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Locomotion in Stokes flow is an intensively studied problem because it describes
important biological phenomena such as the motility of many species’ sperm, bacteria, algae,
and protozoa. Numerical computations can be challenging, particularly in three dimensions,
due to the presence of moving boundaries and complex geometries; methods which combine
ease of implementation and computational efficiency are therefore needed. A recently
proposed method to discretize the regularized Stokeslet boundary integral equation without
the need for a connected mesh is applied to the inertialess locomotion problem in Stokes
flow. The mathematical formulation and key aspects of the computational implementation
in MATLAB® or GNU Octave are described, followed by numerical experiments with
biflagellate algae and multiple uniflagellate sperm swimming between no-slip surfaces,
for which both swimming trajectories and flow fields are calculated. These computational
experiments required minutes of time on modest hardware; an extensible implementation is
provided in a GitHub repository. The nearest-neighbor discretization dramatically improves
convergence and robustness, a key challenge in extending the regularized Stokeslet method
to complicated three-dimensional biological fluid problems.
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I. INTRODUCTION

Inertialess locomotion in Stokes flow describes the motility of many types of sperm, bacteria, algae,
and protozoa. This topic has received extensive attention from mathematical modelers, starting with
the classic work of Taylor [1] and continuing to the present day [2–4]. From the early work into
the swimming of sea-urchin spermatozoa [5] to investigations into the orientation of biflagellates in
shear flows [6], there has been significant interest in modeling biological swimmers. This interest
has been extended recently towards understanding and developing novel microswimmers. Topical
examples of these involve studies into the microscale flow dynamics of ribbons and sheets [7] and
the modeling of self-propelling toroidal swimmers based on the hypotheses of Taylor and Purcell
[8], as well as the study of phoretic toroidal swimmers [9]. Such works have the potential to enable
the use of targeted drug delivery, among other things, through being able to guide microswimmers
through complex biological environments [10], and improve diagnostics and management of male
infertility by analysis of imaging data.

Of particular recent interest is the collective behaviors of microswimmers. The differences in these
behaviors appear to have significant biological implications, an example of which is the collective
swimming of bovine sperm in the presence of viscoelasticity, behavior which is not apparent in
a purely viscous fluid [11]. Other species of sperm exhibit collective behaviors which impact both
swimming and the ability to effectively fertilize the egg; some species of opossum sperm are often seen
swimming as a cooperative pair [12]. In addition to collective behaviors, the effects of interactions
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with other particles and/or boundaries have been recently shown to create interesting dynamics
[13–16].

While each of the models presented above are in some sense idealized, the ability to further
reduce detailed swimmer models to simplified representations provides the opportunity for extracting
significant scientific information which may not be accessible otherwise. Such models allow for
creation of a coarse-grained representation of a swimmer [4], reducing complex behavior into a set
of swimming modes and their associated limit cycles. Detailed fluid dynamic modeling can also
allow for calculation of parameters for continuum models [17] and give understanding of hidden
aspects of swimmers’ characteristics such as energy transport along a flagellum [18] or internal
moment generation [19], as well as providing insight into the exact mechanisms for the collective
swimming behaviors mentioned above.

Numerical methods are generally required to model finite-amplitude motions, wall effects, and
swimmer-swimmer interactions. A range of numerical approaches exist, with perhaps the most
extensively studied being those based on singular or regularized singular solutions of the Stokes
flow equations, specifically resistive force theory [5], slender body theory [20], boundary integral
methods [21], and regularized Stokeslet methods [22–25]. These techniques remove the need to mesh
the volume of fluid, requiring only the solution of integral equations formulated on the surface of
the swimming body or bodies and lines such as cilia and flagella, reducing both the cost of meshing
and remeshing a continually moving domain and the number of degrees of freedom of the resulting
linear system. Other techniques can be used to perform computational analysis of swimmers, such
as the use of the force coupling method to investigate the dynamics of suspensions of up to 1000
swimmers [26] and the immersed boundary method [27] for understanding the role of fluid elastic
stress on flagellar swimming [28].

As reviewed recently [29], regularized Stokeslet methods have the further major advantage of
removing the need to evaluate weakly singular surface integrals and enabling slender bodies such as
cilia and flagella to be treated as immersed one-dimensional curves. The original, and most widely
used, implementation of the method of regularized Stokeslets of Cortez et al. [22] has the further
advantage of removing the need to generate a true mesh, i.e., a description of the surfaces involved
in terms of connected surface elements, as is required by boundary element methods. Instead, it is
sufficient to generate a set of points approximating the surfaces and lines of the problem geometry. A
disadvantage of the original approach is that it requires many more degrees of freedom than boundary
integral methods to achieve converged results.

To improve on the computational efficiency of the regularized Stokeslet method while retaining
most of its simplicity of implementation, a method was proposed by Smith [29], involving taking a
coarser discretization for the unknown traction than that used for numerical quadrature of the kernel,
enabled by the use of nearest-neighbor discretization. The method proved significantly more accurate
for significantly lower computational cost, potentially enabling more complex and realistic problems
to be investigated with given computational resources.

