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Drag on pairs of square section obstacles in free-surface flows
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The drag on pairs of square obstacles (of side D) in open channel flow is measured in
experiments using a laboratory flume. The depth is uniform across the obstacles and the
conditions in the flume are subcritical, with Froude number Fr < 0.59, Reynolds number
Re = 4800 to 21900, and turbulence intensity IT ∼ 8 to 10%. The drag coefficient for
an isolated square obstacle is found to be CD = 2.11, in agreement with previous studies,
and independent of Re (for the range covered here). The root-mean-square variation in
the drag coefficient for the single obstacle decreased monotonically with Re, defined in
terms of hydraulic radius, and approached 0.241 at high Re in agreement with previous
research. For two obstacles, standard tandem and side-by-side arrangements are studied
first, followed by a full range of relative positions covering −5 � sx/D � 20 in the
downstream direction and 0 � sy/D � 7.0 in the cross-stream direction. The lowest drag
coefficients are observed when the downstream obstacle is shielded directly behind the
upstream obstacle (tandem arrangement) when negative drag coefficients are found. The
largest drag coefficients are observed for nearly side-by-side arrangements, with the peak
values found to be for the slightly upstream obstacle of a pair (sx/D = −1). The blockage
ratio (D/B, the relative size of the obstacle compared to the channel width) is found to be
an important factor. For D/B = 12.7% the largest drag coefficient is CD = 3.82, while for
D/B = 6.3% the largest value is CD = 2.85. For tandem obstacles, the drag on one obstacle
can largely be accounted for by the change in flow speed induced by the other obstacle,
except at small separations (|sx/D| < 3). The results will be useful in any applications
where the force on multiple obstacles is required, such as the design of marine or riverine
structures, or flood flows past buildings and vegetation.

DOI: 10.1103/PhysRevFluids.3.123802

I. INTRODUCTION

Bluff obstacles are found in a range of natural and engineered flows. For example, square
cross-section obstacles are found as supports for river and coastal structures, buildings experiencing
floods, and in heat exchangers [1–4]. Emergent aquatic vegetation is also often idealized as arrays
of rigid obstacles, typically with a circular cross section (e.g., [5–7]), though it is argued here that
square obstacles can be a more appropriate model for real vegetation under typical field conditions
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in terms of the magnitude of fluid drag and its relatively small variation with Reynolds number. We
will focus here on free surface subcritical flow, with the Froude number Fr < 1, and Froude number
given by

Fr = U√
gH

, (1)

where U is the mean flow velocity, g is the acceleration due to gravity, and H is the depth of the
flow. Of particular interest is the drag acting on obstacles in the flow (or equivalently the force
acting on the flow), as this is important for analyzing the performance of structures in a flood, or for
calculating the effect of obstacles on the flow itself. The drag force FD is commonly expressed as

FD = CDFP with FP = 1
2ρU 2DH, (2)

where CD is the drag coefficient, ρ is the fluid density, and D is the obstacle width facing the
flow direction. Similarly, the standard deviation of the drag force, FD rms, is a useful measure of
temporally fluctuating drag forces, which can be quantified in terms of the root-mean-square drag
coefficient CD rms:

FD rms = CD rmsFP , (3)

For developed normal flow in channels the balance between drag and gravity can be expressed
in terms of Manning’s formula,

U = R
2/3
H S1/2n−1, (4)

where RH is the hydraulic radius, S is the channel slope, and n is Manning’s coefficient [8].
Much previous work has concentrated on flow past circular cylinders. In this case drag

coefficients are found to be of order 1, and vary with the Reynolds number Re given by

Re = UD

ν
, (5)

where ν is the kinematic viscosity. For a smooth cylinder, White [9] gives

CD = 1 + 10Re−2/3 for 1 < Re < O(105). (6)

At higher Re, delayed flow separation reduces CD , which is sensitive to Re, surface roughness
ks , and turbulence intensity IT . The drag coefficient is also influenced by wall constraints. If the
blockage ratio D/B is large, sidewalls prevent the flow passing the cylinder from expanding laterally,
causing it to accelerate and resulting in a compensating fall in pressure. Laboratory measurements
on isolated cylinders are often corrected to estimate CD in an infinitely wide channel CDc. A variety
of methods exist in the literature (e.g., [11–13]) with their efficacy dependent on the Reynolds
number regime [10].

Maskell [11] developed a blockage correction procedure, for both bluff and streamlined bodies,
based on an approximate momentum balance outside the wake and two empirical auxiliary relations.
The final form of the correction is

CD

CDc

= 1 + ε
D

B
, (7)

where ε is an experimentally determined coefficient, equal to 0.96 for flat plates. Awbi [12] proposed
a modification to Maskell’s theory for obstacles with a rectangular cross-section where ε is a
function of the ratio of the cross-sectional dimensions of the obstacle. For square cross sections
the reduction is only 3%, suggesting Maskell’s original value is reasonable. Anthoine et al. [10]
showed that Maskell’s theory is valid for circular cylinders (at subcritical Reynolds numbers, i.e.,
Re < 3 × 105) even for large blockages (tested for D/B � 17%). Ranga Raju and Singh [13]
proposed an alternative correction procedure for square cross-section obstacles, as well as triangular
prisms and circular disks, which was validated for D/B � 24%:

CDc = CD

(
1 − D

B

)α

, (8)
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where α is a function of the ratio of obstacle cross-sectional dimensions, with α ≈ 1.15 for square
obstacles. These correction procedures are therefore reasonable to employ in the present study, given
that they have been successfully applied to various bluff body shapes, including square obstacles at
high blockage ratios.

