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Vapor bubbles are formed in liquids by two mechanisms: evaporation (temperature above
the boiling threshold) and cavitation (pressure below the vapor pressure). The liquid resists
in these metastable (overheating and tensile, respectively) states for a long time since bubble
nucleation is an activated process that needs to surmount the free energy barrier separating
the liquid and the vapor states. The bubble nucleation rate is difficult to assess and, typically,
only for extremely small systems treated at an atomistic level of detail. In this work a
powerful approach, based on a continuum diffuse interface modeling of the two-phase fluid
embedded with thermal fluctuations (fluctuating hydrodynamics), is exploited to study the
nucleation process in homogeneous conditions, evaluating the bubble nucleation rates and
following the long-term dynamics of the metastable system, up to the bubble coalescence
and expansion stages. In comparison with more classical approaches, this methodology
allows us on the one hand to deal with much larger systems observed for a much longer
time than possible with even the most advanced atomistic models. On the other, it extends
continuum formulations to thermally activated processes, impossible to deal with in a purely
determinist setting.

DOI: 10.1103/PhysRevFluids.3.053604

I. INTRODUCTION

Thermal fluctuations play a dominant role in the dynamics of fluid systems below the micrometer
scale. Their effects are significant in, e.g., the smallest microfluidic devices [1,2] or in biological
systems such as lipid membranes [3], for Brownian engines, and in artificial molecular motors
[4]. They are crucial for thermally activated processes such as nucleation, the precursor of the
phase change in metastable systems. Nucleation is directly connected to the phenomenon of bubble
cavitation [5] and of freezing rain [6], to cite a few. There thermal fluctuations allow to overcome
the energy barriers for phase transitions [7-9]. Depending on the thermodynamic conditions, the
nucleation time may be exceedingly long, the so-called “rare-event”issue. Classical nucleation theory
(CNT) [10] provides the basic understanding of the phenomenon, which is nowadays addressed
through more sophisticated models like density functional theory (DFT) [11,12] or by means of
molecular dynamics (MD) simulations [13]. These approaches need to be coupled to specialized
techniques for rare events, like the string method [14], the forward flux sampling [15], and the
transition path sampling [16], to reliably evaluate the nucleation barrier and determine the transition
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path [17]. For many real systems they are often computationally too expensive and therefore limited
to very small domains.

Here we adopt a mesoscopic continuum approach, embedding stochastic fluctuations, for the
numerical simulation of thermally activated bubble nucleation. Since the pioneering work of Landau
and Lifshitz [ 18] several works contributed to the growing field of “fluctuating hydrodynamics” (FH)
[19]. More recently the theoretical effort has been followed by a flourishing of highly specialized
numerical methods for the treatment of the stochastic contributions [20-23]. The present model
is based on a diffuse interface [24] description of the two-phase vapor-liquid system [25] similar
to the one recently exploited by Chaudhri ef al. [26] to address the spinodal decomposition. The
thermodynamic range of applicability of this approach is subjected to some restrictions: (1) at the very
first stage of nucleation the vapor nuclei, smaller than the critical size, need to be numerically resolved;
analogously, (2) the thin liquid-vapor interface needs to be captured for the correct evaluation of the
capillary stresses; and (3) fluctuating hydrodynamics predicts that the fluctuation intensity grows with
the inverse cell volume, AV, leading to intense fluctuations, contrary to the assumption of weak noise
needed to derive the model (v/(8f2)/{f) <« 1). Notwithstanding these restrictions, where it can be
applied, this mesoscale approach offers a good level of accuracy (as will be shown when discussing
the results) at a very cheap computational cost compared to other techniques. The typical size of
the system we simulate on a small computational cluster (200 x 200 x 200, nm?, corresponding to
a system of order 10% atomistic particles) is comparable with one of the largest MD simulations
[27] on a tier-0 machine. Moreover the simulated time is here Ty,.x ~ us to be compared with the
MD Tax ~ ns. The enormous difference between the two time extensions allows us to address the
simultaneous nucleation of several vapor bubbles, their expansion, coalescence, and, at variance
with most of the available methods dealing with quasistatic conditions, the resulting excitation of
the macroscopic velocity field.

The approach we follow basically amounts to directly solving the equation of motion for the
capillary system endowed with thermal fluctuations. In order to interpret the results, a reference
nucleation theory is needed. In literature classical nucleation theory (CNT) is the standard choice
[10]. In CNT, the two phase system comprising an isolated bubble immersed in the metastable liquid
is described by the so-called sharp-interface model where, at fixed temperature, the density field is
piecewise continuous, with the density of the liquid outside and that of vapor inside the bubble. CNT
determines the size of the critical bubble, corresponding to the transition state. It may happen that the
size of the critical bubble is so small to be comparable with the physical thickness of the interface. In
such conditions the predictions of CNT can be inaccurate. In order to consider a nucleation theory
consistent with our diffuse interface approach, which takes into account the actual thickness of the
interface, a more sophisticated theory is needed. Hence, besides CNT, we will use the so-called
string method applied to the diffuse interface model to identify the critical state and the transition
path leading from the metastable liquid to the cavitated vapor. The two reference nucleation theories
will be used to interpret the results of the direct simulation of the nucleation process. In such a
comparison, one should keep in mind that the actual process we simulate is typically significantly
more complex than assumed in the reference theories. In particular, at least three effects which are
neglected in the ordinary approaches are taken into consideration by our simulations: (1) several
bubbles are simultaneously present in the system, (2) there is a dynamical interaction between the
bubbles, and (3) temperature is a field, which may fluctuate in time and space due to several reasons,
namely, the stochastic forcing itself and, more significantly, the intrinsic dynamics of the bubbles,
including expansion, compression, and latent heat release, all of which are included in our description.