In this article we generalize the nearest-neighbor discretization three-dimensional regularized
Stokeslet method to inertialess locomotion, in particular focusing on uniflagellate pushers modeling
human sperm and a model biflagellate. In Sec. II we briefly review the mathematical definition of the
inertialess free-swimming problem in the boundary integral formulation. In Sec. III we implement
the nearest-neighbor discretization of the free-swimming problem with a single swimmer in an
unbounded fluid. We then formulate the task of tracking the trajectory of the cell as an initial-value
problem. The discretization is then generalized in Sec. IV to incorporate rigid boundaries and multiple
swimming cells. In Sec. V we present the results of numerical experiments with uniflagellate and
biflagellate swimmers and in Sec. VI we discuss the method and further practical applications.
Key aspects of the implementation in MATLAB®/GNU Octave are given, and a GitHub repository is
provided with the full code necessary to generate the results in the paper as well as templates for
applying the method to novel problems in very-low-Reynolds-number locomotion.
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II. FREE-SWIMMING PROBLEM

The dynamics of a Newtonian fluid at very low Reynolds numbers, associated with locomotion
of cells, is described by the Stokes flow equations. The dimensionless form of the equations is

−∇p + ∇2u = 0, ∇ · u = 0, (1)

augmented with the no-slip, no-penetration boundary condition u(X) = Ẋ for boundary points X ,
where the overdot denotes a time derivative. We note here that, for the kinematic-driven problems
in the present paper, the viscosity term has been nondimensionalized out of the partial differential
equation; for a force-driven problem the viscosity term would appear in the dimensionless group (the
sperm number). Initially we will consider a single swimmer in a three-dimensional unbounded fluid
which is stationary at infinity. Two classical problems in Stokes flow are the resistance problem,
which involves calculating the force and moment on a rigid body made to translate and rotate in
stationary fluid, and the mobility problem, which involves calculating the rigid-body motion due to
an imposed force and moment.

The free-swimming problem in Stokes flow is a variant of the mobility problem. Rather than, or
perhaps in addition to, the body being driven by imposed forces, it translates and rotates as a result
of changing its shape. In this section we will briefly review this problem, which has been solved
numerically in many previous studies, and introduce our notation.

As usual for the regularized Stokeslet method, the fluid velocity uj at location x (suppressing
time dependence) is approximated by a surface integral over the surface ∂D of the swimmer,

ui(x) ≈ − 1

8π

∫∫
∂D

Sε
ij (x,X)fj (X)dSX . (2)

The regularization error associated with Eq. (2) has been discussed previously [22] and will not be
reviewed here. In this paper we will treat the approximation as exact. The surface of the body will
undergo motions that may be described by a model formulated in a body frame, for example, a frame
in which the head of the cell does not move. If the body frame coordinates are ξ and the body frame
is described by the matrix of basis vectors (equivalently a rotation matrix) B = (b(1)|b(2)|b(3)) and
origin x0, then the laboratory frame coordinates and velocities are

x = x0 + B · ξ , (3)

ẋ = ẋ0 + Ḃ · ξ + B · ξ̇ . (4)

Denoting the rigid-body velocity and angular velocity of the frame by U and �, respectively, we
then have

x = x0 + B · ξ , (5)

ẋ = U + � × (x − x0) + B · ξ̇ . (6)

Applying the condition u(x) = ẋ on ∂D in Eq. (2) yields the regularized Stokeslet boundary integral
equation

− 1

8π

∫∫
∂D

Sε
ij (x,X)fj (X)dSX = ẋi for all x ∈ ∂D, (7)

where it is understood that repeated indices (such as j in the above) are summed over and unrepeated
indices (such as i in the above) range over {1,2,3}.

If at time t the body frame origin x0 and orientation B are known and a model is given for the
swimmer shape ξ and motion ξ̇ in the body frame, then the unknowns of the problem are the surface
traction f (X) for X ∈ ∂D, the translational velocity U , and the angular velocity �. The problem is
closed by augmenting Eq. (7) with the force and moment balance equations; here we assume that
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the inertia and moment of inertia of the swimmer are negligible. The full problem is then given by

−Ui − εijk�j (xk − x0k) − 1

8π

∫∫
∂D

Sε
ij (x,X)fj (X)dSX = Bij ξ̇j for all x ∈ ∂D,

∫∫
∂D

fi(X)dSX = 0,

∫∫
∂D

εikjXkfj (X)dSX = 0,

(8)

where εijk is the Levi-Civita symbol.
Numerical discretization of problem (8) will in general involve N vector degrees of freedom

for the traction f , three unknowns for the components of the translational velocity U , and three
unknowns for the components of the angular velocity �, totaling 3N + 6 scalar unknowns in total.
Through numerical collocation, problem (8) can be formulated as 3N + 6 linear equations. In the
next section we will describe a nearest-neighbor regularized Stokeslet discretization of this problem.

III. NEAREST-NEIGHBOR DISCRETIZATION

A. Single swimmer in an unbounded fluid

The discretization of the regularized Stokeslet method is discussed in detail in [29]; in brief we
suggest that a good balance of ease of implementation and numerical efficiency can be achieved by
discretizing the integrals via a quadrature rule, with the key modification of using a finer discretization
for the rapidly varying regularized Stokeslet and a coarser discretization for the more slowly varying
traction. A simple way to achieve this is through nearest-neighbor interpolation of the traction. The
resulting method contains the original and extensively used method of Cortez et al. [22] as the
limiting case in which the discretizations are equal.

