�2i. The time step

for the simulation is 10�4 s. The average motion of particle
at each time step is less than one voxel. The base-case value
of Dm was the free molecular self-diffusion coefficient of
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water, 2:2� 10�9 m2 s�1. We transport 50 000 particles
that are initially uniformly distributed throughout the
pore space. We study transport in three representative
geological porous media: a sandpack comprised of a close
packing of irregular quartz grains of different size, with a
porosity of 37.3% and permeability of 3:9� 10�11 m2; a
Berea sandstone that is widely used as a benchmark mate-
rial representing a large class of rocks in relatively homo-
geneous oil reservoirs and deep aquifers [19] with a
porosity of 19.62% and permeability 1:4� 10�12 m2;
and a Portland limestone, with a heterogeneous micro-
structure typical of many reservoir carbonates [3] with a
porosity of 9.17% and permeability 3:0� 10�13 m2. The
porosity and permeability values were computed on the
images. We used micro-CT images of the sandpack, Berea
sandstone, and Portland limestone at a resolution (voxel
size) of 10 �m, 5:345 �m, and 9 �m, respectively, that
have been binarized into solid and void and which contain
3003 grid blocks (voxels) in total [19] representing a cube
of side length 1.6–3.0 mm.

In CTRW c ðtÞdt is defined as the ensemble averaged
probability of a particle just arrived at a site moving to an
adjacent site in a time between t and tþ dt. We compute
c ðtÞ on a grid-block basis by finding the time it takes for
each particle to traverse each void cell. This approach has
been used before using a pore-scale network model where
the transitions are from pore to pore [16] and for grid
blocks in field-scale simulation [20]. We compute the
distribution of transit times that particles spend in grid
blocks as a function of dimensionless time �b ¼ t=tb1,
where tb1 ¼ �x=uav is the mean advective transit time
whose characteristic length is the grid-block spacing �x,
indicated by the subscript b. The average velocity uav is
defined as the total flow across the model divided by the
cross-sectional area. The travel times are sampled for 1 s or
�b up to 145.

Results.—In Fig. 1 we show the velocity field for
Portland carbonate that illustrates that flow is concentrated
in a few channels with much of the pore space largely
stagnant. We also plot c ð�bÞ for a range of Pe for Portland
carbonate and Pe ¼ 1 for sandpack and Berea sandstone.
We define the characteristic length L in Pe based on a cubic
packing of regular spheres. For this idealized system, the
grain diameter is �V=S, where V is the volume of the
porous medium (pore plus grain) and S is the area of
the pore-grain interface. We use the same definition for
our images, since the volume and the pore and grain area
are readily computed, while grain size is unknown, and
obtain the values 160, 130, and 290 �m for the sandpack,
sandstone, and carbonate, respectively: the images span
around 9–19 characteristic lengths.

For the late-time behavior of c ð�bÞ, �b > 1, we observe
an approximately power-law dependence of travel times

c � ��ð1þ�Þ
b with � ¼ 1:8 for the sandpack and sandstone

and � ¼ 0:7 for the carbonate. A lower value for �

indicates greater heterogeneity of the porous medium, re-
sulting in a wider range of transit times leading to more
complex non-Fickian transport behavior. The power law is
truncated at late times, representing the time to diffuse
across grid block (at low to intermediate Pe) or an advective
cutoff for large Pe, representing the slowest flow speeds. The
power-law dependence has been noted previously for a net-
work model of Berea sandstone [16]: we see a power-law
dependence �< 1 for the carbonate, indicating qualita-
tively different transport, as discussed later.
We analyze preasymptotic transport by comparing ex-

perimental results for displacement probabilities (propaga-
tors) with pore-scale numerical simulation. We show here
only the results for the carbonate—we also obtain good
predictions for the sandstone and sandpack. In Fig. 2 we
compare our results to two independent measurements on
Portland stone using NMR [3,4]. It is evident that the peak
concentration is virtually immobile with a highly dispersed
fast-moving tail: particles reside for a long time in slow or
no-flow regions, close to the solid, in dead-end pores or in
narrow pore spaces, eventually diffusing out and moving
rapidly through the better connected, wider regions.
Our predictions are in excellent agreement with both sets
of experiments. The immobile peak concentration is a

FIG. 1 (color). The probability c ð�bÞ of traveling between two
neighboring voxels for Portland carbonate, for Pe ¼ 2, 200,
2000, and 1 (symbols). The probabilities show a power-law

trend c � ��ð1þ�Þ
b ; a line with slope corresponding to � ¼ 0:7 is

represented. The dimensionless time is �b ¼ t=tb1, where tb1 is
the mean travel time through a grid block �x=uav. Shown in the
left inset is the dimensionless velocity field computed in the
Portland carbonate image; in the right inset the comparison of
c ð�bÞ for Portland carbonate (black symbols) with c ð�bÞ of the
sandpack (light blue symbols) and Berea sandstone (red sym-
bols) for Pe ¼ 1 indicates quantitatively different generic be-
havior characterized by the two parallel solid lines (dark blue
and orange color) with slope corresponding to � ¼ 1:8.
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signature of transport with �< 1 [14] that is not observed
in sandstones and sandpacks [3,4].

Next we compute how the longitudinal dispersion coef-
ficient DL of the injected plume evolves with time for
Portland carbonate. Figure 3 shows results for Pe ¼ 2,
Pe ¼ 20, Pe ¼ 200, and Pe ¼ 2000.