The paper is structured as follows: in Sec. II we discuss the mathematical aspects of the two-
phase modeling. First, in Sec. II A we address the diffuse interface approach exploited to describe
vapor-liquid systems embedded with capillarity effects. A purely thermodynamic analysis allows us
to obtain important information about the properties of critical nuclei, in particular the critical bubble
radius and the energy barrier required for the transition from the metastable liquid to the nucleated
vapor bubble. The issue is addressed through the application of the string method [28] illustrated
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in Sec. II B. In Sec. II C we introduce fluctuating hydrodynamics in the context of the diffuse
interface approach. The model consists in a set of stochastic partial differential equations (SPDEs).
The specialist aspects are derived in full detail in Appendixes A and B, respectively devoted to a
discussion of the equilibrium statistical properties of the fluctuating field and to the specific form
the fluctuation-dissipation balance takes in the present context. Section III deals with the numerical
simulations. More specifically, Sec, III A illustrates the properties of the numerical scheme, and
Sec. III B addresses bubble nucleation results, with particular attention to nucleation rate, bubble
volume distribution and bubble-bubble interaction effects during the process. Finally Sec. IV is
devoted to our conclusions and to the open problems in the field.

II. MATHEMATICAL MODEL

A. Diffuse interface approach for vapor-liquid systems

The diffuse interface modeling adopted here has a strict relationship with more fundamental
atomistic approaches, since it is based on a suitable approximation of the free energy functional
derived in DFT [12]. It dates back to the famous Van der Waals square gradient approximation of
the Helmbholtz free energy functional

1
F[p,0]=/vde=/V[fb(p70)+§/\Vp'Vp} dav, (D

where fj is the classical bulk free energy density, expressed as a function of density p and temperature
0. X is the capillarity coefficient that controls the (equilibrium) surface tension y and interface
thickness. In particular the temperature dependent surface tension can be obtained as [12,29]

P (©0)
y(0) = / o V21 L(0,0) = fo(03%(6),0) — 1i(p,0)p + 154 (0) p3e ()] dp, 2
oy

with p, = df,/9dples the bulk chemical potential and the superscript sat denoting saturation
conditions. In this work we will compare our numerical simulations with results obtained with
molecular dynamics of Lennard-Jones (LJ) fluids; hence for a fair comparison we adopted as bulk
free energy f»(p,0) the modified Benedict-Webb-Rubin equation of state (MBWR EoS) that well
reproduces the thermodynamic properties of an LJ fluid [30]. All quantities are made dimensionless
according to p* = p/p,, 6 = 6/6,, by introducing as reference quantities the parameters of the
LJ potential, 0 = 3.4 x 107'°, m as length, € = 1.65 x 1072, J as energy, m = 6.63 x 1072%, kg
as mass, and 6, = €/kp as temperature. In the left panel of Fig. 1 we compared the temperature
dependence of the surface tension obtained through application of Eq. (2) coupled with the MBWR
EoS and some benchmark values obtained through Monte Carlo simulations. In order to reproduce
the benchmark results we fixed the value of the capillary coefficient to A* = Am?/(c7¢) = 5.224. It
is worthwhile stressing that a constant coefficient is sufficient to reproduce the correct temperature
dependence of the surface tension. Hereafter the asterisk will be omitted to simplify notation.

B. Transition path and the critical bubble

The minimization of the free energy functional (1), stating that the generalized chemical potential
e = ,ui’ (p) — AV?p must be constant and equal to the external chemical potential iy, allows the
evaluation of the equilibrium density profiles at the different thermodynamic conditions. Clearly, in
thermodynamic conditions where either the liquid or the vapor is stable, constant chemical potential
corresponds to a homogeneous phase. When the liquid or the vapor is metastable instead three
solutions at constant chemical potential are found: (1) the homogeneous vapor, (2) the homogeneous
liquid, and (3) a two-phase solution with a spherical (critical) nucleus of a given radius (vapor or
liquid in the case of bubble or droplet, respectively), the critical nucleus being surrounded by the
metastable phase.
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FIG. 1. Leftpanel: Comparison between the temperature dependence of the surface tension obtained through
Eq. (2), when using the Lennard-Jones EoS [30], and the benchmark data provided at Ref. [31]. The value of the
capillary coefficient is fixed to Am? /(0 €) = 5.224. Right panel: Density profiles of the critical nuclei, evaluated
with the string method, at different thermodynamic conditions of the metastable liquid.

Dealing with nucleation, the nontrivial solution of case (3), p(r) = pcrit(r) where the critical bubble
is surrounded by the metastable liquid at p = p[™', 0 = and p.(p{"*,0) = u™* is particularly
significant. The solution p(r) = p.ic(r) is found by solving the nonlinear Euler-Lagrange equation
of the functional 1, which, in spherical coordinates and at fixed temperature, reads

_ 0 d
wb(p.0) — i—( 2—”) = pmet, 3)

r2 or d or

The critical bubble, p.(r), is an unstable solution of Eq. (3), which requires specialized numerical
techniques. In this work we applied the powerful string method [28], which, as a by-product, identifies
the transition path joining the metastable liquid to the cavitated (stable) vapor. The transition path
can be visualized as the continuous sequence of density configurations, p(r,«), the system assumes
when transitioning from the metastable to the stable state, where « is a suitably defined parameter
along the path. The distance between two configurations is expressed as

Al — /% / AP2(r)dV @)

and defines the arclength along the path. The discrete form of the path, consisting of a finite number
of configurations, is called the string. The string method numerically approximates the transition path
starting from an initial set of N, configurations {,0*()}, which form the initial guess for the discretized
transition path. The head of the string (k = 1) is initialized as a uniform density field corresponding
to the uniform metastable liquid p(r) = p''; the tail (k = Ny) is initialized as a guessed tanh-density
profile adjoining the liquid and the vapor density to approximate a vapor bubble. All the intermediate
images on the string are obtained by interpolation of these two density fields with respect to the above
defined arclength. The algorithm used to relax the string to its final configuration corresponding to the
actual transition path follows two steps. (1) All the images p*(r) are evolved over one pseudo-time

step At following the steepest-descent algorithm

9 a0
2B pmer [Mf(p) — ——(rz—p>]- o)

ar r2 or ar

(2) The images are redistributed along the string following a reparametrization procedure by equal
arclength. The algorithm is arrested when the string converges within a prescribed error.