Replacing the integrals in problem (8) with numerical quadrature yields the discrete problem

−Ui − εij��j (xk[m] − x0k) − 1

8π

Q∑
q=1

Sε
ij (x[m],X[q])fj (X[q])dS(X[q]) = Bij ξ̇j [m]

for m = 1, . . . ,N,

Q∑
q=1

fi(X[q])dS(X[q]) = 0,

Q∑
q=1

εikjXk[q]fj (X[q])dS(X[q]) = 0,

(9)

where dS(X[q]) denotes the quadrature weight associated with the local surface metric. The coarse
traction discretization will be denoted by {x[1], . . . ,x[N ]} and the finer quadrature discretization by
{X[1], . . . ,X[Q]}; the Q × N nearest-neighbor matrix is then

ν[q,n] =
{

1 for n = argmin
n̂=1,...,N

|x[n̂] − X[q]|
0 otherwise.

(10)

A subtlety here concerns the calculation of the nearest-neighbor matrix when dealing with time-
evolving geometries and in particular the case when different bodies approach closely. As an example
consider the case of a biflagellate swimmer: As the flagellum gets close to the body there is the
potential for a quadrature point on the body to have a nearest force point on the flagellum (or
vice versa), leading to incorrect calculation of the traction at these points. For rigid bodies this is
easily solved by calculating the nearest-neighbor matrix carefully at a single time point, before the
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bodies closely approach, and then treating ν as constant in time. Alternatively one can calculate a
time-evolving ν on a body-by-body basis, considering separately (for example) the discretizations
of a flagellum, cell body, and any boundaries.

Defining gi[n] := −fi(x[n]), the nearest-neighbor interpolation of the traction then corresponds
to −fi(X[q])dS(X[q]) ≈ ∑N

n=1 ν[q,n]gi[n]dS(x[n]). Applying this interpolation to problem (9)
yields

1

8π

N∑
n=1

gj [n]dS(x[n])
Q∑

q=1

Sε
ij (x[m],X[q])ν[q,n] − Ui − εijk�j (xk[m] − x0k)

= Bij ξ̇j [m] for m = 1, . . . ,N,

N∑
n=1

gj [n]dS(x[n])
Q∑

q=1

δij ν[q,n] = 0,

N∑
n=1

gj [n]dS(x[n])
Q∑

q=1

εikjXk[q]ν[q,n] = 0. (11)

Computationally, problem (11) corresponds to 3N + 3 + 3 linear equations in 3N + 3 + 3 scalar
unknowns (Fj [n] := gj [n]dS(x[n]) for n = 1, . . . ,N , followed by Uj and �j ). These equations can
be expressed in block form as

⎛
⎜⎜⎜⎜⎜⎜⎝

AS
11 AS

12 AS
13 AU

1 A�
1

AS
21 AS

22 AS
23 AU

2 A�
2

AS
31 AS

32 AS
33 AU

3 A�
3

AF
1 AF

2 AF
3

AM
1 AM

2 AM
3

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F1[1]
...

F1[N ]

F2[1]
...

F2[N ]

F3[1]
...

F3[N ]

U
�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1j ξ̇j [1]
...

B1j ξ̇j [N ]

B2j ξ̇j [1]
...

B2j ξ̇j [N ]

B3j ξ̇j [1]
...

B3j ξ̇j [N ]

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

where the blocks have entries given by

AS
ij {m,n} = 1

8π

Q∑
q=1

Sij (x[m],X[q])ν[q,n] for m,n = 1, . . . ,N,

AU
i {m,j} = −δij for m = 1, . . . ,N,

A�
i {m,j} = −εijk(xk[m] − x0k) for m = 1, . . . ,N,

AF
j {i,n} = δij

Q∑
q=1

ν[q,n] for n = 1, . . . ,N,

AM
j {i,n} = εikjXk

Q∑
q=1

ν[q,n] for n = 1, . . . ,N

(13)

and the velocity U and angular velocity � are expressed as 3 × 1 column vectors.
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B. Computing swimmer trajectories via an initial-value problem

The position and orientation of a swimmer can be expressed as a position vector and a frame of
basis vectors b(j ). Given b(1) and b(2), we then have b(3) = b(1) × b(2), so it is sufficient to formulate
the problem in terms of two basis vectors only or six scalar degrees of freedom. Of course, this
formulation still contains redundant information; three Euler angles constrain precisely the body
frame, however the basis vector approach is very straightforward to implement.

Noting that

ẋ0 = U(x0,b
(1),b(2),t), ḃ

(j ) = �(x0,b
(1),b(2),t) × b(j ), j = 1,2, (14)

we may then formulate the calculation of trajectories as a system of nine ordinary differential
equations, where evaluation of the functions U(x0,b

(1),b(2),t) and �(x0,b
(1),b(2),t) involves solving

the swimming problem (8), for example, via the discretization (11). The outer problem (14) can be
solved using built-in functions such as ode45 in MATLAB®or lsode in GNU Octave.

