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We consider the quantization of the complete extension of the Schwarzschild space-time using

spherically symmetric loop quantum gravity. We find an exact solution corresponding to the semiclassical

theory. The singularity is eliminated but the space-time still contains a horizon. Although the solution is

known partially numerically and therefore a proper global analysis is not possible, a global structure akin

to a singularity-free Reissner–Nordström space-time including a Cauchy horizon is suggested.
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Black holes are among the most spectacular revolutions
in our understanding of the nature of space-time that
occurred as a consequence of general relativity. In the
classical theory, certain configurations of matter cannot
overcome their gravitational self attraction and form an
event horizon, a surface beyond which no communication
with the exterior is possible. Matter continues to contract
inside the horizon until a singularity is formed. Such
singularities in the theory have the desirable property of
not being able to communicate with the exterior (cosmic
censorship). On the other hand, it is expected that such
singular behavior of the classical theory could be altered
significantly when one considers quantum effects. In loop
quantum gravity, for example, it is known in the context of
mini-superspace models that the big bang singularity is
eliminated and replaced by a bounce in several isotropic
models studied (see, for instance, [1] and references
therein). Since the interior of a black hole is classically
isometric to a Kantowski–Sachs cosmology (that also sees
its singularity eliminated in certain treatments as a loop
quantum cosmology), it is natural to expect that the black
hole singularity may also disappear in a similar way [2,3].
A complete treatment of the space-time of a black hole in
loop quantum gravity is still lacking, even within a midi-
superspace type of quantization. The intention of this
Letter is to provide such a treatment. We will consider
space-times with spherical symmetry and set up their
canonical theory. We will use a further gauge fixing to
avoid the hard problem of having structure functions in the
constraint algebra (see [4] for a good discussion). We will
then proceed to study classically the ‘‘polymerized’’ theory
that can be straightforwardly quantized in the loop repre-
sentation. It is known that such polymerized theories can
capture many effects that one would find in a more system-
atic quantization followed by a semiclassical approxima-
tion. We will see that indeed the complete space-time can
be covered and a solution can be constructed that replaces
the singularities (black and white hole) of the usual
Kruskal diagram by regular surfaces. We will show that
in fact such surfaces can be smoothly matched so where

one expected a ‘‘black hole’’ one tunnels into a ‘‘white
hole’’ region of another universe and this can be continued
indefinitely. The resulting solution therefore has a Cauchy
horizon and can be characterized as the analog in semi-
classical loop quantum gravity of an eternal black hole.
We will use the Ashtekar new variables to describe the

spherically symmetric space-times. Previous work on this
subject was done in modern language by Bojowald and
Swiderski [5], so we refer the reader to them for details.
There is only one nontrivial spatial direction (the radial)
which we call x since it is not necessarily parameterized by
the usual radial coordinate. We will elaborate more on the
range of x later. The canonical variables usual in loop
quantum gravity are a set of triads Ea

i and SOð3Þ connec-
tions Ai

a; after the imposition of spherical symmetry, one is
left with three pairs of canonical variables (�, P�, A’, E

’,

Ax, E
x). Instead of using triads in the directions transverse

to the radial one, a ‘‘polar’’ set of variables E’, � and their
canonical momenta is chosen. It is convenient to introduce
the gauge invariant variable Kx defined by 2�Kx ¼ Ax þ
�0 and also K’ defined as A’ ¼ 2�K’, where � is the

Immirzi parameter of loop quantum gravity. The canoni-
cally conjugate pairs are now Ex, Kx and E’, K’. The

relationship to more traditional metric variables is

gxx ¼ ðE’Þ2
jExj ; g�� ¼ jExj;

Kxx ¼ �KxsgnðExÞ ðE
’Þ2ffiffiffiffiffiffiffiffiffijExjp ; K�� ¼ �

ffiffiffiffiffiffiffiffiffi
jExj

p
K’;

(1)

and the latter two are the components of the extrinsic
curvature. The diffeomorphism and Hamiltonian con-
straints can be seen in detail in Ref. [6]. These constraints
have the usual constraint algebra for gravity in 1þ 1
dimensions, which includes structure functions. This im-
plies the usual ‘‘problem of dynamics’’ of canonical quan-
tum gravity. Our strategy to treat this model will be to
further fix the gauge so we are left with a model with one
Abelian constraint and a true Hamiltonian. That way it can
be treated using the standard Dirac procedure and it can be
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quantized with loop quantum gravity techniques. This
model, though simpler, will still be able to capture some
of the attractive features of loop quantum gravity like the
potential elimination of singularities. If one were to fix the
gauge further before quantization, onewould be led back to
the standard quantization of Kuchař [7], which cannot add
insights on the question of singularities. We proceed to
eliminate the diffeomorphism constraint by choosing a
gauge that determines the functional form for Ex ¼
fðx; tÞ. Imposing the constraint strongly determines Kx.
This also fixes the corresponding Lagrange multiplier