For circular cylinder pairs, CD is a function of sx and sy , which are the separation between
obstacle centers in the streamwise and cross-stream directions respectively. For tandem arrange-
ments, where one cylinder is aligned behind the other in the direction of the mean flow (sy = 0), the
drag on the downstream cylinder is substantially reduced due to decreased velocities and increased
turbulence in the upstream cylinder wake and thus in flow approaching the downstream cylinder.
This effect is known as “sheltering” [14]. Liu et al. [15] found that, for low IT (0.7%), flow around
smooth cylinders at Re = 80000, CD (for the downstream cylinder) is negative at small separations
and suddenly increases at a separation of sx = 3.5D. This behavior disappeared as the surface was
roughened or turbulence was introduced into the inflow. For side-by-side arrangements (sx = 0), if
the cross-stream separation is sufficiently large (sy > 2D), the flow pattern is symmetrical relative
to the axis passing through the middle of the gap between cylinders [16]. However, at small
separations the gap flow is biased to one side, switching between the two sides at irregular intervals.
One cylinder is subject to a narrow wake (low drag) and the other to a wide wake (high drag).
Zdravkovich and Pridden [16] found that the sum of the high and low drag is always less than twice
that on an isolated cylinder, hence interference reduces CD at close spacing. They also found that
for a given separation the minimum CD often occurs when the obstacles are offset in both directions
(sx �= 0 and sy �= 0), known as staggered arrangements, because the gap flow between cylinders
shifts the stagnation point of the downstream cylinder (by up to 30◦), exposing a large area on the
front of the cylinder to low pressure.

In arrays of circular cylinders, CD is dependent on Re and solid volume fraction λ (the ratio
of the total solid volume to the total volume of solid and fluid). Tanino and Nepf [6] found that
in random arrays CD decreases with increasing Re (where Re is based on the mean velocity
within the array, taking account of the average reduction in cross-sectional area) and increases
with increasing λ for 25 < Re < 685 and 0.091 < λ < 0.35. At higher Re the opposite trend (CD

decreasing with increasing λ) has been reported, for example in the numerical model of Nepf [5]
where CD of individual cylinders is assigned based on the position of the closest upstream cylinder
(8 × 10−4 < λ < 0.24, random and staggered), validated with laboratory results at Re > 1000.
Cheng and Nguyen [7] introduced the concept of vegetation hydraulic radius, rv (the ratio of the
volume of water to the combined frontal area of all cylinders), to collapse laboratory data to a
function of a single variable. They show that CD decreases monotonically with Re (defined in terms
of mean array velocity and rv) and is independent of λ (with no significant difference between
random and staggered arrays).

Vegetation in environmental flows is not so well represented by the idealized models or
laboratory experiments. Values of IT are generally higher, and vegetation is often not circular at all
in cross section (“sedges have edges”), and certainly not perfectly circular or smooth. As a result,
drag coefficients for real vegetation are typically CD ∼ 2 and there is less variation with Re. James
et al. [17] found in a flume study that isolated stems of Phragmites australis (common reed) have
higher drag coefficients than circular cylinders, with square obstacles forming a better model. They
also found CD increased further if foliage was present. In a further flume study, Wunder et al. [18]
found that for leafy willows at high velocities CD exceeds that of circular cylinders. Thus square
obstacles, with fixed separation points and less dependence on Re, can form better models of real
vegetation in terms of the magnitude of fluid drag.

Flows past square cross-section obstacles have been less intensively studied, limited mostly to
single square obstacles, or special arrangements of pairs of obstacles (tandem or side by side). The
value of CD for a single obstacle has been measured by various authors with typical values of the
order of 2 (see Table I). Lyn et al. [19] used laser-Doppler velocimetry to measure wake recovery in a
closed water channel at Re = 21400 and found CD = 2.1 from the integral of mean velocity profiles
(and found the length of the recirculation region was about 1.4D). Yen and Yang [3] calculated CD
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TABLE I. Drag coefficients for square obstacles from previous studies.

Author Re IT (%) D/B (%) H/D CD

Norberg [20] 5000 0.06 1.1 62.5 2.21
Yen and Yang [3] 6300 0.3 4.0 25.0 1.86
Norberg [20] 13000 0.06 1.1 62.5 2.15
Yen and Liu [4] 21000 0.4 4.0 25.0 2.06
Lyn et al. [19] 21400 2 7.1 9.8 2.1
Yen and Yang [3] 24000 0.3 4.0 25.0 1.96
Yen and Yang [3] 36000 0.3 4.0 25.0 2.02
Lee [21] 176000 0.5 3.6 9.2 2.04
Lee [21] 176000 4.4 3.6 9.2 1.98
Lee [21] 176000 6.5 3.6 9.2 1.94
Lee [21] 176000 8 3.6 9.2 1.81
Lee [21] 176000 12.5 3.6 9.2 1.53
British Standards Institution [22] N/A N/A N/A N/A 2.1

from pressure transducer measurements in an open-loop wind tunnel and found CD increased with
Re from 1.86 at Re = 6300 to 2.02 at Re = 36000. Lee [21] investigated the influence of IT on CD

in a low speed wind tunnel. The turbulence level was varied by using four different square mesh
grids upstream of the obstacle and CD was obtained from the integrated mean pressure distribution
measured using 18 and 6 pressure taps on the front and rear faces respectively. A reduction in CD

was observed with an increase in IT . This was ascribed to the fact that additional turbulence thickens
shear layers which are then deflected by the obstacle’s rear corners, causing the vortices to form
further downstream. The measured drag coefficients are in the range obtained by other researchers
at lower IT , for IT up to 6.5%, but then fall below this range as IT increases to 8%, reaching the
lowest value of 1.53 at the highest turbulence intensity of 12.5%. In a channel of finite width B,
increases in blockage ratio D/B would be expected to contribute to an increase in the drag.