For practical purposes, when using a built-in initial-value problem solver such as ode45, the
tractions fi(X), required to compute the rate of energy dissipation and the flow field, may not be
automatically available. To record this information, we may introduce the variable Hi(X,t), defined
by

Ḣi(x,t) = fi(x,t), x ∈ ∂D Hi(x,0) = 0. (15)

Augmenting the swimming problem (14) with Eqs. (15) then yields an approximation to the force
distribution available external to ode45 by numerically differentiating Hi(x,t) with respect to time.

IV. GENERALIZATION: BOUNDARIES AND MULTIPLE SWIMMERS

A. Boundaries and fixed obstacles

Mammalian sperm usually migrate and fertilize within a thin film of viscous fluid between opposed
surfaces and are typically imaged between a microscope slide and coverslip. Indeed, the major effect
of boundaries on microswimmer flow fields has long been recognized [30]. Therefore, it is important
to take boundary effects into account in fluid dynamic simulations. The Blakelet and its regularized
counterpart found by Ainley et al. [31] (see also work by Cortez) is an elegant and efficient way
to model a single infinite plane boundary; certain other geometrically simple situations possess
similar fundamental solutions. However, it is important for full generality to take into account a
more complex boundary, and perhaps also fixed obstacles, present in the flow.

Representing the boundary by B, the swimming problem becomes

−Ui − εijk�j (xk − x0k) − 1

8π

∫∫
∂D∪B

Sε
ij (x,X)fj (X)dSX = Bij ξ̇j for all x ∈ ∂D,

− 1

8π

∫∫
∂D∪B

Sε
ij (x,X)fj (X)dSX = ẋi for all x ∈ B,

∫∫
∂D

fi(X)dSX = 0,

∫∫
∂D

εijkXjfk(X)dSX = 0. (16)

Numerically, we may represent the swimmer by the force points {x[1], . . . ,x[Ns]} and quadra-
ture points {X[1], . . . ,X[Qs]}; the boundary is then discretized by the force points {x[Ns +
1], . . . ,x[Ns + Nb]} and quadrature points {X[Qs + 1], . . . ,X[Qs + Qb]}. Nearest-neighbor
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discretization then leads to a system of the form

⎛
⎜⎜⎜⎜⎜⎜⎝

AS
11 AS

12 AS
13 AU

1 A�
1

AS
21 AS

22 AS
23 AU

2 A�
2

AS
31 AS

32 AS
33 AU

3 A�
3

AF
1 AF

2 AF
3

AM
1 AM

2 AM
3

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

F1

F2

F3

U

�

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

V1

V2

V3

0

0

⎞
⎟⎟⎟⎟⎟⎠. (17)

The blocks have entries given by

AS
ij {m,n} = 1

8π

Q∑
q=1

Sij (x[m],X[q])ν[q,n] for m,n = 1, . . . ,N,

AU
i {m,j} =

{−δij for m = 1, . . . ,Ns

0 for m = Ns + 1, . . . ,Ns + Nb,

A�
i {m,j} =

{−εijk(xk[m] − x0k) for m = 1, . . . ,Ns

0 for m = Ns + 1, . . . ,Ns + Nb,

AF
j {i,n} =

{
δij

∑Q
q=1 ν[q,n] for n = 1, . . . ,Ns

0 for n = Ns + 1, . . . ,Ns + Nb,

AM
j {i,n} =

{
εikjXk

∑Q
q=1 ν[q,n] for n = 1, . . . ,Ns

0 for n = Ns + 1, . . . ,Ns + Nb,

(18)

where the total number of force unknowns is N = Ns + Nb, the symbols Fj denote (Ns + Nb) × 1
vectors of scalar unknowns Fj [1], . . . ,Fj [Ns + Nb], and the right-hand sides are given by

Vi[n] =
{
Bij ξ̇j [n] for n = 1, . . . ,Ns

0 for n = Ns + 1, . . . ,Ns + Nb.
(19)

B. Multiple swimmers

The last situation we will consider is where there are multiple swimmers, which are not necessarily
discretized by equal-size sets, as well as a boundary. The numerical discretization is somewhat
more complicated and so we modify our notation in an attempt to make the implementation more
interpretable. Suppose that we now have Nsw swimmers, described by collocation points with
ith components x

(1)
i [·], . . . ,x(Nsw)

i [·], their translational and angular velocities being denoted by
U

(1)
i , . . . ,U

(Nsw)
i and �

(1)
i , . . . ,�

(Nsw)
i , respectively; the boundary points will be denoted by the array

x
(b)
i [·]. The discretization will follow the ordering convention

x = (x1{·}, x2{·}, x3{·})T with xi{·} = (
x

(1)
i [·], . . . , x

(Nsw)
i [·], x

(b)
i [·])T

, (20)

which is inherited by the right-hand-side velocities and the force discretization. If the number of
force points associated with swimmer r is Ns(r) and the number of force points associated with the
boundary is Nb, then the number of vector force unknowns is Nf = ∑Nsw

r=1 Ns(r) + Nb. The size of
x is then 3Nf and the total number of scalar degrees of freedom in the system is 3Nf + 6Nsw. We
will define the index ι(r) to be the location of the rth swimmer in the xi vector, with ι(1) = 1 and
ι(r) = ∑r−1

γ=1 Ns(γ ) for 1 < r � Nsw.