053604-4



THERMALLY ACTIVATED VAPOR BUBBLE NUCLEATION: ...

TABLE I. Comparison between CNT and the string method applied to the diffuse interface model. Critical
radii and (Landau) free energy barriers A2 for bubble nucleation from the liquid. The discrepancy close to the
spinodal and at higher temperature are well known from the literature.

2 ppe R, RENT 29/, aa
1.25 0.45 12.04 8.07 2.99 12.89
1.25 0.46 11.16 8.42 11.21 14.05
1.25 0.47 11.85 9.17 22.81 16.67
1.25 0.48 14.18 10.64 43.5 22.41
1.20 0.51 8.28 6.35 19.20 18.13
1.20 0.52 8.79 6.93 33.58 21.60

The density profile of the critical nucleus, plotted in the right panel of Fig. 1 at different metastable
conditions, allows the evaluation of the critical radius, by following the relation [32]:

oo
/ r(dpe/dr)*r dr
R. = " , (©)
/ (0pe/0r)r? dr
0
and the evaluation of the energy barrier
o0
AQ = f { Lo = £ (pP) = ™ [pe(r) = ]} dr, )
0

defined as the difference in grand potential €2 between the critical nucleus and the metastable liquid.
The results of the string method are compared in Table I with those obtained by CNT, which

~——CNT
yields the estimate A2 = 4/37y R?. The data show that CNT underestimates the energy barrier
at high temperature while it overestimates it near the spinodal [33].

C. Fluctuating hydrodynamics: The Landau-Lifshitz—Navier-Stokes model embedded with capillarity

The deterministic time evolution of the two-phase, vapor-liquid system obeys mass, momentum,
and energy conservation. The thermodynamic considerations of Sec. II A embed capillary effects
in the equilibrium model. Following the procedure of nonequilibrium thermodynamics [34], which
can be nowadays considered a standard approach, the description is straightforwardly extended to
dynamic conditions. New stress and energy flux contributions arise from the capillary term in the
free energy [Eq. (1)]. In particular (see Refs. [29,35] for the detailed derivation) the stress tensor
reads

A 2
T = |:—p+ 5|Vp|2 +ApV - (wp)}l —AVp ® Vp+u[(Vu+VuT) -3V -ul}, (8)

with p = —p%3(f»/p)/3p = fy» — u’p the pressure and u the dynamic viscosity. The energy flux
entering the energy equation is augmented with a capillarity term which adds to the standard Fourier
contribution,

q =XxpVpV - -u—£kVo, ©))

with k the thermal conductivity.

Thermal fluctuations needs to be included in the classical hydrodynamic equations in order to
describe fluid motion at mesoscopic scale. Based on phenomenological arguments, the theory of
fluctuating hydrodynamics was originally developed by Landau and Lifshitz [18] to be later framed
in the general contest of stochastic processes [19]. Landau and Lifshitz’s original idea was to treat the
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thermodynamic fluxes, namely, stress tensor and energy flux, as stochastic processes. As prescribed
by the thermodynamics of irreversible processes at a macroscopic level, thermodynamic fluxes are
the expression of microscopic molecular degrees of freedom of the thermodynamic system. Under
this respect dissipation in fluids can be seen as the macroscopic manifestation of the energy transfer
arising from random molecular interactions. Thus at mesoscopic scale, thermodynamic fluxes have
to be modeled as stochastic tensor fields, whose statistical properties can be inferred by enforcing
the fluctuation-dissipation balance (FDB). The detailed derivation of the stochastic contributions is
postponed to Appendices A and B. Here we summarize the main aspects of the model. The stochastic
evolution of the system is described by the conservation laws of mass, momentum and energy,

ap
~ 1 V. =0,
8t+ (ou)
d
oFE

¥+V'(UE)= V-E-u—q+V-(6X-u-dq),
where u is the fluid velocity, E is the total energy density, E = U + 1/2p[u|> + 1/24|V p|?, with
U the internal energy density. In the momentum and energy equations, ¥ and q are the classical
deterministic stress tensor and energy flux, respectively, defined in Egs. (8) and (9), while the terms
with the prefix § are the stochastic parts, required to satisfy the FDB. Enforcing the fluctuation-
dissipation balance, the covariance of the stochastic fluxes follows as

(62(2,?)@627()?,?)) =QF¥8(% —H)8(F — 1), (11)
and
(8q(2,1) ® 8¢ (x,1)) = QI8(% — X)8(F — 1), (12)

where Qzaﬂm = 2kpO 1u(8ev0py + Sandpy — 2/384pdyy) and Qg = 2kp02k8,p, with kp the Boltz-
mann constant. Thanks to the Curie-Prigogine principle [34], the cross-correlation between different
tensor rank fluxes vanishes, i.e., ((8qf(%,7) ® §=(%,7)) = 0).