For square-section obstacles, an important parameter is the angle of attack θ , i.e. the angle
between the mean flow direction and the upstream face of the obstacle [3,20,21]. Yen and Yang [3]
investigated the influence of θ on CD (defined in terms of the projected area which varies with θ ) and
flow patterns visualized using particle image velocimetry (PIV). Three flow modes were identified.
In the leading-edge separation mode (θ < 9◦) stagnation occurs at the midsection of the front face
and the flow divides into two streams. Flow separates near the front vertices and two vortices form
in the wake. A local maximum in CD occurs at 0° due to the high pressure near the stagnation point.
As θ increases, a vortex shed from the front corner intermittently touches the rear corner, reducing
CD . In the separation bubble mode (9◦ < θ < 27◦) flow separates at the leading edges, reattaches
on the surface on one side, and separates again at the rear corner with the minimum CD occurring at
12° (1.35 at Re = 6300 and 1.50 at Re = 36000). In the attached mode (27◦ < θ < 45◦) streamlines
near the front vertices smoothly follow the obstacle shape and separation does not occur until the
rear vertices. Increases in θ gradually broaden the wake, increasing CD towards the maximum value
at 45°. The present study is restricted to θ = 0◦.

For side-by-side square obstacles Yen and Liu [4] (using pressure transducer and velocity
measurements in an open-loop wind tunnel) identified three distinct modes of flow behavior. When
the obstacles are sufficiently close (1 � sy/D � 1.1) “single mode” flow behavior is similar to that
around an isolated obstacle, but the wake is wider so CD is higher (maximum CD = 2.24). As
sy/D increases (“gap-flow mode” 1.1 � sy/D � 6.5) jet flow develops between the obstacles, with
no flow separation on the interfacial surfaces, so CD is reduced (minimum CD = 1.68). As sy/D

increases further (“couple vortex-shedding mode” 6.5 � sy/D � 13), interactions are minimal and
CD is almost independent of sy/D (CD = 2.08). Yen and Liu [4] also measured CD rms on an
isolated obstacle and the average root-mean-square drag coefficient for each obstacle in a pair.
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The maximum value of 0.263 occurred in the gap flow mode at sy/D = 1.5, and CD rms in the
couple vortex-shedding mode was 0.241, close to isolated obstacle value of 0.242. For square
obstacles in tandem, Yen et al. [2] identified (in experiments in a vertical water tank) three distinct
modes of flow behavior depending on Re and sx/D. When the obstacles are sufficiently close, flow
patterns are similar to that of an isolated obstacle (“single mode”). As the separation increases,
flow reattaches on the downstream obstacle, resulting in a substantial reduction in downstream
obstacle CD (“reattached mode”). At a separation of 3D, CD tends to 0.5 for Re > 670. At large
separations similar structures form in the wakes of the two obstacles and downstream CD increases
towards the isolated value (“binary mode”). The spacing at which the transition between the different
flow modes occurs was found to decrease with an increase in Re, and the single mode was only
observable for Re up to the order of 600. A number of researchers have identified a sudden change
in CD which corresponds to the transition between the reattached and binary modes (e.g., [23,24]).
Kim et al. [24] used PIV to investigate the mean velocity and turbulent statistics of the flow field
surrounding tandem pairs of square obstacles for 1.5 � sx/D � 11.0 and Re = 5300 and 16000.
A discontinuous jump occurred simultaneously in CD for both obstacles at the critical spacing of
3.5D, which was independent of Re within the range studied, and the flow patterns at sx/D � 3.0
were drastically different from those at sx/D � 3.5.

A number of researchers have also employed numerical models to determine drag on square
obstacles (e.g., [25–27]). Rodi [25] conducted a comprehensive study comparing various Reynolds-
averaged Navier-Stokes (RANS) and large eddy simulation (LES) models for the test case with a
single obstacle presented by Lyn et al. [19] (CD = 2.1). For the RANS simulations, CD was well
predicted by the k-epsilon model with the Kato-Launder modification and a two-layer approach to
resolving the near-wall region (2.0) and by a Reynolds-stress model with wall functions (2.15). LES
models generally gave a better simulation of the details of the flow at the expense of a large increase
in computation time, but there were large differences between individual calculations, particularly
in terms of CD which varied between 2.02 and 2.77, which the author noted were difficult to explain.
The literature concerning simulations of the flow past obstacle pairs is far more sparse, but numerical
models have been employed to investigate the flow around tandem pairs albeit at low Reynolds
numbers (using 2D incompressible laminar flow models) (e.g., [26,27]). Sohankar and Etminan [26]
considered obstacles separated by sx/D = 6 at 1 � Re � 200 and D/B = 5%, using both steady
and unsteady models. The results demonstrate that the flow becomes unsteady for Re � 40, and for
Re = 50 pressure drag contributes to 80% of the total drag. For Re � 50 upstream CD is relatively
constant, whereas the downstream obstacle CD increases gradually due to the change of flow pattern
between the obstacles. For Re � 100, the downstream obstacle CD also becomes approximately
constant, with CD equal to 1.53 and 1.30 for the upstream and downstream obstacles respectively at
Re = 100. Lankadasu and Vengadesan [27] studied the flow around tandem obstacles subject to both
uniform and planar shear inflow, for 2 � sx/D � 7 and Re = 100. The results showed that, with
an increasing shear gradient, the flow became unsteady at lower sx/D. When sx/D > 4, there was
a clearly defined wake behind the upstream obstacle, but below this threshold there was no definite
wake, despite the fact that the flow was unsteady for some combinations of sx/D and the shear
gradient. The downstream obstacle CD was consistently lower than that of the upstream obstacle
and was far lower than that of the single obstacle in uniform flow. Negative values were obtained at
lower sx/D for uniform flow or low shear gradients, but CD became positive as the shear gradient
increased. The root-mean-square drag coefficient was consistently higher for the downstream
obstacle than the upstream one. With increasing sx/D, CD rms initially increased and then began
to decrease for the upstream obstacle, whereas it increased monotonically for the downstream one.
Accurate estimation of CD for pairs of obstacles at high Reynolds numbers remains challenging.

