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We present an improved method to calculate defect formation energies that overcomes the band-gap

problem of Kohn-Sham density-functional theory (DFT) and reduces the self-interaction error of the local-

density approximation (LDA) to DFT. We demonstrate for the silicon self-interstitial that combining LDA

with quasiparticle energy calculations in the G0W0 approach increases the defect formation energy of the

neutral charge state by �1:1 eV, which is in good agreement with diffusion Monte Carlo calculations

(E. R. Batista et al., Phys. Rev. B 74, 121102(R) (2006); W.-K. Leung et al. Phys. Rev. Lett. 83, 2351

(1999)). Moreover, the G0W0-corrected charge transition levels agree well with recent measurements.
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Defects often noticeably influence the electrical and
optical properties of a material by introducing defect states
into the band gap. Reaching a microscopic understanding
of the physical and chemical properties of defects in solids
has long been a goal of first-principles electronic structure
methods. Probably the most widespread theoretical method
in this realm today is density-functional theory (DFT) in
the local-density (LDA) and generalized gradient approxi-
mation (GGA), but certain intrinsic deficiencies limit their
predictive power. Artificial self-interaction and the absence
of the derivative discontinuity in the exchange-correlation
potential [1] present the most notable deficiencies in this
context. They give, among other things, rise to the band-
gap problem—the fact that the band gap in LDA and GGA
underestimates the quasiparticle gap [1,2]. In this Letter we
show that the band-gap problem in LDA/GGA not only
affects the reliable computation of defect levels, but in
certain cases (e.g., filled defect states in the band gap)
also that of formation energies. We present a formalism
for calculating formation energies of defects in solids that
combines LDA with quasiparticle energy calculations in
the G0W0 approximation [3] to reduce the self-interaction
error and to overcome the band-gap problem. In some
cases a heuristic ‘‘scissor operator’’ approach may approxi-
mately correct the problem. However, particularly when
the experimental answer is unknown, a more accurate
method is needed.

We illustrate our approach with the example of a self-
intersitital in silicon (Sii), a defect of high technological
relevance [4–6]. In the neutral charge state the Sii has
several stable and metastable atomic configurations [7,8]
(see Fig. 1), in all of which two electrons occupy a defect
level in the band gap. The LDA formation energies of all
these configurations are underestimated severely (by
�1:5 eV) compared to diffusion Monte Carlo (DMC) cal-
culations [9,10]. However, no insight into this discrepancy
is provided by the DMC calculations.

In our formalism the formation of the neutral defect is
expressed as successive charging of its 2þ charge state, for
which the defect level is unoccupied. This allows us to
decompose the formation energy into that of the 2þ state
(Efð2þÞ), a lattice and an electron addition part. This
decomposition is not only insightful for analyzing the
underestimation of the LDA formation energy, but also
permits us to apply the most suitable method for each
type of contribution [11]. For the lattice part we retain
the LDA and argue that the relaxation energies and Efð2þÞ
are not as strongly affected by the deficiencies of the LDA
as in the positive and the neutral case since the defect level
in the band gap is unoccupied. For the electron affinities,
on the other hand, we employ Hedin’s GW method [3].
Since self-consistency in GW is still discussed controver-
sially [2] we obtain the quasiparticle corrections to the
LDA Kohn-Sham energies from first order perturbation
theory (G0W0), which is currently the method of choice
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FIG. 1 (color online). (a) Split h110i, (b) hexagonal, (c) C3v

and (d) tetrahedral configuration of the Sii. Defect atoms are
shown in red and nearest neighbors in gray. The middle panel
depicts the formation of the neutral Sii from the 2þ charge state.
Aþ and A2þ are short for the electron affinities Aðþ;R0Þ and
Að2þ;R2þÞ (see text), respectively, and Rq denotes the atomic

positions in charge state q.
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for computing quasiparticle band structures in solids
[2,12]. While not completely self-interaction free [13]
G0W0 significantly reduces the self-interaction error.
With this combined approach the formation energy in the
neutral charge state increases by�1:1 eV compared to the
LDA. Recent DFT calculations employing the HSE hybrid
functional, which also significantly reduces the self-
interaction error, yield a similar improvement [10] and
lend further substance to this notion. Moreover, the
G0W0-corrected charge transition levels agree well with
recent experimental measurements [4].