Even in equilibrium conditions, thermal noise forces the different fields to fluctuate. The complete
(equilibrium) correlation tensor Cx (F,F) = (A(F) ® AT(f')), with the field fluctuations organized in
a five-component vector A(r) = {§p(r),éu(r),66(r)}, is found to be (see Appendix A)

Cspsp 0 0
CA(t,F) = 0 Csusu 0 |, (13)
0 0 Csoso
with

kz6o c
Cipsp(B.F) = ———— —1f—F, | —L |, 14
sp3p (T, T) YT It —F| o (14)

kg0
Csusu(®,F) = %Im - F), (15)
Lo kgl

Csoso(B,F) = ——28(F — ). (16)

PoCy

In these equations py and 6, are the equilibrium density and temperature, respectively, 02T = adp/aplr
the isothermal speed of sound, and ¢, the specific heat at constant volume. It is worth noting that the
spatial correlation of density fluctuations arise from the long range capillary interactions and is not
spatially é-correlated as usual in simple fluids [36].
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FIG. 2. Left panel: Static structure factor comparison for a capillary fluid in a 3D system. We report the
relative error e = |S; — S;|/S; between the theoretical prediction and numerical calculation for each wave
numbers k,,k,,k, in the Fourier space. Right panel: Error of the density variance at different simulation time
steps. As expected, the error follows a square power law e o< Az2.

III. RESULTS AND DISCUSSION

A. Stochastic pde’s and numerical integration

System (10) has been discretized in the spirit of the method of lines, which consists of two
stages: spatial discretization and temporal integration, respectively. Concerning spatial discretization,
the different physical phenomena described by the LLNS system ask for specialized numerical
techniques. A crucial point is the correct reproduction of the statistical properties at the discrete
level [37], consistency with fluctuation-dissipation balance in particular. Equations (10) have been
discretized on a uniformly spaced staggered grid, following Ref. [20]. Due to staggering, scalar fields,
e.g., density, are located at the cell center, while components of vector fields in a given direction are
located at the center of the perpendicular face.

The numerical scheme has been validated by comparing the numerical equilibrium static
correlations with the theoretical ones in the discretized equations. Here we report the comparison
of the density static structure factor, which is the Fourier transform of the static correlation function
Cspsp in Eq. (14). In the discrete limit, the theoretical static structure factor reads

kg6
Si(ka) = 0B (17)
CT+p0)»kd~kd
where
in (k, Ax/2)7? in(k,Ay/2)7? in (k,Az/2)7*
Ky - kg = sin (ky Ax/2) N sin(kyAy/2) N sin (k,Az/2) 18)
Ax/2 Ay/2 Az)2

is the discrete version of the square norm of K, arising from the discrete Laplacian operator in
Fourier space [26]. The numerical estimate of the density structure factor is calculated, following its
definition, as

Sy(ka) = (8p(ka)dp™(ka)), 19)

where dependency on the wave number implicitly denotes Fourier components.
As shown in the left panel of Fig. 2, numerical results are in very good agreement with the
theoretical prediction. In particular the relative error e is almost everywhere less than 2%—3% in the
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TABLE II. Numerical temperature and velocity variances in comparison with theoretical values.

Variances Theoretical prediction Numerical value Error %
(8u?) 1.3333 x 107 1.3332 x 10~ 0.01
(6u§) 1.3333 x 10~* 1.3331 x 107* 0.02
(8u?) 1.3333 x 10~* 1.3335 x 10~* 0.02
(86%) 5.8361 x 1073 5.8443 x 1073 0.15

field, except for the small wave numbers, due to the slow convergence of low wavelength modes [26].
Nevertheless, even in the latter case, the relative error is less then 10%. As a second test, we compared
the variance of velocity and temperature fluctuations. In particular, the velocity fluctuations must
reproduce the celebrated equipartition theorem, here reported in the discrete version:

k56
Su - du) = , 20
(6u - Su) AV (20)
kp6?
862 0 21
(607) AV 21

The values reported in Table II clearly show a perfect matching between numerical results and
theoretical expectation.

As a last test, we validated the accuracy of our time integration method. We performed the time
evolution by means of a second-order Runge-Kutta scheme [21]. We compared the numerical error,
e, on the variance of density fluctuations (8p(x)?) at different time steps At with respect to (§p (x)z)opt
obtained with our finest integration step At = 10™*:

[(8p(%)*) — (80(%)*) opt

= , 22
¢ 6000 )on (22)

where the average is evaluated as 1/(TV) fOT fv 8p(x)? dV dt with the time window T fixed as
T = 100 LJ units. The right panel of Fig. 2 clearly shows the expected power law, e ox Az?.

All these tests ensure that the numerical scheme correctly reproduces the statistical properties of
the system, i.e., the fluctuation-dissipation balance is preserved in the discretized equations.

B. The dynamics of vapor bubble nucleation

Bubble nucleation is investigated in a metastable liquid enclosed in a cubic box with periodic
boundary conditions, with fixed volume, total mass, and energy (NVE). The equation of state (EoS)
we use, which can be chosen freely among available models, e.g., van der Waals or IAPWS [38]
EoS for water, corresponds to a LJ fluid [30] to allow direct comparison with MD simulations. The
system volume V = 600° has been discretized on a uniform grid with 50 cells per direction. After
a convergence analysis we found that the chosen grid size, Ax = 12, is sufficient for a reliable
simulation in these thermodynamic conditions. Moreover, because of the extension of the simulated
domain 10 runs for each condition, with different values of the seed employed to generate random
numbers, provide a well converged statistics.