Here we will use laboratory flume experiments to measure the drag on a pair of square obstacles
in a comprehensive set of arrangements covering the range −5 � sx/D � 20 and 0 � sy/D �
3.5 (or 7.0 for D/B = 6.3%). Previous work only considered special cases with perpendicular
alignment between the obstacles (tandem and side-by-side arrangements), whereas we extend this
to the general case including other, nonperpendicular relative positions. In Sec. II we describe the
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FIG. 1. Sketch of the flume used for the experiments.

experiments and give measurements of the flume flow without obstacles. Next, in Sec. III, we present
the results including the main features of the velocity field with obstacles present and comprehensive
results for the drag on pairs of obstacles. Finally, in Sec. IV, we discuss the results and present our
main conclusions.

II. EXPERIMENTS

The experiments were conducted in a recirculating tilting flume, with main working section of
length 5 m, and width and height 300 mm (Fig. 1). The cross section of the upstream pre-flume
section contracts just upstream of the flume inlet, but there are no other means of turbulence
suppression. Downstream of the flume test section there is an outlet with an adjustable overflow
weir, which is controlled by a wheel. The maximum flow rate is approximately Q = 0.03 m3s−1.

The flow rates were adjusted after obstacles were placed in the water to give subcritical flow,
with Fr < 0.59 in all cases, and the slope and weir height were adjusted to obtain uniform flow
in the test section. To calibrate the slope, the flume was filled with water and both ends of the
test section were sealed. From repeated measurements of the depth of still water, an accuracy
of ±0.3 mm was achievable. The uncertainty in the slope S is therefore ±(2 × 0.3/5000) =
±1.2 × 10−4. Velocities were measured using a Nortek Vectrino ADV operating at 200 Hz. The
accuracy of velocity measurements is ±0.5% of the measured value ±0.001 ms−1 and the Doppler
uncertainty is estimated as 1% of the user-specified nominal velocity range [28]. This range was
adjusted to minimize uncertainty while capturing the entire range of velocities. It was typically
set to ±1 ms−1 but up to ±4 ms−1 was necessary in the wake of an obstacle. The maximum
uncertainty is therefore ±(0.041 + 0.005U ) ms−1. The ADV probe was fully submerged when
measuring velocities surrounding obstacles. For the measurement of velocities in the channel with
no obstacles present, the ADV probe was fully submerged except at the maximum height where
only the transmitter and bottom two (of four) receivers were submerged. This is acceptable for the
measurement of the streamwise component (as well as the lateral component but not the vertical
one). See Robertson [29] for further experimental details.

Mean streamwise velocity profiles, nondimensionalized by the bulk mean speed U = Q/(BH), in
the absence of obstacles are shown in Fig. 2. The velocity profiles are consistent with the logarithmic
law near the base of the flume. Further from the base, in the free stream, the velocity remains
constant with respect to depth. This is true above ∼H/2 or ∼8 cm from the base, so velocities
either side of obstacles were measured above this height. The increase in free-stream velocity
with downstream distance is relatively small, especially when compared to that downstream of an
obstacle (see below). The velocity profile in the cross-stream direction is reasonably uniform. The
velocity decreases slightly towards the center of the flume and towards the walls. The turbulence
intensity varies with position but is of the order of 10%. Manning’s coefficient was found to be n =
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FIG. 2. Profiles of the normalized, temporally averaged, streamwise component of velocity in the flume
with no obstacles present, at different downstream distances from the start of the main working section x for
Q = 0.0166 m3s−1, H = 158 mm, and S = 0.0007. (a) In the vertical direction at the center of the channel and
(b) in the cross-stream direction at a height of H/3 below the free surface.

0.011 m−1/3s. This was computed from linear regression of U against RH
2/3S1/2 at S = 0.0013 and

0.0022 over a range of conditions where 0.0142 � Q � 0.0275 m3s−1 and 0.093 � H � 0.196 m.
Two sizes of obstacle were used with D = 38 mm and 19 mm (D/B = 12.7% and 6.3%) always

placed square on to the flow. The obstacles are made from aluminum which has a surface roughness
of ks = 1 − 2 μm [30]. Consulting a Moody chart, the obstacles can therefore be considered
hydraulically smooth since the upper estimate of ks/D is of the order of 10−4 and the maximum Re
(based on obstacle width) is of the order of 2 × 104.

Forces on the obstacles were measured by a strain gauge recording data at 200 Hz, calibrated
before and after each set of experiments by applying known loads. The difference between an
applied load and that computed from calibration constants is negligible. The best fit consistently
gave a correlation coefficient R2 > 0.999. The uncertainty of the strain gauge measurements was
estimated as ±(0.02 + 0.01 FD )N. This accounts for a potential shift in calibration constants over
the course of an experiment as well as the difference between the mean drag determined over the
measurement period of 120 s and over a much longer period. When the calibration was checked at
the start of each experiment the difference between known and measured forces was less than 2%
or the gauge was recalibrated. However, this may underestimate the uncertainty due to calibration
drift at low forces as, for the check, applied loads were greater than or equal to 0.981 N, but in the
experiments FD � 0.2 N, so the uncertainty was estimated as 2% of 0.981 N. Measurements were
discarded from further analysis if there was a difference of over 2% between forces computed with
the calibration constants obtained between successive calibrations. In preliminary tests, the mean
value of CD was calculated over increasing periods of time, t . This mean value remained constant
to within 1% for t > 120 s, so this period was used for calculating the mean value of CD .