We will present our combined DFTþG0W0 approach
for the example of the Sii, but it can easily be generalized
to defects in other materials. An additional silicon atom in
an interstitial site can adopt different configurations with
similar formation energies (cf. Fig. 1). In the tetrahedral
(tet) geometry the extra silicon atom gives rise to an a1 and
a threefold degenerate t2 state. The latter is empty and in
resonance with the conduction band. The partial occupa-
tion of the degenerate t2 state triggers a Jahn-Teller dis-
tortion along the h111i-axis into a geometry with C3v

symmetry, also referred to as ‘‘displaced hexagonal struc-
ture’’ in previous studies [14]. The addition of a second
electron displaces the atom further in the h111i direction
stabilizing the neutral charge state. This sequence is illus-
trated in Fig. 2. Moving the interstitial atom along the h111i
direction into the center of a six-membered ring [hexago-
nal (hex) configuration] lowers the neutral state further in
energy. It reaches its lowest position in the split h110i
configuration, where the added atom and a host atom share
an interstitial site oriented in the h110i direction.

For the 2þ charge state the tetrahedral is the most stable
configuration [8] (see also Table I) and we will use it as a
starting point for building our scheme. The positive charge
state is then formed by adding one electron as depicted in
steps 1 and 2 in Fig. 1. Mathematically this can be ex-
pressed by starting from the expression for the formation
energy in the positive charge state

Ef
Dðþ; �FÞ ¼ Eðþ;RDþÞ � Eref þ �F: (1)

Eðq;RD
q0 Þ is the total energy in charge-state q and atomic

positions RD
q0 of defect configuration D in charge-state q0.

Eref is a suitably chosen reference system, here bulk sili-
con, and �F the Fermi level of the electrons referenced to
the top of the valence band. Adding and substracting first
Eðþ;Rtet

2þÞ and then Eð2þ;Rtet
2þÞ leads to

Ef
Dðþ; �FÞ ¼ �ðþ;RDþ;Rtet

2þÞ þ Að2þ;Rtet
2þÞ

þ Ef
tetð2þ; �F ¼ 0Þ þ �F: (2)

The energy difference Eðþ;Rtet
2þÞ � Eð2þ;Rtet

2þÞ defines
the vertical electron affinity Að2þ;Rtet

2þÞ of the 2þ state (in
its tetrahedral configuration), step 1 in Fig. 1, referenced to
the top of the valence band, whereas Eðþ;RDþÞ �
Eðþ;Rtet

2þÞ gives the subsequent relaxation energy
�ðþ;RDþ;Rtet

2þÞ in the positive charge state (step 2).
Similarly the neutral charge state emerges from the

positive one by addition of an electron. Mathematically
we again achieve this by adding and substracting first
Eðþ;RD

0 Þ and then Eðþ;RDþÞ to and from the expression

for the neutral formation energy Ef
Dð0; �FÞ ¼ Eð0;RD

0 Þ �
Eref:

Ef
Dð0;�FÞ¼Aðþ;RD

0 Þþ�ðþ;RD
0 ;R

DþÞþED
f ðþ;�F¼0Þ:

(3)

Again Aðþ;RD
0 Þ denotes a vertical electron affinity

Eð0;RD
0 Þ � Eðþ;RD

0 Þ (step 4) and �ðþ;RD
0 ;R

DþÞ ¼
Eðþ;RD

0 Þ � Eðþ;RDþÞ the relaxation energy from the neu-

tral to the positive geometry in the positive charge state
(step 3). An expression for the negative charge state can be

obtained completely analogously once Ef
Dð0; �F ¼ 0Þ has

been computed.
The decomposition in Eq. (2) and (3) is not only appeal-

ing from an intuitive point of view, but also groups the
required total-energy differences into two categories: lat-
tice contributions in a fixed charge state and electron
addition energies at fixed geometry. This permits us to go
beyond a pure DFT description in an easy fashion by
employing the most suitable method for each type of
contribution [11]. Since we expect relaxation energies in
the same charge state to be given reliably by LDAwe retain
DFT for the lattice part. For the electron addition energies,
i.e., changes in charge state, which are typically problem-
atic in LDA, we instead resort to the G0W0 method.
The last remaining quantity to be assigned is