Among the different conditions we have investigated, we mainly focus here on the initial
temperature 6y = 1.25 at changing bulk density to explore the corresponding metastable range
PL € [Pspins Psar] = [0.44,0.51], where oy, and pgpi, are the saturation and spinodal densities,
respectively. A few snapshots of the evolution for two different initial conditions are shown in the
left panels of Figs. 3 and 4. Starting from a homogeneous metastable liquid phase, the fluctuations
lead the system to spontaneously nucleate vapor bubbles. The nucleii start out with a complex, far
from spherical, shape; see, e.g., Ref. [13]. Roughly, when they happen to reach a size larger than
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FIG. 3. Leftpanel: Bubble configurations along nucleation (p = 0.46, 6, = 1.25), from lefttorights = 400,
t = 2000, ¢+ = 25000. Animation is available in the Supplemental Material [39]. Right panel: Bubble number
evolution (red symbols) and number of coalescence events (blue line).

critical they typically expand. Eventually, after a long and complex dynamics where bubbles expand
and coalesce, stable equilibrium conditions are reached. The existence of such equilibrium is due
to the constraint on volume and mass of the system. Note that, most often, nucleation is addressed
in the grand-canonical ensemble, where volume and chemical potential are specified. The eventual
configuration is characterized by several vapor bubbles in equilibrium with the surrounding liquid.
The case at p;, = 0.46, the closest one to the spinodal we considered here, is the most populated,
as seen in Fig. 3 compared with Fig. 4. This system has a barrier lower than those further from the
spinodal (see Table I), hence it nucleates faster. The initial (metastable) thermodynamic condition
also influences the number and typical dimension of the bubbles in the final stage, the right panels
of Figs. 3 and 4 providing the bubble number N, as a function of time.

A tracking procedure has been put forward to follow the evolution of the distinct bubbles. By
monitoring bubble volume, mass, center of mass, and its velocity, the tracking algorithm allows for
detecting coalescence events. The actual number of collisions between bubbles N evaluated at
each time step is characterized by a highly discontinuous fingerprint. We smoothed the curve with
a Gaussian kernel with standard deviation of order 50 time units to extract more robust indications.
The time evolution of the bubble number N, Figs. 3 and 4, presents three main phases: (1) the initial
nucleating phase—when N, grows linearly with time (i.e., at a constant nucleation rate); (2) the
collapsing phase during the first part of the expansion stage—characterized by a rapidly decreasing
number of bubbles mainly due to collapse; and (3) a slowly expanding phase characterizing the
long-time dynamics of the multibubble system. The smoothed number of collisions N, plotted
with the blue line in the figures, shows a strong correlation with the number of bubbles throughout
the nucleating phase and the collapsing phase. Nucleating and collapsing phases are characterized by

Nb
N, fit  Joos
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(a) (b) (© o 3
| Joos
. Do %
O 8 , e :
N ) f S Y - N D 002
Te ol
? Y . Vs L L L . 0
150000 200000 250000

50000 100000 t

FIG. 4. Same as Fig. 3 at p = 0.48, 6, = 1.25. Snapshots taken at t = 2000, ¢+ = 11000, r = 230000. The
bubble number vs time in the right panel is fitted by the dotted red line for better readability.

053604-9



GALLO, MAGALETTI, AND CASCIOLA

t=15000
————— t=25000
t=34000

e 125000

~ B Histogram

V)

x107
s
/ g
I I \ 2
R | (| | T N
. L

x10

I"I‘I‘I‘I—I—I—LLLLlJ 4. |x105
1 2 3 4

v

FIG. 5. Left panel: Volume history of the bubbles surviving the entire simulation (o = 0.46 and 6, = 1.25).
Intense coalescence events, characterized by a sudden volume jump, are identified in the red curves. The
corresponding volumes are shown by the red dots in the inset providing the V — V. scatter plot, where V. is
the volume acquired by coalescence. The largest bubbles experienced intense coalescence events. Right panel:
Probability distribution function f(V') of the bubble volumes during the nucleation, at different times (6, = 1.25,
p = 0.46, critical volume V, = 4445).

a competing-growth mechanism [40] due to the constraints of constant mass and volume, explaining
the high number of supercritical bubble collapses. The coalescence events start being less and less
probable during the slowly expanding phase. The inset of the Fig. 3 zooms into this phase showing that
isolated collision events still occur, contributing to important acceleration toward the final equilibrium
condition.

The volume history of the distinct bubbles (in particular those survived up to the last time
investigated) have been plotted in the left panel of Fig. 5. Among the different bubble evolutions,
we highlight in red the volume histories of those bubbles that experienced intense coalescence
events, characterized by a sudden increase in volume. It is apparent that the larger bubbles gained
a substantial part of their volume by coalescence. To substantiate this impression, for each bubble
in the last configuration, the sum of the volumes acquired by coalescence throughout the whole
evolution, V.., was calculated in the inset of left Fig. 5. The present mesoscale approach allows us
to access the statistics of bubble dimensions. The probability distribution function of bubble volumes
f(V)is plotted in the right panel of Fig. 5. During both the nucleating and collapsing phases the pdf
is sharply peaked at small volumes, of the order of 2—4 V.. The successive bubble expansion phase
is substantially slower and calls for a much longer observation time to detect a significant growth
(green dash-dotted curve at ¢+ = 34 000). The intense coalescence events explain the presence of the
second peak in the pdf at very large volume (black curve in the inset on the right panel of Fig. 5 at
t = 163760).

The initial nucleating stage, where the bubble number increases linearly, gives access to the
nucleation rate J in terms of bubbles formed per unit time and volume. It is here calculated as
the slope of the linear fit to the curves of Figs. 3 and 4 near the origin. The results are plotted in
Fig. 6, which also provides a direct comparison with some MD simulations [13,41]. The values
agree comfortably well with molecular dynamic simulations in the NVE ensemble. As is common
in literature, the present results are compared also with CNT prediction for the nucleation rate,