(the shift) Nr ¼ � _fðx; tÞ=f0ðx; tÞ and also breaks re-
parametrization invariance. One is left with a theory with
a single constraint that is Abelian and with a true
Hamiltonian, the dynamical variables are E’ and K’,

and the constraint is

� ¼ � ffiffiffiffiffiffi
Ex

p � K2
’

ffiffiffiffiffiffi
Ex

p þ 1

4

ððExÞ0Þ2 ffiffiffiffiffiffi
Ex

p
ðE’Þ2 þ 2M (2)

with M an integration constant, and the evolution is given

by a true Hamiltonian,

Htrue ¼
Z

dx
_fðx; tÞ
f0ðx; tÞE

’ðK’Þ0; (3)

which preserves the constraint upon evolution. This can be
immediately seen from the fact that the total Hamiltonian
is a remnant of the diffeomorphism constraint and � is a
diffeomorphism scalar. We assume the spatial manifold
(the radial direction) has two boundaries. The theory at
the boundary can be constructed in similar fashion as in the
exterior case so we refer the reader to [6] for reasons of
space. One ends up with one degree of freedom in the
boundary (the mass) that does not evolve in time and
coincides with the constant M.
The quantization of the Abelian constraint is straight-

forward and can be carried out in the same Hilbert space
that was considered in the exterior case [6]. In brief, one
discretizes the radial direction, and the Hilbert space is a
tensor product of Hilbert spaces of loop quantum cosmol-
ogy, one per spatial point. In such a space, the constraint (2)
is not well defined, but one can work with an expression
where K’ is replaced by sinð�K’Þ=�. The latter is imme-

diately expressible in terms of holonomies and therefore
naturally exists in the loop representation. The resulting
theory agrees with general relativity in the limit � ! 0. In
loop quantum gravity, it is natural to consider a finite value
of �, usually associated with the elementary quantum of
area [1].
Instead of quantizing the theory and then studying the

semiclassical limit, we will follow a procedure that is
known [3] to capture some of the semiclassical behaviors,
in particular, the elimination of the singularity, at least in
simple examples with a constant value of � as the one we
are considering. We analyze the resulting classical ‘‘poly-
merized’’ theory with finite �. One is then considering a
classical theory of gravitation, different from general rela-
tivity, that contains some of the ingredients of the quantum
theory, akin to when one works out in an effective theory.
We wish to choose the function fðt; xÞ in such a way

that in the limit � ! 0, one recovers the standard
Schwarzschild metric in Kruskal-like coordinates. That
is, a metric with a singularity at x2 � t2 ¼ �1. On the
other hand, in the case of finite �, we will make a gauge
choice such that no singularities are present on the surface
x2 � t2 ¼ �1 (one could choose gauges with coordinate
singularities there). To be more specific, we will choose
Ex ¼ fðu; t; �Þ, where u ¼ x2 � t2 þ 1 and �ð�Þ a posi-
tive parameter such that when � ! 0, � ! 0 and we
recover the standard Kruskal form of the Schwarzschild
space-time. To completely fix the gauge and obtain an
explicit solution, we set K’ ¼ gðu; t; �Þ after polymeriza-

tion. In the quantum theory, such a gauge fixing would be
equivalent to the study of an evolving constant [8,9] E’ in
terms of c-number variable K’.

We will require the following conditions on the gauge
fixing. We choose the u in the range ½0;1� and is such that

FIG. 1 (color online). The metric component gxx shown as a
function of r for the usual Schwarzschild solution and the
solution of the polymerized theory. The plots are for � ¼
10�42 and M ¼ 1. One sees the two graphs coincide long before
one reaches the horizon at r ¼ 2M, but inside, the Schwarzschild
solution tends to blow up at r ¼ 0 whereas the solution of the
polymerized theory becomes finite. Close to the origin, the
plotting program cannot capture that the solution of the poly-
merized theory grows again and takes a large, but finite, value.
Although the comparison with Schwarzschild is suggestive, one
must exercise care since we are plotting a coordinate dependent
quantity in two different theories. One can show that both curves
will agree in the limit � ! 0. The behavior of components of the
curvature tensor grows monotonically as r ! 0 up to a maxi-
mum finite value at the tunneling in the polymerized theory.
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the radial variable has a logarithmic dependence on u, r ¼ffiffiffiffiffiffi
Ex