Ef
tetð2þ; �F ¼ 0Þ, which we compute in the LDA. Unlike

for the neutral state, the absence of DMC reference data
unfortunately does not permit an assessment of the LDA
error in this case. However, since the conduction-band-
derived defect levels are unoccupied the effect of the self-
interaction and the band-gap error on the formation energy
should be small. We therefore expect LDA to be more
reliable for the tetrahedral 2þ state than for the neutral
or the positive states.
The LDA calculations in the present work have been

performed with the plane-wave, pseudopotential code
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FIG. 2 (color online). Vertical electron affinities for different
configurations of the Sii: LDA Slater transition states (blue) and
G0W0 quasiparticle energies (red).
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S/PHI/nX [15]. 64-atom supercells were used throughout,

unless otherwise noted. To remove the contributions aris-
ing from the homogeneous compensation charge density
that is added to charged supercell calculations we have
performed calculations for supercells with 64, 216, and 512
atoms. In these the interstitial atom was placed in the
tetrahedral (2þ) and the C3v (þ) position of a perfect
(undistored) Si lattice. Fitting the formation energies up
to cubic order in the inverse cell length and extrapolating to
infinite length we obtain corrections to the 64-atom cell of
0.17 and 0.04 eV for the 2þ and þ state, respectively. Our
extrapolated formation energy for the unrelaxed tetrahe-
dral 2þ state of 3.19 eVagrees well the 3.31 eVobtained by
Wright and Modine for a slightly larger lattice constant
[16]. With this correction the formation energy of the
relaxed tetrahedral 2þ configuration amounts to 2.65 eV.
Applying a recently developed improved correction
scheme [17] yields a corrected value of 2.66 eV, in excel-
lent agreement with our extrapolated value.

For the G0W0 calculations [18] we have employed the
G0W0 space-time code GWST [19–21]. For computational
convenience we calculate the electron affinity of positive
charge states [Aðþ; RD

0 Þ] by their inverse process, the

electron removal from the neutral state, since no spin
polarization or partially filled defect states are encountered
then. Separate G0W0 calculations for bulk silicon yield a
band gap of 1.27 eV in good agreement with previous
pseudopotential G0W0 calculations [12].

The computed vertical electron affinities are shown in
Fig. 2. For comparison the LDA affinities calculated as
Slater transition states [22] at half occupation have been
included. The G0W0 corrections for the þ=0 state are
similar for the three configurations and relatively small
(�0:2 eV). For states that in the LDA are in resonance
with the conduction band, however, the G0W0 corrections
are much more pronounced. Since these states have a
contribution from delocalized conduction-band states the
delocalization error of the LDA [23] leads to a breakdown
of Slater transition state theory. The resulting severe under-
estimation of the vertical affinities is akin to the band-gap
problem. In LDA the band gap Eg ¼ I� A, where I is the

ionization potential and A the electron affinity, is under-
estimated regardless of whether I and A are calculated as
total-energy differences or by Kohn-Sham eigenvalues,
because the exchange-correlation functional is a continu-
ous function of the electron density and therefore does not

exhibit a derivative discontinuity. Many-body perturbation
theory in the GW approach, on the other hand, does not
suffer from this problem.
Having identified the relevant electron affinities we can

now return to the formation energies in Eqs. (2) and (3).
Table I shows that already upon adding the first electron to
the 2þ state we observe a large correction (�0:9 eV) for
the formation energy of the positive state. This error sub-
sequently carries over to the neutral charge state, and add-
ing the second electron incurs a further increase. The
G0W0-corrected formation energies are now on average
1.1 eV larger than in the LDA. Since the quasiparticle shift
of the empty defect state in the split h110i configuration is
smaller than the band-gap opening the state is moved into

the band gap (Að0;Rsplit
0 Þ ¼ 1:1 eV). As a result the nega-

tive charge state becomes stable in G0W0, which is not the
case in LDA, and has a formation energy of 5.53 eV.
For the neutral charge state our G0W0 corrected forma-