~——CNT
Jont = np /2y /mm exp (—AQ /kp8), where n is the liquid number density. The expression
of the energy barrier was already explicitly given in Sec. Il B while the preexponential factor is
taken in the classical form proposed by Blander and Katz [10] and already used in Ref. [13] as a
reference for a large number of MD simulations. It is worth noting that the energy barriers estimated
from CNT and from the string method (Table I) are strongly based on the assumption that only a
single bubble can nucleate. As already discussed when commenting on the coalescence events, in
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FIG. 6. Left panel: Comparison of the nucleation rate obtained via FH simulations (red squares at 6, = 1.25

and blue squares at 6, = 1.20) with respect to CNT predictions (green circles at §, = 1.25 and purple circles
at 6p = 1.20). The inset shows the comparison with other authors. Right panel: Time evolution of the number
of supercritical bubbles N, and the total collapsed supercritical bubble N, up to time instant . The number of
bubbles is rescaled with the maximum number of bubble observed during the simulation, Ny, Which correspond
to Nmax = 458 in the thermodynamic condition with p, = 0.46 and N,,x = 52 in the case with p;, = 0.48. The
time is shifted and rescaled in such a way that all the curves start when the first bubble appears, at t = ¢,, and
finish when N, is reached, at t = f,y.

the thermodynamic conditions we studied the effects of bubble-bubble interaction are instead crucial
to understand the full dynamics of the bubble evolution. In particular, the conditions assumed in
our present simulations and in the MD simulations used for comparison correspond instead to given
system volume, energy, and mass—the NVE ensemble—and the system is free to simultaneously
nucleate several bubbles. The consequence of fixing the mass of the system is that the larger is
the overall volume of the different bubbles that are simultaneously nucleated the more the liquid is
compressed. As aresult the nucleation process is discouraged. To further substantiate the importance
of this point we evaluated the number of collapsed bubble after crossing the critical size. The total
number, up to the current time, is plotted in the right panel of Fig. 6 labeled as N,. If no collapse
occurred, the total number of bubbles in the system would have been Ny = Np, + N, and the rate
would have been larger by roughly a factor 15.

IV. CONCLUSIONS

In conclusion, the FH approach together with a diffuse interface modeling of the multiphase
system have been exploited to study homogeneous nucleation of vapor bubbles in metastable
liquids. We evaluated the nucleation rate and compared it favorably with state-of-the-art simulations.
Concerning the comparison with classical approaches, CNT, and the string method for the diffused
interface model, we found that the simultaneous nucleation of several bubbles has a strong effect
on the nucleation rate, which is found to be altered with respect to the above single-bubble
models. The present technique has revealed extremely cheaper with respect to MD simulations,
allowing the analysis of the very long bubble expansion stage where bubble-bubble interaction and
coalescence events turn out to determine the eventual bubble size distribution. The accurate results
and the efficiency of the modeling encourage the exploitation for more complex conditions, e.g.,
heterogeneous nucleation and multispecies systems, and could pave the way for the development of
innovative continuum formulation to address thermally activated processes.
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APPENDIX A: STATIC CORRELATION FUNCTIONS

The static correlation functions of a thermodynamic system in equilibrium can be evaluated from
the entropy deviation AS from its equilibrium value Sy. For single-component systems AS can
be expressed as a functional of fluctuating fields of mass density, §p(x,t), velocity, du(x,?), and
temperature, §60(X,?),

AS =S — 8y = AS[ép,6u,80] = / [s(x,t) —s0]l dV, (A1)
14
where the integration is over the system volume V, s(x,?) is the entropy density per unit volume,
and sy is its equilibrium value (i.e., Sy is the entropy maximum). The actual entropy maximum must
respect the constraint of given total mass (M) and given total energy (E)y), if we are interested in the
study of closed and isolated systems. Hence the correct functional to be maximized at equilibrium
is the constrained entropy A S, expressed as

ASC=AS+k1(M0—/ ,odV>+k2(Eo—/ edv), (A2)
14 1%

where k; and k, are the two Lagrange multipliers. In order to describe the two-phase liquid-vapor
system we adopted the Van der Waals square gradient approximation of the free energy functional,
Eq. (1), that we here repeat for the reader’s convenience:

1
Flp.0] =f dV[fh(p,9)+ >AVe- Vp}, (A3)
\4

where f} is the classical bulk free energy density and X is the capillary coefficient, controlling both
the surface tension and the interface thickness. The entropy functional S is related to the functional
derivative of the free energy with respect to temperature

a6

where the second equality holds if A does not depend on temperature, and the last identity follows
by the classical definition of the bulk entropy density s;. Thus the constrained functional expressed
in Eq. (A2), reads

S[p,@]zf —%dV:/ —a—fdezfsb(p,O)dV, (A4)
\%4 14 \%4

1
ASczASb—i—kl(Mo—/pdV)+k2<E0—U—/ zpu-udv>, (AS)
\%4 14

where the internal energy functional U is defined in terms of free energy as
SF 1
U= F—/dVEH =/ dV|up(p,0)+ EkVp~Vp , (A6)
v

with u;, = f, — 09f,/06 the bulk internal energy density. The two Lagrange multipliers k; and k;
are calculated by imposing that the first variation of the functional in Eq. (AS) evaluated in the
equilibrium state must be zero:

8AS:[p0,0,60] = 0. (A7)

The above equation leads to k; = —p.0/60, ko = 1/6p, where p. o is the equilibrium chemical
potential, and uf = dfp/0p is the bulk chemical potential. For small fluctuations, the entropy
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functional can be expanded in a Taylor series around the equilibrium value, with respect to the
variables U = (p,Vp, ..., V'p,0,u)7, as follows:

ASc=/ Asc(p,Vp,....,.V'p,0,u)dV
14

1 3%As
SU;: + ZGUBU (SU(SU + . (A8)

All terms appearing in the right hand side of Eq. (A8) can be expressed in terms of suitable
thermodynamic coefficients and of the fluctuations of density, temperature, and velocity, e.g.,

0

1 0
ds, = —duy, — ﬂd,o, duy, = pc,dd + | —i—@ﬁ dp,
0 0 ap |y
10
dpy = Ldp+ (=L —2)ao, (A9)
padi, p

where ¢, is the specific heat at constant specific volume, ¢z the isothermal speed of sound, p the
pressure.