A sketch showing the arrangement with two obstacles is shown in Fig. 3. One obstacle was kept
centrally positioned, mounted on the strain gauge, while a second was placed in different positions
to vary the relative positions, with sx and sy being the position of the gauged obstacle relative
to the second obstacle. Negative values of sx indicate that drag was measured on the upstream
obstacle. Keeping the obstacle attached to the strain gauge stationary minimized the uncertainty
and recalibration that would have been required if this obstacle had been moved. The upstream
distance from the obstacles to the start of the working section was always greater than 61D while

123802-7



FRANCIS H. ROBERTSON AND GREGORY F. LANE-SERFF

Mean flow
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B / 2
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D / 2

False

FIG. 3. Sketch showing the arrangement of obstacles (here with D/B = 12.7%). The darker obstacle is
mounted on a strain gauge in the center of the channel, while the lighter obstacle is moved to different positions.
A negative value of sx indicates that the drag is measured on the upstream obstacle.

the distance downstream of the obstacles to the end of the working section was always greater than
46D. There is a small gap (<2 mm) between the obstacle attached to the strain gauge and the base
of the flume. Other obstacles are in contact with the channel floor. For single obstacle experiments,
only the gauged obstacle is present.

Some preliminary experiments were conducted with a single obstacle. This was followed by
experiments with special arrangements of two obstacles (“tandem pair,” sy = 0, and “side-by-
side pair,” sx = 0) and finally experiments with a range of relative positions (“staggered”). The
conditions for these experiments are summarized in Table II.

A nominal flow rate of 0.0167 m3s−1 was used for each of the experiments conducted under
fixed flow conditions (isolated obstacle velocity, tandem pair velocity, and staggered pair drag
measurements), with uniform depth throughout the test section, and CD was computed as the ratio
of FD and FP . When measuring the drag over a range of conditions (isolated obstacle and tandem
pair drag measurements) Q, H, and S were all varied. The depth was not always uniform throughout
the entire test section but there was no change in depth across the obstacle(s). For isolated obstacles
0.0064 � Q � 0.0302 m3s−1 and for tandem obstacles 0.0087 � Q � 0.0239 m3s−1. The mean
drag coefficient was estimated from linear regression of FD vs FP . A minimum of five data points
were analyzed and R2 > 0.98 for all cases.

TABLE II. Summary of main experimental conditions for the different types of experiments.

Obstacle(s) Measurements Fig(s). IT (%) S H/D Fr Re

Isolated obstacle Velocity 4 and 9 ≈10 0.0022 4.9 0.22 11000
Isolated obstacle Drag 5 and 6 0.0007–0.0022 1.4–6.0 0.21–0.59 9500–21900
Tandem pair Velocity 7 ≈8 0.0007 3.3 0.38 16000
Tandem pair Drag 8 0.0007–0.0022 2.7–6.3 0.08–0.33 4800–16500
Staggered pair Drag 8–12 ≈8 0.0007 3.3 0.38 16000
Staggered paira Drag 8, 10–12 ≈8 0.0007 7.7 0.33 7500

a All have D/B = 12.7% except the final staggered pair set, which has D/B = 6.3%.
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FIG. 4. Normalized, temporally averaged, streamwise component of velocity on the channel centerline at a
depth of H/3 below the free surface for flow past a single obstacle with D/B = 12.7% and Re = 11000. The
results from Lyn et al. [19] are also shown.

III. RESULTS AND ANALYSIS

A. Isolated obstacles

The mean streamwise velocities on the channel centerline at a depth of H/3 below the free
surface, nondimensionalized by the velocity 10D upstream (1.0% higher than the bulk velocity),
are shown in Fig. 4 for the preliminary experiments with a single obstacle. The turbulence intensity
10D upstream is 10%. Velocities are shown both upstream and downstream of the obstacle, and
compared with the results from Lyn et al. [19]. In the present experiments, the velocity decreases
rapidly upstream of the obstacle and is negative until 2.0D downstream. The flow recovers to 90%
of its initial value by approximately 14D downstream of the obstacle. In the results of Lyn et al.,
the wake recovery is initially more rapid with the transition to positive velocity at 1.4D. However,
the wake does not appear to fully recover in the Lyn et al. experiments, at least within the zone
measured (to 8D), and appears to plateau at ∼60% of the free-stream value. It is possible that the
wake is affected by the downstream boundary conditions, while wake recovery is also likely to
be affected by the blockage ratio and turbulence intensity (in the present study D/B = 12.7% and
IT = 10%, whereas for Lyn et al. D/B = 7.1% and IT = 2%). In the present study, the wake diffuses
as it moves downstream and meets the tank boundary layer. The more complete wake recovery in
the present experiments gives confidence that our results are not strongly influenced by downstream
boundary conditions.