053101-7



MEURIG T. GALLAGHER AND DAVID J. SMITH

The quadrature points may be denoted by X[1], . . . ,X[Q] as previously; the Stokeslet matrix is
then constructed as

AS
ij {α,β} = 1

8π

Q∑
q=1

Sij (xi[α],X[q])ν[q,β] for α,β = 1, . . . ,Nf . (21)

To construct the remaining blocks, we introduce the notation 1(n) to be the column vector of length n

with every entry equal to 1 and 0(m×n) to be the m × n matrix of zeros. We also define the Nf × Nsw

matrices

x̃i{·,·} =

⎛
⎜⎜⎜⎝

x
(1)
i [·] − x

(1)
0i

. . .

x
(Nsw)
i [·] − x

(Nsw)
0i

0(Nb×Nsw)

⎞
⎟⎟⎟⎠. (22)

Then

AU = I3 ⊗

⎛
⎜⎜⎜⎝

−1[Ns (1)]

. . .
−1[Ns (Nsw)]

0(Nb×Nsw)

⎞
⎟⎟⎟⎠, A� =

⎛
⎜⎝

−x̃3{·,·} x̃2{·,·}
x̃3{·,·} −x̃1{·,·}

−x̃2{·,·} x̃1{·,·}

⎞
⎟⎠,

(23)
with ⊗ denoting the Kronecker product.

Recalling that ν[·,·] denotes the nearest-neighbor matrix, we define the Ns(r) × 1 column vectors

λ(r)[·] =
Q∑

q=1

ν[q,ι(r) : ι(r + 1) − 1], χ
(r)
j [·] =

Q∑
q=1

Xj (q)ν[q,ι(r) : ι(r + 1) − 1] (24)

and the Nsw × Nf matrices

χ̃j {·,·} =

⎛
⎜⎝

χ
(1)T
j [·]

. . . 0(Nsw×Nb)

χ
(Nsw)T
j [·]

⎞
⎟⎠. (25)

Then the 3Nsw × 3Nf blocks AF and AM are

AF = I3 ⊗

⎛
⎜⎝

λ(1)T [·]
. . . 0(Nsw×Nb)

λ(Nsw)T [·]

⎞
⎟⎠,

AM =

⎛
⎜⎝

−χ̃3 χ̃2

χ̃3 −χ̃1

−χ̃2 χ̃1

⎞
⎟⎠. (26)

Finally, denoting the orientation matrix of the rth swimmer by B
(r)
ij and its body frame waveform as

ξ
(r)
j , the terms of the right-hand side take the form

Vi = (
V

(1)
i [·], . . . , V

(Nsw)
i [·], 0(Nsw×1)

)T
, (27)

where

V
(r)
i [n] = B

(r)
ij ξ̇

(r)
j [n]. (28)
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Now that we have defined AS
ij , AU , A�, AF , AM , and Vi , the 3(Nf + 2) × 3(Nf + 2) linear system

is of the form given by Eq. (17).

V. RESULTS AND ANALYSIS

We now turn our attention to the application of this method to two model problems: (i) a single
biflagellate swimming in an infinite fluid and (ii) multiple sperm cells swimming between two
boundaries. The implementation for both these model problems is provided in the associated GitHub
repository. After presenting the results for these swimming problems we will discuss the convergence
of the method for the two types of swimmer provided and compare with the results obtained through
the classic Nyström discretization (when the force and quadrature discretizations are the same).

A. Biflagellate in an infinite fluid

We will first apply the algorithm in Sec. III A to model a biflagellate, superficially similar to various
marine algae, swimming in an unbounded fluid. We model the beat pattern of the cell [Fig. 1(a)]
following Sartori et al. [32], writing the flagellar tangent angle ψ in the form

ψ(s,t) = ψ0(s) − ψ1(s) cos [t + φ(s)], (29)

where s and t are dimensionless arc lengths along the flagellum and time, respectively. We find that
choosing

ψ0(s) = −2.5s, ψ1 = 0.7 + 0.15 sin(2πs), φ(s) = −2πs, 0 � s � 1, (30)

provides a sufficiently representative test case for the computational algorithm. Of course a more
realistic beat for a genuine biflagellate species such as Chlamydomonas reinhardtii could be appended
as required.

The two flagella are synchronized; for the force discretization, 40 points are used to discretize
each flagellum and 96 points are used for the cell body, totaling 176 vector degrees of freedom
(Fig. 1). For the quadrature discretization, 400 points are used for each flagellum and 600 points for
the cell body, giving a total of 1400 quadrature points [Fig. 1(b)]. The regularization parameter is
chosen as ε = 0.25/20 to represent the radius of the flagellum (scaled with flagellar length).