tion energies compare well with recent DMC calculations
that find an average increase of �1:5 eV (with a statitis-
tical error bar of �0:09 eV) and DFT HSE hybrid func-
tional calculations that significantly reduce the self-
interaction error and yield an average increase of
�1:2 eV [10]. Earlier DMC calculations give a larger
average increase of 1.7 eV compared to the LDA, but
also a much larger statistical error bar (�0:48 eV) [9].
Assuming a migration barrier of �0:2 eV [9] our com-
puted activation enthalpy (formation energy þ migration
barrier) of�4:7 eV for the neutral split h110i interstitial is
also in very good agreement with the experimentally de-
termined value of 4.95 eV [24].
Finally we address the stability of the different defect

configurations when the Fermi energy is varied throughout
the band gap (cf. Fig. 3). For clarity this is shown only for
the split h110i configuration (lower panels) and the con-
figuration with lowest energy at a given Fermi level (upper
panels). The situation for the hex and C3v configurations is
qualitatively similar to that of the split h110i. If each
configuration is considered separately, the formation en-
ergy diagram looks startlingly different in LDA andG0W0.
Since LDA underestimates the formation energies of theþ
and 0 state relative to the 2þ it does not exhibit the

negative-U behavior (Ef
DðþÞ> fEf

Dð0Þ; Ef
Dð2þÞg for all

Fermi energies) observed in G0W0. In addition G0W0

stabilizes the negative charge state for the split h110i
interstitial. If, on the other hand, the configuration with

TABLE I. G0W0 vertical electron affinities for different Sii configurations D and LDA relaxation energies. �ð�; RD�; RD
0 Þ is

�0:028 eV for the split h110i and Að2þ;Rtet
2þÞ amounts to 1.26 eV in G0W0. The tetrahedral configuration is taken as the 2þ state

of the C3v. Corrections for charged supercells (see text) have been added. All values are given in eV.

D Aðþ;RD
0 Þ �ðþ;RDþ;Rtet

2þÞ �ðþ;RD
0 ;R

DþÞ Ef
Dð2þÞ Ef

DðþÞ Ef
Dð0Þ

LDA LDA G0W0 LDA G0W0

hex 0.08 0.402 0.012 3.73 3.41 4.31 3.40 4.40

split h110i 0.02 0.502 0.030 3.91 3.49 4.41 3.29 4.46

C3v 0.44 �0:021 0.182 2.65 3.00 3.89 3.36 4.51
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the lowest energy is considered, LDA and G0W0 super-
ficially give a more similar picture: the tetrahedral 2þ state
is stable for 60%–70% of the respective band gaps. While
LDA then gives preference to the neutral split h110i for
larger Fermi levels, the G0W0 corrections marginally sta-
bilize the neutral hex configuration, in agreement with the
earlier DMC calculations [9]. The actual energies and
transition levels between LDA and G0W0, however, differ
appreciably.

Every point at which two lines in Fig. 3 cross corre-
sponds to a charge-state transition level "q=q0 . Bracht et al.

have recently determined these for the silicon self-
interstitial in high temperature diffusion experiments [4].
They identified two levels, at �0:1–0:2 eV and at
�0:4 eV above the valence-band maximum, that they
ascribed to "0=þ and "þ=2þ, respectively. These would

most closely correspond to the G0W0-corrected charge-
state transition levels "0=þ ¼ 0:09 eV and "þ=2þ ¼
0:58 eV for the hexagonal configuration or "0=þ ¼
0:05 eV and "þ=2þ ¼ 0:50 eV for the split h110i, while
those of the C3v configuration are noticeably different
(0.62 and 1.24 eV). Although lowest in formation energy
and therefore highest in concentration, the C3v 2þ con-
figuration (which is identical to tet 2þ) most likely plays a
negligible role in the diffusion experiments, since its dif-
fusion would have to proceed through a hexagonal site.
The activation energy for this process (formation energyþ
energy barrier at the experimental situation of a Fermi level
close to the middle of the band gap [4]) would thus be
considerably larger than the activation energy for diffusion
processes involving the other configurations. Refinements
in the diffusion models (e.g., inclusion of multiple con-
figurations and charge-state dependent diffusion barriers)
may be able to clarify the role of the tet 2þ configuration in
future experimental studies.
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FIG. 3 (color online). Formation energies (Ef
D) as a function of

Fermi energy in LDA (left) and G0W0 (right). The lower panels
show the split h110i as representative configuration and the upper
the configuration with the lowest energy for a give Fermi level.
The dotted line marks the LDA band gap.
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