Assuming that the fluid is very close to equilibrium and the fluctuations are small with respect to
the mean value, the entropy functional can be approximated by a quadratic form in the fluctuating
fields:

1 :
AS, ~ — /dV[ Cro 502 — 5p(V28p) + P5u. su4 28 0592} (A10)
2.Jv " Lbopo 6o 05

For future reference, it is worth expressing the above integral as

1
AS, ~ ——/ /dedV,}{SV(X)@(Xx —X)-6v(X)
2y Jy )

c2

+8,0(x)[ 10 §(x — %) — iv25(x - x)i|8,0(x) +560(x )p0 w0

S(x — x)(se(x)} (Al1)
0

where integration by parts is used twice to move the Laplacian V? from the density to the Dirac delta
function. Eq. (A11) can be rewritten in the operator form

1
AS. = —5/ AHAAV, (A12)
14

where A = (§p,6u,580) is the vector of the the fluctuating fields and H is a diagonal, positive definite
matrix operator

') = (HA)(x) = / HXx,X)AX)dV; = / ﬁ(X)S(X —X)ARX)d Vx4, (A13)
v v
where
2
A
. o _Zg2 o 0
R Hspsp 0 0 Bopo B P
Hx )= 0 I 0 |= 0 9—01 0 (A14)
0 0 Hjgs0 O pocwo
0 0o A%
6%

involves differential operators and I, the 3 x 3 identity matrix. Note that, indeed, the Laplace operator
—V? appearing in the first line, which is in general non-negative, is strictly positive under the
constraint of mass conservation since the mean spatial density fluctuation is identically zero.
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Under these assumptions the more general probability distribution functional for the fluctuating
fields A,

1 AS,
Pey[A] = 7 &P < ) (A15)
kg

can be rewritten by using the second order approximation, Eq. (A12),
1 1
Pe[A] = exp< 7 / AWAdV) (A16)
B

which can be factorized since H is diagonal,

Peq[A] = PSp[(Sp]PBu[au]PS(J [59]a (A17)
with
1
Ps, = ——exp / /dx dx’ 8p(X)Hsps5p0(x — X Nop(x’ ) , (A18)
Zsp L 2kB
1
Psy = —exp / /dx dx'su’” (x) Hsusud(x — X)Su(x’) |, (A19)
Zsu 2k3
1
Py = —exp / / dx dx'80(x) Hspse8(x — X' )30 (x’ ) , (A20)
Zso kg
and is normalized by the constant Z:
1 .
7= / D38pDSuDS6 exp (—i/ ATHA dV) = ZspZsuZso. (A21)
B Jv

The generic correlation function

1 1
Cax) = (A®AT) = 7 / DSpDSuDSOA ® AT exp |:k_

/ As(ép,éu,&@)dV} (A22)
B JV

can now be evaluated in closed form by integrating Gaussian path integrals. To this end it is helpful
to resort to the characteristic functional [42] of the pdf, which, for a generic process X (x), is

D[x] = / DX P[X]exp |:/ X(x)X(x)de:|. (A23)
For a Gaussian process governed by the pdf
P[X]= % exp [/ —%X(X)A(X,f()X(i)de dVi]
the characteristic functional reduces to
Plx] = / DX exp [—% / / dXdXX(R)AXXX(X) + / X(ﬁ)X(ﬁ)dﬁ:| (A24)
and is easily evaluated by completing the square as
P[x] = P[0]exp |:% / / dx dix(f;)G(f(,i)X(i)}, (A25)

where

GR,%) = A7 '&,%). (A26)
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We stress that A is the kernel of an operator A, e.g.,
'=AA = TI'(x) = / Ax,X)AX)d Vy,
1%

such that A~! should be understood as the kernel of the inverse A~!. As is well known, the two-point
correlation can be written in terms of the characteristic functional as
1 1) 1)

Cxx(%.%) = (XR)X (X)) = [m 5x(%) 8x(®)

In the present case, Eq. (A16), the kernel of the operator A is given by

43[)(]] = G(X,X). (A27)
x=0

1 A
AR,X) = —HSE —X), (A28)
kp
implying the equation
1 N .
/A(X,X”)G(x”,x')dv = f HS(x — x")G(x",x)dVy = Us(x — x'), (A29)
B
which, written in terms of operators, corresponds to the equation AA~! = U, with U the identity
operator on the space of fluctuations, and U is the identity matrix acting on the five-dimensional

tangent space at a given position X, A(X) = (6p(x),6u(x),5660(x)).
In particular, since the matrix H is diagonal, the §p,50 component of the above equation is

fA ( //)G ( " /)dV 1 C%" A V2 5( H)
X, X X ,X X! = — - — X — X
R o0 kp bopo 6 "
Gspsp(x",X)dVyr = 8(x — X). (A30)
After integration by parts, Eq. (A30) reads
2
‘T . Ao . o . o
Gipsp(X,X) — —— Vi Ggps5p(X,X) = 6(X — X). (A31)

Ookp

The solution (the Green’s function for the Helmholtz equation), is formally written as

Bopoks

kg pofo PUSEE)

Gspsp(X,X) = fdkm ) (A32)
whose inverse Fourier transform yields
Gspsp(R,X) = Cspso(X,X) (A33)
— (@) = —E e [ —x—x, /<L |,
4T )X — X| PoA

where we have recognized that G = Cx [Eq. (A27)]. The same procedure can be used to reconstruct
the entire correlation tensor Cp = (A ® AT) [Egs. (13)-(16)].