Results showing the displacement of the swimming cell are shown in Fig. 1(c) and the flow field at
three points of the beat in Figs. 1(d)–1(f). The latter calculation can be carried out in a postprocessing
step from the computed swimmer position, orientation, and force distribution. To further visualize the
flow we have included in Figs. 1(g) and 1(h) a selection of streamlines plotted over the fluid velocity.
While the figures show a two-dimensional projection, the computation is fully three dimensional
and the instantaneous flow field on any (finite) subset of R3 can be computed. The computation and
creation of Fig. 1 required 33.4 s on a desktop computer [2017 Lenovo Thinkstation P710; Intel(R)
Xeon(TM) E5-2646 CPU @ 2.40 GHz; 128 GB 2400 MHz RDIMM RAM].

B. Sperm between two opposed surfaces

We now turn our attention to the more general problem of Sec. IV B involving multiple swimming
cells and boundaries. The computational domain contains two no-slip square surfaces with sides of
length 3L, separated by a distance 0.4L, where L is the flagellar length (for human sperm typically
L ≈ 45 μm). The swimmer heads are ellipsoids with axes of length 0.044L, 0.036L, and 0.022L.
The flagellar movement is based on the classic planar activated beat of Dresdner and Katz [33]; the
sperm head (cell body) is a scalene ellipsoid. Figures 2(a) and 2(b) show the beat pattern via the force
and quadrature discretizations, respectively. The force discretization consists of 136 points per cell
and 480 points for the boundary, totaling 3480 scalar degrees of freedom (DOF) for a simulation with
five cells. The quadrature discretization consists of 700 points per swimmer and 1920 points for the
boundary, totaling 5420 quadrature points. The regularization parameter is chosen as ε = 0.25/45
to represent the radius of the flagellum (scaled with flagellar length).
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FIG. 1. Computational results for a free-swimming model biflagellate in an unbounded fluid, implemented
with the script GenerateSwimmingFigureChlamy.m. Model biflagellate show the beat pattern, visualized via
(a) force discretization and (b) quadrature discretization. (c) The x2 coordinate of the free-swimming cell over
five beat cycles, where positive x2 is the overall swimming direction. The computed flow fields are shown at
(d) t = 2π/3, (e) t = 4π/3, and (f) t = 2π (three points during the beat cycle). The computed velocity profile
with streamlines is shown at t = 0 for cross sections of the (g) (x1,x2) and (h) (x2,x3) planes.

The computation shown in Fig. 2 involves tracking five cells, each with slightly perturbed
beat cycle and head morphology parameters, swimming midway between the no-slip boundaries
described above [visualized in Fig. 2(c)], for five beat cycles. Figure 2(d) shows the cell trajectories
and Figs. 2(d) and 2(e) show the cell positions, orientations, and surrounding flow fields at two
distinct time points. To further visualize the flow we have included in Figs. 2(g) and 2(h) a selection
of streamlines plotted over the fluid velocity. The calculated dimensionful swimmer velocity is
approximately equal to 43 μm s−1, which is comparable to the results of Smith et al. [34], who report
a numerical calculation of the speed of a sperm with the same waveform, swimming at a distance
0.2 flagellar lengths from a surface, as approximately equal to 42 μm s−1. While the computation
was more intensive than that described in the preceding section, it was still easily within reach of the
same computer, requiring 127 s of wall time.
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FIG. 2. Computational results for a group of free-swimming model sperm swimming midway be-
tween two opposed no-slip surfaces separated by 0.4 flagellar lengths, implemented with the script
GenerateSwimmingFigureSperm.m. Model sperm show the beat pattern of Dresdner and Katz [33], visualized
via (a) force discretization and (b) quadrature discretization. (c) Visualization of sperm placed between the
discretized boundaries (note that the sperm heads appear rounder than they actually are due to the aspect ratio
chosen for plotting). (d) Trajectories of free-swimming cells over five beat cycles. The computed cell positions
(with five randomly perturbed beat cycles and head dimensions) and flow fields are shown at (e) t = 0 and (f)
t = 2.5 cycles. The computed velocity profile with streamlines of a single sperm is shown at t = 0 for cross
sections of the (g) (x1,x2) and (h) (x1,x3) planes.

C. Convergence of the method with discretization refinement

A practical refinement heuristic for assessing the convergence (with increased discretization) of
the nearest-neighbor method is given by Smith [29]. For testing the convergence of the present
swimming problems we define the maximum discretization spacings from [29] as

hf = max
m=1,...,N

min
n = 1, . . . ,N

n �= m

|x[m] − x[n]|, hq = max
p=1,...,Q

min
q = 1, . . . ,Q

q �= p

|X[p] − X[q]|. (31)

In the present work we note that we may have different discretizations for each swimmer and indeed
for each component of a single swimmer (the head and flagellum may be discretized differently, for
example). To this end we apply the existing convergence heuristic in stages as outlined in Table I (see
also [35]). To measure the convergence we compare the straight line distance traveled over one full
beat of the swimmer’s flagellum. In contrast to the classical (Nyström) discretization [22], there is no
tight coupling between the regularization parameter ε and the discretization length scales [29]. As a
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TABLE I. Heuristic for analyzing the convergence of the results.

1. Generate an initial force and quadrature discretization for the swimmer head hH
f and hH

q .
2. Assess convergence by the heuristic in [29] through varying the flagellar discretizations hF

f and hF
q .