The drag force on the single obstacle with D/B = 12.7% was measured for a range of flow
conditions, varying the flow depth and Reynolds number. The measured force FD is plotted
against FP in Fig. 5, and the measurement uncertainty is also shown. The best fit line gives
CD = 2.11 ± 0.07 at the 95% confidence level assuming the uncertainty of the measurements is
negligible. This assumption seems reasonable as the maximum FD ∼ 2 N and the uncertainty in FD

is 0.02 ± 0.01 FD , giving a maximum value of 0.04 N (1.7%). The typical measurement uncertainty
is therefore much lower than the ±0.07 (3.3%) estimate of the maximum difference between
CD = 2.11 and the true mean. This result, together with the results for two comparable cases with
D/B = 12.7% and 6.3%, are given in Table III. These two cases represent the flow conditions used
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FIG. 5. Measured drag force on a single obstacle plotted against the expected scale for the force. The
diagonal line marks the linear regression (CD ≈ 2.1). The vertical line in the top left corner represents the
maximum measurement uncertainty in FD .

for staggered pair drag measurements and CD was determined using the same method, i.e., the ratio
of FD and FP from a single measurement. The turbulence intensity in Table III is taken as the value
which was measured at the same Q and H, with two obstacles present (see below), at 1/3 depth
from the surface and 10D upstream of the first obstacle. This is assumed to be representative of the
upstream IT throughout the free stream.

The results from the present study for the drag coefficient on a single square obstacle are
similar to those found by earlier authors (compare Tables III and I). One may anticipate that as
the obstacles in this experiment are emergent the pressure drag is accompanied by a resistance due
to the formation of surface waves, and that CD would therefore be higher in this experiment than the
values measured by other researchers. However, this is not generally true. The comparatively high
D/B in this study would also be expected to contribute to a higher CD . These effects may be offset
by the higher IT in this experiment. There are several other factors which may potentially account
for variations in CD including Re and H/D as well as differences in the experimental setups and
measurement techniques. However, from Tables I and III, the value of drag coefficient CD ≈ 2.1
appears to be relatively insensitive to these differences, when compared to the behavior of CD for
circular cylinders. For circular cylinders, the design values of CD given for structures in EUROCODE

1 [22], drop from 1.2 to 0.4 between Re = 1.81 × 105 and 3.98 × 105, and a similar trend is given
by Simiu and Scanlan [31]. Although this occurs slightly outside the range of Re in Tables I and III
(up to 1.76 × 105), this is due to separation points moving further downstream, which therefore

TABLE III. Results for drag coefficient for a single square obstacle from the present study, with blockage
corrections applied according to the methods of Maskell [11] and Ranga Raju and Singh [13].

Re IT (%) D/B (%) H/D CD CDc [11] CDc [13]

9500–21900 12.7 1.4–6.0 2.11 1.62 1.66
16000 ≈8 12.7 3.3 2.06 1.65 1.76
7500 ≈8 6.3 7.7 1.79 1.68 1.80
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FIG. 6. Root-mean-square drag coefficient of an isolated obstacle at the channel center plotted against
Reynolds number, based on the upstream hydraulic radius. The best fit (solid line) is given by Eq. (9).

does not occur for obstacles with a square cross section. The drag coefficient of square obstacles is
of the order of 2.0 for Re values higher than in Table I, e.g., between O(2 × 104) and O(2 × 106)
according to Simiu and Scanlan [31]. Considering the range of values from Tables I and III, CD

drops by 31%, which is significant but much smaller than the 67% drop observed for circular
cylinders over a narrow Re range. Furthermore, this large drop in CD for square obstacles only
occurs when IT increases by two orders of magnitude.

Blockage corrections were applied to measurements from the present study and are included in
Table III. The corrected values are in keeping with Lee’s [21] values for high IT (Table I). Maskell’s
correction [11] performs better than Ranga Raju and Singh’s [13] in collapsing drag coefficients
from the present study to a single value.

Figure 6 shows CD rms for an isolated obstacle as a function of upstream Re, defined in terms
of hydraulic radius. To extend the range of Re, additional measurements were included where the
height of the weir, downstream of the test section, was not adjusted to obtain a constant flow depth
across the obstacle (squares). These measurements are characterized by the upstream conditions
0.05 � Fr � 0.62, 1.5 � H/D � 6.3, and 0.0056 � Q � 0.0311 m3s−1. The upstream Reynolds
number, based on D, is between 2900 and 26600. The root-mean-square drag coefficient decreases
monotonically with Re, and data collapse reasonably well to a single curve suggesting that CD rms

is independent of whether the flow depth is uniform across the obstacle. An appropriate best fit
function across both data series is

CD rms = 18.4e−2.13×10−4Re + 0.241. (9)

The root-mean-square drag coefficient asymptotically approaches 0.241 at high Re, in close
agreement with the value of 0.242 obtained by Yen and Liu [4] at higher Re (1.5 × 105), suggesting
that this is a good approximation beyond the range considered here.

B. Tandem obstacle pairs

The mean centerline streamwise velocity, nondimensionalized by the velocity 10D upstream
(1.2% higher than the bulk velocity), is shown for two tandem obstacle pairs in Fig. 7, while drag
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FIG. 7. Normalized, temporally averaged, streamwise component of velocity on the channel centerline
for a tandem pair of obstacles with D/B = 12.7%, Re = 16000, and separations between obstacle centers of
(a) 2.5D and (b) 10D.

coefficients for tandem pairs with −5 � sx/D � 20 are shown in Fig. 8. The turbulence intensity
10D upstream of the first obstacle is 8%. The velocity upstream of the first obstacle and downstream
of the second is close to the isolated obstacle case, independent of sx . At close spacing the measured
velocities between the obstacles are negative. The flow shown in Fig. 7(a) (sx = 2.5D) is equivalent
to the “reattached mode” identified by Yen et al. [2], where flow reattaches on the downstream
obstacle and the downstream drag is substantially reduced. As sx increases the flow between the
obstacles recovers, reaching above 70% of the upstream value when sx = 10D [Fig. 7(b)]. This
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FIG. 8. Drag coefficient for the second obstacle in a tandem pair, positioned sx downstream of the first
obstacle (so sx < 0 indicates the drag is measured on the upstream obstacle).
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FIG. 9. Comparison of predicted and measured drag coefficients at D/B = 12.7%. The drag was measured
at Re = 16000 and the local velocity, used to compute CD