APPENDIX B: FLUCTUATION-DISSIPATION BALANCE

To correctly modeling the stochastic tensor § % and heat flux ¢ we need to recall the fluctuation-
dissipation balance (FDB). The system of conservation laws [Eqs. (10)] can be formally rewritten
with a more compact notation as

ou

E:N[U]—i—f, B
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where the components of the generic vector U are the conserved fields U = {p,pu,E}, N is the
deterministic nonlinear operator, and f the stochastic forcing to be determined. In particular f(x,7)
is a Gaussian vector process whose correlation is

(f(x,0) @t(%,1)) = QE,$)d(t — 1), (B2)

with Q(¥,X) a matrix depending on ¥ and X. Note that delta correlation in time is explicitly assumed.
The stochastic forcing f is related to a standard Wiener process Wdt = dB by the linear relationship

f = KW, (B3)

where W = {W,,,WU,WQ}T, with W, = (Wux,Wuv,WuZ)T is a Gaussian delta correlated process
characterized by the correlation

(W(E.0) @ W(3.t)) =18(5 — 93t — 1), (B4)
with I a (5 x 5) identity matrix in the space of W. Finally the linear operator K takes the form
0 o0 0
o = 0
K= 00 - (BS)
0o 0 -
LoCy

with oy a 3 X 3 matrix whose components are linear operators, to be determined as yet. Enforcement
of the fluctuation-dissipation balance will allow to identify the linear operators, o, and oy, appearing
in Eq. (BY).

The system of equations (B1) can be linearized around the mean solution {p,0,6},

A =LA+, (B6)

where L is the linearized Navier-Stokes operator with capillarity

0 —poV- 0
C%V+WV2 “<V2+1VV) L3y v
L=1 p PN 3 o |- (B7)
0 — 2 3pV- v?
PoCy PoCy

and A = {§p,éu,560} the vector of fields fluctuations. Please notice that the energy equation has
been rearranged in terms of temperature evolution to make it simpler to manage. Such linearization
provides a set of stochastic partial differential equations, whose equilibrium (statistically stationary)
solution is a set of Gaussian fields.

The solution of Eq. (B6) is formally expressed as [43]

t
A(x,t) = / TI(s)ds + €Y Ay, (B8)
0

where the last term which keeps memory of the initial conditions vanishes for large times.
Consequently the equilibrium correlation is

t n
(AF, )@ Af(&,0) = / MTIQ M g, (B9)
0

where Q was introduced in Eq. (B2) above. The above integral can be performed in closed form
assuming the existence of a Hermitian nonsingular operator E~! such that the operator Q can be
decomposed as

Q=-LE'—E'Ll (B10)
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With this position the integrand appearing in Eq. (B9) is the exact derivative with respect to the delay
time 5 of eX(~9E~! L= Hence Eq. (B9) leads to

lim (A @ ATYy = E™! = C,, (B11)

—>00

and the operator E~! exists indeed and coincides with the correlation matrix C 4, defined in Eq. (13).
Given the expression for Q, Eq. (B10), and the identity E~! = C,, it follows

Q = —(LCa + CAL") = M + M) = 2k;0, (B12)

where M = —L.C, and O can be recognized as the Onsager matrix. Relationship (B12) is the form
the celebrated fluctuation-dissipation balance takes for the present system.

The unknown operators o, and oy can be finally identified by substituting Eq. (B3) in Eq. (B2)
and applying the FDB, Eq. (B12),

Q(E,2)8(r — 1) = K(IWWHK' = 2kz08(r — 1), (B13)

hence
KK' = 2k;0 = —(LCa + C,LH) =M + M'. (B14)
The matrix M can be obtained by substituting the expression for L given in Eq. (B7), and for the

correlation matrix C, from Eq. (13), resulting in

0 nmip 0
M= |my myp myl|, (B15)
0 m3p my3

whose entries are

mip = my = kO VI(x — X), (B16)
k63 .
my3 = m3z = ——0ppVI(x — X), (B17)
PoCo
kg0 1
my, = —%(Ivzﬁ-gV@V)(S(X—f{), (B18)
0
kp62k
my3 = —— - V25(x — %), (B19)
OCv

Thus, the sum of M with its hermitian conjugate M' provides

0 0 0
M+M =KK'=[0 2m», 0 |. (B20)
0 0 2VI133

In order to find an expression for K consistent with the FDB, the system of equations (B20) must be
satisfied component-wise, so that

090, = —2kpO2k V38R — ), (B21)

1
0w ® o = 210k <IV2 + §V ® V)z?(f( —X), (B22)
providing an explicit expression for the stochastic fluxes

-1 .
83 = 2110kg0o Wy — gw/2Mk39 Tr(W)I, (B23)
8q = \/2kkp62W,. (B24)
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In Eq. (B23), Wu =[Wy+ W] / /2 is a stochastic symmetric tensor field, and Wy is a
stochastic vector, with the following statistical properties:

(W op R DWH5(R,1)) = 84y 8p58(% — )8 — 1), (B25)

(WO DHWEp(%,D)) = 8ap8(% — )8 — ). (B26)

It is straightforward to show that expressions (B23) and (B24) are consistent with Eqs. (B21) and
(B22), in fact,

(caWaWa)) = (Vi - 8qR.0)Vx - 8q(X.1)) = —2kp03k VSR — X), (B27)

. 1
(0, Wy @ W,lal) = (Vi - 8Z(R,1) ® Vi - 8Z(X,1)) = —210kpbo <IV2 + 5V ® V)S(ﬁ —X).

(B28)
Moreover, by means of the FDB, the covariance of the stochastic process reads

($X(x,f) ® §X1(%,1) = Q¥8(& — X)8(F — 1), (B29)

with
Q% apun = 2kBO 14 (8ar8y + 8andpu — 38apdin), (B30)

and
(3g(%,1) ® 8¢"(%,1)) = QI8(% — 0)8(f — D), (B31)

with
Q%p = 2kp0°kSqp. (B32)
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