3. Generate a more refined head quadrature discretization by halving hH
q and repeat step 2.

4. Generate a more refined head force discretization by halving hH
f and repeat step 2.

5. Repeat steps 3 and 4 until a suitable level of convergence is reached.

consequence of this we allow the choice of regularization parameter ε to be guided by the geometry
of the swimmer (chosen here to be related to the dimensions of the flagellum).

We have analyzed the convergence of the results for the following cases: a single swimming
biflagellate (as described in Sec. V A), a single swimming sperm (as in Sec. V B) with no boundary,
and a single swimming sperm with boundary. We also assess the effect of the boundary through
fixing the sperm discretization and applying the heuristic of Table I to the boundary discretizations
and through fixing the sperm and boundary discretizations and increasing the boundary length. The
effects of refining the flagellum discretizations in the biflagellate and single sperm models are shown
in Tables II and III, with the full convergence results provided in the Supplemental Material [35]. Here
we have used the straight line distance traveled by the swimmer as the objective for convergence, and
it is clear from Tables II and III, together with the associated tables in the Supplemental Material,
that the method is well converged for each swimmer, both in the presence of boundaries and not.

TABLE II. Our nearest-neighbor convergence results: straight line distance traveled by a single biflagellate
swimmer, as described in Sec. V A, after one complete flagellar beat cycle. Here the discretization for the
cell head is fixed with NH = 96 and QH = 600 force and quadrature points, respectively. The number of
points discretizing the flagellum have been chosen following the convergence algorithm in Table I, with the
regularization parameter ε = 0.25/20 being the ratio between flagellar radius and length. When NF > QF a
singular linear system is formed; this is denoted by the entry NaN (not a number). (a) Distance traveled by the
swimmer. Also shown is the percentage change in this distance when halving (b) hF

f and (c) hF
q .

(a) Distance traveled in multiples of (flagellar length) × 10−2

QH 600 600 600 600
hH

q 0.1137 0.1137 0.1137 0.1137

QF 100 200 400 800

DOF NH hH
f NF

�������hF
f

hF
q

0.09767 0.04859 0.02424 0.01210

528 96 0.2272 40 0.2479 5.521 5.521 5.526 5.527
768 96 0.2272 80 0.1224 5.503 5.501 5.498 5.498
1248 96 0.2272 160 0.06082 NaN 5.504 5.503 5.502
2208 96 0.2272 320 0.03032 NaN NaN 5.487 5.432

(b) Percentage change in distance
traveled when halving hF

f

(c) Percentage change in distance
traveled when halving hF

q

�����hF
f

hF
q

0.09767 0.04859 0.02424 0.01210

�������hF
f

hF
q

0.04859 0.02424 0.01210

0.1224 0.32% 0.37% 0.49% 0.52% 0.2479 0.01% 0.08% 0.02%
0.06082 0.06% 0.08% 0.08% 0.1224 0.03% 0.05% 0.01%
0.03032 0.29% 1.28% 0.06082 0.02% 0.01%

0.03032 1.00%
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TABLE III. Our nearest-neighbor convergence results: straight line distance traveled by a single sperm,
swimming between two opposed surfaces, as described in Sec. IV B, after one complete flagellar beat cycle.
Here the discretization for the cell head is fixed with NH = 96 and QH = 600 force and quadrature points,
respectively. The number of points discretizing the flagellum have been chosen following the convergence
algorithm in Table I, with the regularization parameter ε = 0.25/45 being the ratio between flagellar radius and
length. When NF > QF a singular linear system is formed, this is denoted by the entry NaN (not a number).
(a) Distance traveled by the swimmer. Also shown is the percentage change in this distance when halving (b)
hF

f and (c) hF
q .

(a) Distance traveled in multiples of (flagellar length) × 10−2

QH 600 600 600 600 600
hH

q 0.006702 0.006702 0.006702 0.006702 0.006702

QF 100 200 400 800 1600

DOF NH hH
f NF

�����hF
f

hF
q

0.01011 0.005032 0.002510 0.001254 0.0006265

408 96 0.01314 40 0.02564 6.912 6.957 6.992 7.004 7.011
528 96 0.01314 80 0.01267 7.003 6.935 6.939 6.749 6.950
768 96 0.01314 160 0.006297 NaN 6.925 6.924 6.924 6.924
1248 96 0.01314 320 0.003140 NaN NaN 6.920 6.918 6.919

(b) Percentage change in distance
traveled when halving hF

f

(c) Percentage change in distance
traveled when halving hF

q
�����hF

f

hF
q

0.01011 0.005032 0.002510 0.001254 0.0006265

�����hF
f

hF
q

0.005032 0.002510 0.001254 0.0006265

0.01267 1.32% 0.31% 0.75% 3.64% 0.86% 0.02564 0.65% 0.50% 0.18% 0.10%
0.006297 0.15% 0.21% 2.59% 0.39% 0.01267 0.97% 0.06% 2.74% 2.98%
0.003140 0.05% 0.09% 0.07% 0.006297 0.01% 0.01% 0.00%

0.003140 0.04% 0.01%

Increasing the size of the boundaries resulted in a negligible change to the distance traveled by the
swimmer. We note here that the head discretization for the sperm case is very fine; this has been
chosen to illustrate the convergence results following the heuristic of Smith [29].