′, was measured at Re = 11000. The continuous lines
represent perfect agreement. (a) The measured drag coefficient plotted against the predicted drag coefficient.
(b) The ratio of the predicted and measured drag coefficient plotted against the normalized streamwise distance.
Dotted lines enclose an area of agreement between the predicted and measured values to within ±10%.

represents the “binary mode” flow where the velocity recovers to some extent behind both obstacles
and the downstream drag coefficient increases towards the isolated obstacle value. Yen et al. found
that at sx = 3D, CD tends to 0.5 for Re > 670. This is comparable to the values found in the present
study (at much higher Re) although CD is very sensitive to position for sx < 4D.

Figure 9 assesses to what extent the drag on an obstacle in a tandem arrangement can be predicted
by assuming it varies only because of the change in flow speed induced by the other obstacle, taking
the induced flow field as being that from a single isolated obstacle. The predicted drag coefficient
CD

′ is then the isolated obstacle CD scaled by the local square of the normalized mean streamwise
velocity component. The prediction becomes unreliable where ū (and CD) changes abruptly across
a length comparable to D, tending to underestimate the magnitude of CD . This suggests that at a
distance far enough away from the obstacle the change in streamwise speed is the primary reason
for a change in drag, but when the obstacles are closer together the nature of the flow changes,
giving a very different drag. The prediction is demonstrated to be reasonably accurate provided that
the obstacles are not too close together, as CD

′ is within ±10% of CD for x � −3D and x � 4D.

C. Side-by-side obstacle pairs

Drag coefficients on one obstacle of a pair placed in side-by-side configuration are shown in
Fig. 10. Here the drag on the obstacle in the center of the channel is shown, with the other obstacle
offset nearer one of the sidewalls. The drag coefficient is consistently higher than an isolated
obstacle at the same Re and D/B, in contrast to the work of Yen and Liu [4] who found that CD

is consistently less than the isolated obstacle value at Re = 21000 and D/B = 4% (except in the
single mode 1 � sy/D � 1.1, which is smaller than considered here). Yen and Liu [4] showed CD

was independent of Re for Re > 17000. The value of Re in the present study (for D/B = 12.7%)
is only 5.9% lower than this value, suggesting that the difference in behavior is mainly due to the
blockage ratio, as well as differences in the experiment setup, as opposed to differences in Re. The
blockage ratio is of higher importance in side-by-side configurations, as twice the effective fraction
of the cross-section is blocked. In a narrower channel, relative to D, the flow around the obstacles
is accelerated compared to the flow around the obstacles in a wide channel. Thus, obstacles in
a channel with a higher blockage ratio experience a higher drag force. This also explains why

123802-13



FRANCIS H. ROBERTSON AND GREGORY F. LANE-SERFF

0 2 4 6 8
0

1

2

3

4

sy / D

CD

12.7
6.3

D B

FIG. 10. Drag coefficient on one obstacle of a side-by-side pair. The drag is measured on an obstacle in
the center of the channel, while the second obstacle would be against the channel sidewall at sy = 3.5D (for
D/B = 12.7%) or 7.4D (for D/B = 6.3%). The position of the sidewall in each case is indicated by the dashed
lines. Reynolds number is 16000 for D/B = 12.7% and 7500 for D/B = 6.3%.

CD increases with an increase in D/B. At 6.3% blockage, after the initially constant region, CD

decreases abruptly towards the isolated obstacle value, but, as sy increases further, one obstacle is
placed closer to the flume wall so the flow is diverted towards the test obstacle and CD increases.

D. Staggered obstacle pairs

The drag coefficient on a second obstacle at a range of relative positions (−5 � sx/D � 20 and
0 � sy/D � 3.5 or 7.0) is shown in Fig. 11, while the same information is presented in the form
of contour plots of CD in Fig. 12. When sy is small, the upstream obstacle shields the downstream
one from high velocity flow, tending to reduce CD . As the obstacles are moved further apart in the
x-direction shielding is reduced and CD increases towards the isolated obstacle value, reaching 90%
of the isolated value for sx = 19D and 17D respectively at D/B = 12.7% and 6.7%.

If sy is large and sx is small, twice the effective cross section is blocked so CD is higher than
the isolated value. The maximum CD at D/B = 12.7% blockage is 3.82, compared to only 2.85
at D/B = 6.3%, and occurs with the obstacles nearly side by side, with the highest drag on the
slightly upstream obstacle at sx/D = −1. This is presumably because the flow acceleration in the
gap between the obstacles in this configuration gives a particularly low pressure at the rear corner
of the upstream obstacle, and thus a low pressure in the wake region and on the downstream face
of the upstream obstacle, enhancing the total drag force. As sx increases CD decreases towards the
isolated obstacle value, but this process is relatively slow.