From CTRW, if c � t�ð1þ�Þ then �2 � t2�, for �< 1;
for 2>�> 1, �2 � t3��, while for �> 2 the behavior is
Fickian with �2 � t [21]. There is a late-time cutoff to the
power law at time t2. For low to moderate Pe this is
controlled by diffusion across the characteristic length (a
typical pore size) and t2 ¼ L2=2Dm [16]. For t > t2 we see
a crossover to asymptotic (Fickian) behavior. We now
define dimensionless parameters using the typical length
L as scaling factor: � ¼ t=t1 where t1 ¼ L=uav; Dd ¼
DL=Dm; �2

d ¼ �2=L2; t2=t1 ¼ Pe=2. Hence Dd ¼
Pe� d�2

d=d� from which we find Dd � Pe� �2��1 for

� < Pe and Dd � Pe2� for � � Pe if �< 1; and Dd �
Pe� �2�� for � < Pe and Dd � Pe3�� for � � Pe if 2>
�> 1. This behavior is evident in Fig. 3 with a power-law
exponent in the preasymptotic regime 2�� 1 ¼ 0:4 con-
sistent with � ¼ 0:7 (Fig. 1), even for Pe ¼ 2 and Pe ¼
200 where a clear power-law regime is not evident. When
t � t2 the asymptotic dispersion coefficient is defined and
the traditional Fickian description is valid.

In Fig. 4 we plot the values for asymptotic dispersion
coefficient as a function of Pe for the carbonate, sandstone,
and sandpack studied. Plotted also are the experimental
data for unconsolidated beadpacks and sandpacks in the
literature [16,22]; experimental data for carbonates that
cover the whole range of Pe for a well-characterized sam-
ple are not available. Good agreement is obtained between

the experiments and our model for sandpack and Berea
sandstone. In the restricted diffusion regime (Pe< 0:1)
DL=Dm has lower value for the carbonate than for the
sandstone (that itself has a lower value than the sandpack)
due to higher tortuosity in the carbonate. In the power-law
regime for the carbonate (5< Pe< 100) we observe the
scalingDL=Dm � Pe1:4, while in the power-law regime for
the sandpack and sandstone (10< Pe< 600) the scaling is
DL=Dm � Pe1:2. This corresponds to the values of � ¼ 0:7

FIG. 2. Probability of molecular displacement in a micro-CT
image of Portland carbonate Pð�Þ as a function of displacement
� (solid line), compared with the propagators obtained from
NMR experiments from Scheven et al. [3] and Mitchell et al. [4]
for the same time t ¼ 1 s and flow rate. The coordinates are
rescaled by the nominal mean displacement h�i0 ¼ uavt. uav ¼
1:3 mm=s and Pe ¼ 171 in our simulation.

FIG. 3. The preasymptotic behavior of DL for Portland carbo-
nate computed from the pore-scale model as a function of
dimensionless time, � ¼ t=t1 where t1 ¼ L=uav, is plotted for
different values of Pe (symbols). The solid lines with the slope
0.4 indicate the predicted scaling using Fig. 1 and CTRW:
DL=Dm � Pe� �2��1, where the slope is 2�� 1 ¼ 0:4 for
� ¼ 0:7.

FIG. 4. Asymptotic dispersion coefficient DL=Dm as a func-
tion of Pe for the carbonate, sandstone, and sandpack studied
(solid lines). The points are experimental data for unconsolidated
beadpacks and sandpacks [16,22]. In the power-law regime for
the carbonate we observe the scaling DL=Dm � Pe1:4, while for
the sandpack and sandstone this scaling is DL=Dm � Pe1:2. This
corresponds to the values of � ¼ 0:7 for carbonate and � ¼ 1:8
for sandpack and sandstone (as seen in Fig. 1) and agrees with
the predictions from CTRW theory.
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for the carbonate from Fig. 1 and � ¼ 1:8 for the sandpack
and sandstone from Fig. 1 (see also Refs. [16,18,23]).
Moreover, these results agree with the predictions from
CTRW theory presented above. We note that the magni-
tude of dispersion coefficient in the power-law regime
increases as the medium heterogeneity becomes more
complex—from sandpack to sandstone to carbonate, as
seen in Fig. 4. For the highest values of Pe we see a
transition to a linear scaling of DL with Pe, consistent
with an advective cutoff to the transition time probability
c ðtÞ [16].
Discussion and conclusions.—We use a direct

streamline-based simulation method on pore-space images
to study transport in three representative geological media of
increasing complexity. Transport in carbonates has a rich
non-Fickian behavior, indicated by NMR experiments, that
is generically different from sandstones, with a very slow-
moving peak concentration, a highly dispersed tail, an ex-
tremely gradual approach to an asymptotic regime, and a
nonlinear scaling of dispersion coefficient with Pe, consis-
tent with a CTRW analysis of the grid-block travel times.

In carbonates the peak plume position will be retarded
relative to the mean flow field with a very wide spread. This
may suppress convective mixing of solute and lead to long
residence times for tracers and pollutants. For instance,
during carbon dioxide, CO2, storage, some of the CO2

dissolves in brine and this denser CO2-laden brine sinks.
This motion allows the development of a gravitational
instability, further mixing, and eventual secure storage.
Similarly, mixing during miscible gas injection controls
local oil recovery in hydrocarbon fields. However, recent
analytical and numerical analyses of these problems
[24,25] presume Fickian dispersion. We suggest that this
is almost certainly qualitatively incorrect for carbonates
and other highly heterogeneous porous media leading to
overestimates of the rate of phase exchange in CO2 storage
and enhanced oil recovery.
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