For comparison with our method, in Table IV we present the straight line distance traveled by
the biflagellate swimmer when the Nyström discretization is used. We can see from the data in
the Table IV that the Nyström discretization requires 8538 degrees of freedom (NH = 2646 and
NF = 100) to approach within 1% the converged distance of approximately 5.5 × 10−2 flagellar
lengths, while the current method is within 1% of the converged distance in the first entry of Table II,
with only 528 degrees of freedom (NH = 96 and NF = 40). In Fig. 3 we show the convergence of
the swimming distance for both the nearest-neighbor and classic (Nyström) discretizations, where
for the former we have chosen the quadrature discretization to be twice as fine as the force. This
figure visually emphasizes the convergence results of Tables II and IV from which we see that, for
the choice of ε = 0.25/20, the Nyström method requires many more degrees of freedom to reach
the same levels of convergence. This convergence rate could be improved in the Nyström case by
varying ε (as discussed in [22]); however, as previously discussed, the nearest-neighbor discretization
is much more robust to this parameter.

VI. DISCUSSION

This paper has described an extension of the nearest-neighbor regularized Stokeslet method [29] to
enable the simulation of multiple force- and moment-free cells swimming in a bounded domain. Cell
trajectory calculations were achieved by casting the task as an initial-value problem; by integrating
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TABLE IV. Nyström (classical) regularized Stokeslet convergence results for comparison purposes: straight
line distance traveled by a single biflagellate swimmer, as described in Sec. V A, after one complete flagellar
beat cycle with the Nyström discretization. The number of points has been chosen following the convergence
algorithm in Table I, with the regularization parameter ε = 0.25/20 being the ratio between flagellar radius
and length. (a) Distance traveled by the swimmer. Also shown is the percentage change in this distance when
doubling (b) NH and (c) NF .

(a) Distance traveled in multiples of (flagellar length) × 10−2

�����NH

NF

40 100 200 400

96 6.542 7.148 7.151 7.165
600 5.320 5.794 5.803 5.819
2646 5.105 5.554 5.563 5.578

(b) Percentage change in distance
traveled when doubling NF

(c) Percentage change in distance
traveled when doubling NH

�����NH

NF

100 200 400

�������NH

NF

40 100 200 400

96 9.29% 0.05% 0.19% 600 18.68% 18.94% 18.86% 18.79%
600 8.91% 0.14% 0.28% 2646 4.04% 4.15% 4.13% 4.15%
2646 8.79% 0.16% 0.27%

the force at each step it was additionally possible to store the evolving force distribution to enable
postcalculation of the velocity field. The method was assessed on two problems of a type which
may be of interest in the biological fluid mechanics community: swimming of a biflagellate in an
unbounded domain and motility of multiple human sperm between two no-slip surfaces.

Numerical experiments provide evidence that the method is relatively efficient and converges
well, requiring minutes to solve the problems described above, without specialist computational
hardware, and we note with interest the significantly improved convergence of this method when
compared to the classic Nyström discretization. While the construction of the matrices is somewhat
tedious, the underlying concept of the method, using coarse and fine discretizations of the boundary
integral equations to address the fact that the force distribution varies more slowly than the kernel,
should ensure that the method is comprehensible and extensible by nonspecialists. Crucially, no true
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FIG. 3. Visual comparison of how the swimming distance for the biflagellate swimmer converges with
(a) the nearest-neighbor and (b) the classic (Nyström) discretizations. The swimming distance is shown with
increasing number of points for both the head (NH ) and flagellum (NF ) discretizations. In (a) the quadrature
discretization is chosen to be twice as fine as the force discretization.
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mesh generation (i.e., with connectivity tables) is required to simulate a new swimmer of interest. We
hope that these properties of ease of use, extensibility, and efficiency make the method appealing to
potential users, and in support of this aim we provide all MATLAB® code used to generate this report in
a repository [36]. Within this repository, a template file nnSwimmerTemplate.m is provided which
sets out how new swimmers can be added to the existing codebase.

There are many potential extensions for this work spanning the whole field of locomotion at
low Reynolds number. The convergence properties of this method mean that it may be valuable
for high-throughput analysis of experimental data or (perhaps with adaptations to deal efficiently
with long-range interactions) suspensions of relatively large numbers of swimmers. It would be
interesting to see if the modification of the method to take into account viscoelastic effects would
allow for the collective swimming behavior of sperm seen by Tung et al. [11] to be reproduced from
an idealized model of swimming. There is potential for this method to be applied to the world of
phoretic swimmers to examine the dynamics of many phoretic particles or to the case of swimmers
driven by magnetic fields. The computational efficiency of this method can also be exploited through
modeling multiple swimmers in complex environments, for example, ciliary flow. While such flows
would previously have been simulated and then applied as a background flow to a swimmer, with
this efficient method one would be able to model the ciliary beating patterns directly and could allow
for a more realistic interaction between swimmers and their environment.
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