p �M lnðuÞ for u ! 1. Moreover, asymptotically
E’ � rþM in ordinary Schwarzschild coordinates, which

appropriately transformed is E’ � ½2M=
ffiffiðp uÞ�½M lnðuÞ þ

M�. The conjugate variables are exponentially small in the
radial coordinate Kx � K’ � 1=

ffiffiffi
u

p
. These boundary con-

ditions are very similar to those in Kruskal coordinates
[10]. We did not choose to work exactly in Kruskal coor-
dinates asymptotically given the complicated relation be-
tween r and u in those coordinates. At u ¼ 0, we will
require that all variables be t-independent, and we will
choose their derivatives to vanish [in the case of K’, we

choose the derivative of sinð�K’Þ to vanish, since it is the

relevant expression for the determination of the metric
components via the constraints]. This ensures that one
can easily continue the manifold without shells of matter
present at u ¼ 0. There might be other possibilities for this
boundary condition, but we have not explored them.
Finally, we would like that in the limit � ! 0, we get a
gauge choice that covers the entire extension of the
Schwarzschild space-time (as we mentioned, it will not
be exactly the same as the Kruskal extension, but related to
it via nonsingular, yet complicated, coordinate transforma-
tions). Although the choice of coordinates we are making
is not unique, it is computationally laborious to actually
find a coordinate system that satisfies all the conditions we
listed and that involves variables that do not turn complex
in certain regions and that has the variable K’ taking

correct values in the Bohr compactification.
The specific choice we make for Ex is

Ex ¼
�½�ð1þ uÞ þ ð10u2 þ u7=2Þð�ðt2 � 1Þ þ 1Þ�

u7=2 þ ðt2 � 1Þð�u7=2 þ �2Þ þ 1
2�

2u

� ½lnð1þ uÞ�2 þ �8

�
M2: (4)

This choice has the property that for u ! 0 Ex ¼ M2�8

independent of t and in the limit � ! 0, we have that Ex ¼
M2ð10u3=2 þ u3Þln2ð1þ uÞ=u3 tends to 0 when u ¼ 0, as
in the Kruskal coordinates, giving rise to the singularity. It
can be checked that the first derivative with respect to x of
Ex vanishes for u ¼ 0 for any finite value of �. This choice
for Ex is not unique, in the sense that other choices may
satisfy the above conditions. It might be possible to find
simpler choices.

For K’, we choose

K’ ¼ 1

2

�5=2�½1þ lnð1þ u2Þ�
�½�5=2 þ lnð1þ uÞ2� þ jtj lnð1þ u3Þ

u3=8

�
ð�1þ u

½10þu lnð1þuÞ� þ 9u
½100þu lnð1þuÞ2�Þ

½�2tþ lnð1þ u3Þ�ð1þ u1=8Þ : (5)

This choice has the property that for u ! 0 K’ ¼
�=ð2�Þ independent of t, so the term that appears in the
Hamiltonian goes as sinð�K’Þ � 1. This means that the

departure of the polymerized theory from classical general

relativity is maximum at the point where the singularity
would have occurred in the continuum theory. Therefore,
loop quantum gravity could remove the classical
Schwarzschild singularity. In the limit � ! 0, we have
that K’ blows up when u ¼ 0, as in the Kruskal coordi-

nates, also compatible with the presence of the singularity
in the continuum theory. It can be checked that the first
derivative with respect to x of sinð�K’Þ vanishes for u ¼
0. As in the case of Ex, the choice is not unique. It should
also be noted that the choice is only valid in jtj> 1. We
have extended the solution beyond that domain. The ex-
tension is symmetric under t ! �t, x ! �x, but it makes
the expressions too lengthy; so for reasons of space here,
we concentrate in the region jtj> 1 since it includes the
singularity.
We would now like to generate a solution to the con-

straint and the evolution equations of the polymerized
theory. We will adopt the following strategy: we solve
the diffeomorphism constraint for Kx and the remaining
constraint for E’. The preservation of the gauge conditions
in time determine the lapse and shift. The consistency of
the system, that is, the preservation of the constraints upon
the Hamiltonian evolution guarantees that the evolution
equations for the canonical variables are automatically
satisfied.
We start by obtaining E’ from the Hamiltonian con-

straint, which is immediate since the relation is algebraic,

E’ ¼ 1

2
ðExÞ0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2Mffiffiffiffiffiffi

Ex
p þ sinð�K’Þ2

�2

s ��1
; (6)

recall that ðExÞ0 is given by the x derivative of Ex given in
(4). In these expressions, prime means derivative with
respect to x.
Since ðExÞ0 vanishes for u ¼ 0 and one wishes E’ to be

finite there to avoid having a singularity, one needs the
denominator of (6) to vanish. This condition determines

the relation between � and �, � ¼ �2ffiffiffiffiffiffiffiffiffi
2��4

p .