A plot similar to Fig. 12 for circular cylinders at Re = 2600 was presented by Nepf [5].
Measurements were taken for 0 < sy/D < 2 and 0 < sx/D < 5, and trends further downstream
(6 < sx/D < 20) were estimated from the observed decay of wake interference. As one may have
anticipated, CD is typically much higher for square obstacles. For circular cylinders CD = 1.17
as sx/D and sy/D approach infinity, similar to the plateau in CD of tandem square obstacles at
large sx/D. However, for circular cylinders CD never substantially exceeds the isolated cylinder
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FIG. 11. Drag coefficient on a second obstacle as a function of relative position for (a) D/B =
12.7% (Re = 16000) and (b) D/B = 6.3% (Re = 7500).

value, unlike square obstacles where interference and blockage contribute to substantially higher
drag coefficients than the isolated obstacle value when sy/D is sufficiently large. The wall position
also prevents CD from tending to this value as sy increases. For circular cylinders at sx/D > 2 the
downstream cylinder drag increases as both sx/D and sy/D increase. Similar behavior is observed
for square obstacles at 12.7% blockage. At 6.3% blockage, however, CD increases with sy/D

towards a maximum value and then begins to decrease, increasing again slightly close to the wall.
The two shapes of obstacle show similar wake recovery in terms of the size of the region where the
drag coefficient is negative. For circular cylinders this occurs for sx/D < 2 and sy/D < 0.25. For
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FIG. 12. Contours of drag coefficient on a second obstacle placed at different relative positions, with
blockage ratios (a) D/B = 12.7% (Re = 16000) and (b) D/B = 6.3% (Re = 7500).
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square obstacles the drag is also negative for sx/D < 2 when they are in tandem, but the increments
of sy/D were not small enough to measure negative drag for sy/D �= 0. Drag coefficients recover
to an appreciable fraction of the isolated obstacle value at similar downstream distances, reaching
85% at 16D for circular cylinders in tandem and at 14D and 17D respectively for square obstacles
at 6.3% and 12.7% blockage.

Blockage corrections were not applied to obstacle pairs because it has been demonstrated
elsewhere that applying standard procedures with an effective blockage ratio (e.g., D/B for tandem
pairs and 2D/B for side-by-side cylinders) is not sufficient. Utsunomiya et al. [32] proposed a
modification to Maskell’s theory [11], for tandem obstacles with rectangular cross-sections, where
ε is modified in proportion to a space factor which is a function of sx/D. For staggered pairs
one could anticipate a similarly modified ε is a function of sx/D and sy/D and employ various
values to collapse the data at the two blockage ratios to a single function, assuming that Re and
H/D effects are negligible. However, this is speculative and there is not enough data, with all
other variables being equal, to verify the correction procedure is working accurately. In addition,
for nearly side-by-side arrangements both the effective blockage ratio and CD are high compared
to studies with isolated obstacles. Under these conditions, agreement between Maskell [11] and
Ranga Raju and Singh’s [13] correction methods breaks down, suggesting that at least one of the
corrections is no longer valid even for a single obstacle. An investigation of blockage correction
methods for staggered obstacle pairs is recommended for further study.

IV. CONCLUSIONS

A comprehensive and careful set of experiments has been conducted to measure drag on pairs
of square obstacles in subcritical open channel flow with parameters (Re, IT ) appropriate for
many practical applications. The drag coefficient for a single square obstacle was found to be
CD = 2.11, in agreement with earlier studies, suggesting that any increase due to blockage effects
or the formation of surface waves was compensated for by the comparatively high IT . It was also
confirmed that CD is not strongly dependent on Re (unlike the drag on circular cylinders). The
isolated obstacle CD was found to provide an estimate of the drag on an obstacle in a tandem pair
(for sx � −3D and sx � 4D) to within 10% accuracy if U is replaced by ū in the free stream,
in the absence of the obstacle under consideration, where its horizontal center would be located
(x = sx ). Thus, for distances far enough away from the obstacle the change in streamwise speed
is the primary reason for a change in drag, but when the obstacles are closer together the nature of
the flow changes, giving a very different drag. This has important implications for estimating drag
where there are a number of obstacles, as it suggests that to correctly predict the drag on downstream
obstacles it is important to accurately model the temporally averaged streamwise velocity. If the
same scaling of drag, based on the induced speed, also applies to side-by-side pairs then blockage
effects are essentially just a subset of the flow speed alterations due to the presence of the first
obstacle. A more general investigation which aims to explain drag changes, in staggered pairs or
arrays, in terms of induced speed changes is recommended for further study. The root-mean-square
drag coefficient was found to be a monotonically decreasing function of Re, based on hydraulic
radius, and approaches 0.241 at high Re in agreement with previous studies and was independent of
whether the flow depth is uniform across the obstacle.

For pairs of obstacles, the minimum CD occurred for a tandem arrangement where CD becomes
negative for the downstream obstacle. The smallest values measured were for sx = 1.5D, with
CD = −0.16 (D/B = 6.3%) and CD = −0.40 (D/B = 12.7%). The maximum CD at D/B =
12.7% is 3.82, compared to only 2.85 at D/B = 6.3%, and occurs when the obstacles are nearly
side by side on the slightly upstream obstacle of a pair. The recovery of the wake and thus drag
on an obstacle directly downstream is slow, with the drag on a downstream obstacle reaching 80%
of the isolated value for sx = 14D (D/B = 12.7%). Thus, laboratory and numerical models need
to extend at least this far in the downstream direction to accurately capture the flow. The present
study is restricted to angle of attack θ = 0°, but it is clear that θ is an important parameter which
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can greatly affect CD . As such, the influence of θ for both obstacles in a staggered pair, particularly
at 12° and 45° where the minimum and maximum CD occur respectively for isolated obstacles, is
recommended for further study, as this is important for practical applications such as wind induced
airflow past nearby buildings.

The drag values found here can be used in a number of practical applications where it is necessary
to estimate the forces on downstream structures or other bluff obstacles with similar shapes. The
results can also be used to validate numerical models, where getting accurate results for the drag
on a downstream obstacle (even for a square obstacle with well-defined separation points) is found
to be challenging. In numerous applications (such as vegetation in streams or on flood plains and
marine or riverine structures) obstacles are present in regular or random arrays, and the drag on
arrays of square obstacles is the subject of our further study.
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