FIG. 2. The conjectured global structure of the solution. The
singularity is replaced by a regular region indicated with a
dashed line. The space-time is continued through into another
copy of the same solution. The solution would have a Cauchy
horizon similar to that in a Reissner–Nordstöm solution, pre-
sumably unstable.
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It is worthwhile showing explicitly the behavior of E’ as

u ! 0, E’ju!0 ¼ 2M2�11=16 þ f�1=8½120ðt2 � 1Þ � 1� þ
120gM2u2�9=16 which confirms that ðE’Þ0 ¼ 0 at u ¼ 0,
one of the conditions we wanted. The behavior at large u

of the metric is given by gxxju!1 ¼ 4M2

u þ 8 M2

u lnðuÞ , and
this is just the coordinate transform of (1þ 2M=r) with
r ¼ M lnðuÞ to leading orders in asymptotic powers of u,
yielding the familiar form of the Schwarzschild solution to
leading order in 1=r.

We now proceed to determine the lapse, using the con-
servation in time of the second gauge condition, the one
involvingK’. We compute _K’ using the total Hamiltonian.

From there, one immediately gets

N0 ¼ � 1

4

_K’ðExÞ0 � K0
’
_Ex

ð1� 2Mffiffiffiffi
Ex

p þ sinð�K’Þ2
�2 Þ3=2

(7)

and via a quadrature one obtains N. We were not able to
compute the expression for the latter in closed form, but
numerical evaluations are straightforward. We can there-
fore reconstruct all components of the space-time metric.
We show the component gxx in Fig. 1. We can use this to
study the causal structure of light cones. With this, we can
locate the horizon by studying at each value of t the radial

position at which the hypersurface tangent to
ffiffiffiffiffiffi
Ex

p ¼ const
becomes null. We have carried out the numerical compu-
tations for values t ¼ ½10; 100�. For larger values, the
computation becomes harder due to numerical issues. We
will choose the parameter � ¼ 10�8 and 10�42 to study
convergence. To understand the meaning of these values, it
is worthwhile noticing that the ratio between the radius at
the point where the curvature takes its maximum value and

the Schwarzschild radius to be of the order of �1=14 Since
we are dealing with the classical polymerized theory, there
is no notion of Planck mass. Using estimates based on the
treatment of the interior using the Kantowski–Sachs
isometry and that the polymerized theory departs from
general relativity in scales associated with the Planck
length, one can conclude that one would be dealing with
a black hole of 3–1000 Planck masses for both choices
of � we make. Corrections with respect to the usual
Schwarzschild solution at the position of the event horizon

are of the order �1=2, i.e., for the choices we make from
10�4 to too small to be detected with the accuracy we are
working.

Summarizing, we have carried out a midi-superspace
treatment of spherically symmetric space-times in loop
quantum gravity. We have studied a classical solution
that captures the features of the semiclassical theory. The
singularity is avoided and a picture is suggested in which
the space-time of a (highly idealized) eternal black hole is
continued into another region containing a Cauchy hori-
zon, similar to a Reissner–Nordström space-time but with-
out the singularity, as shown in Fig. 2. In spite of the lack of
singularity, there still is a horizon and a causal behavior far

away from the singularity similar to that of the usual
Schwarzschild solution.
Is the solution unique? At this point, we cannot say.

There clearly are parameters that can be changed, and
choices that were made, but it is not clear if they just
correspond to diffeomorphisms. In particular, we do not
know if all possible choices will lead to nonsingular solu-
tions. During our work towards constructing the solution
we display here, we encountered solutions with singular-
ities, but they ended up being coordinate singularities.
Although the treatment of the exterior carried out previ-
ously [6] yields a single solution up to diffeomorphisms, it
is known that in the treatments of the interior, the ‘‘poly-
merization’’ breaks Birkhoff’s theorem [2,3] suggesting it
may not hold in the complete case either. In the interior
treatment, there appears an additional parameter in the
solution which, for instance, controls if the ‘‘bounce’’ is
symmetric or not and the extent of the region where the
polymerized theory departs from general relativity. Our
solution appears to have several free parameters, even
though we have imposed by hand that the bounce be
symmetric. Clarifying the uniqueness point may shed light
on the degrees of freedom that are remnant of the elimi-
nation of the singularity in loop quantum gravity and may
yield a picture with elements in common with the ‘‘fuzz-
balls’’ [11] of string theory, although our solutions do not
exhibit significant departures from general relativity at the
position of the horizon.
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