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We scrutinize the statistical characteristics of liquid films flowing over an inclined planar
surface based on film height and velocity measurements that are recovered simultaneously
by application of planar laser-induced fluorescence (PLIF) and particle tracking velocimetry
(PTV), respectively. Our experiments are complemented by direct numerical simulations
(DNSs) of liquid films simulated for different conditions so as to expand the parameter space
of our investigation. Our statistical analysis builds upon a Reynolds-like decomposition of
the time-varying flow rate that was presented in our previous research effort on falling
films in [Charogiannis et al., Phys. Rev. Fluids 2, 014002 (2017)], and which reveals
that the dimensionless ratio of the unsteady term to the mean flow rate increases linearly
with the product of the coefficients of variation of the film height and bulk velocity, as
well as with the ratio of the Nusselt height to the mean film height, both at the same
upstream PLIF/PTV measurement location. Based on relations that are derived to describe
these results, a methodology for predicting the mass-transfer capability (through the mean
and standard deviation of the bulk flow speed) of these flows is developed in terms of
the mean and standard deviation of the film thickness and the mean flow rate, which are
considerably easier to obtain experimentally than velocity profiles. The errors associated
with these predictions are estimated at ≈1.5% and 8% respectively in the experiments and
at <1% and <2% respectively in the DNSs. Beyond the generation of these relations for
the prediction of important film flow characteristics based on simple flow information, the
data provided can be used to design improved heat- and mass-transfer equipment reactors
or other process operation units which exploit film flows, but also to develop and validate
multiphase flow models in other physical and technological settings.

DOI: 10.1103/PhysRevFluids.2.124002

I. INTRODUCTION

A. Problem definition and motivation

Liquid films play a prominent role in the design of effective means of heat and mass transfer in a
wide range of industrial and engineering systems, such as wetted-wall absorbers, heat exchangers,
film condensers and evaporators, reactors and microcooling schemes, to name but a few. The
development of waves on the free surface of liquid films has been linked to appreciable heat- and
mass-transfer enhancements [1–4] that are attributed to a rich variety of complex flow phenomena
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that underlie these flows. The pioneering work of Kapitza and Kapitza [5,6] inspired numerous
research efforts on falling films trying to elucidate their complex underlying dynamics, generating
an abundance of theoretical, numerical, and experimental scientific studies. Yet, several key aspects
associated with the formation and development of hydrodynamic waves, and with the flow field
underneath the wavy interface in particular, continue to elude us. This is evidenced by the limited
number of experimental studies that have reported simultaneously conducted and spatiotemporally
resolved film-thickness and velocity-field measurements, which are particularly challenging to
recover, predominately owing to the restricted fluid domains and the intermittent nature of the
wavy interface.

The research effort described here, therefore, aims primarily to identify possible links between
the statistics of the film thickness and bulk velocity, specifically by combining simultaneous
measurements of spatiotemporally resolved liquid film height and liquid-phase velocity in
harmonically excited falling films, with state-of-the-art direct numerical simulations (DNSs). Beyond
cross-validation of the two approaches, the latter are also used in order to expand the observations
and findings to a wider range of flow conditions, allowing more generalized conclusions to be drawn.

B. Background

Gravity-driven, or “falling,” liquid films are generally unstable to long-wavelength perturbations
above a critical Reynolds number, Rec (see, for example, Ref. [7]), leading to the formation of free-
surface instabilities. These instabilities evolve into highly asymmetric solitary waves with steep fronts
preceded by capillary ripples via a secondary modulation instability [8–12], which sufficiently far
from the inlet break down into continuously interacting three-dimensional (3-D) waves [8,9,11,13–
18], and finally form rivulets at sufficiently long distances from the flow inlet [16,17,19]. By forcing
the inlet flow rate at a prescribed frequency, the development of wave sequences which adopt this
frequency can instead be triggered selectively. The interfacial characteristics of harmonically excited
liquid films have been investigated analytically, numerically, and experimentally by many researchers
[13,20–30], who have shown that depending on the excitation frequency, a range of different evolution
scenarios can be realized. Our experiments and simulations employ low forcing-frequency excitation,
following which the growth of solitary waves saturates within a few wavelengths from the inlet,
while their shapes fluctuate modestly through interactions with their neighbors.

In the case of a one-dimensional (1-D), steady, fully developed, gravity-driven film flow, the
formation of interfacial waves is suppressed (i.e., the film height remains constant), and the velocity
profile across the film can be calculated from the Nusselt solution to the Navier-Stokes (NS) equations
[31]. The Nusselt film height, hN, is expressed in Eq. (1) as a function of the fluid kinematic viscosity,
νf, the gravitational acceleration, g, the inclination angle, β, and the (constant) volumetric flow rate
per unit span of the flow, Q:

hN =
(

3νfQ

g sin β

)1/3

=
(

3νf
2Re

g sin β

)1/3

, (1)

where the flow Reynolds number here is expressed as a function of the volumetric flow rate per unit
span of the flow, Q, and the kinematic viscosity of the liquid νf:

Re = Q

νf
. (2)

Here we adopt a definition for Re that is equivalent to the above but is more appropriate for unsteady
wavy-film flows and is based on the time-mean volumetric flow rate per unit span, Q, as measured
by the flow meter installed in our setup.

Returning to the Nusselt flow, the liquid bulk velocity, also referred to as the Nusselt velocity,
UN, can be obtained by integrating the axial-velocity profile Ux(y) in Eq. (3),

Ux(y) = g sin β

νf
y
(
h − y

2

)
, (3)
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over the film height h, which gives

UN = g sin βhN
2

3νf
. (4)

The above simple expressions for hN and UN are often used as characteristic length and velocity
scales in analytical and numerical studies (see, for example, Refs. [12,32,33], and in order to
compare experimental results in a variety of real flows with the Nusselt (steady-flow) solution
[34–37]. For example, in the limited number of experimental investigations of falling-film flows
with measurements of axial-velocity profiles, these have been compared to profiles derived using
Eq. (3), and experimentally recovered, local and instantaneous film-thickness data (see, for example,
the comparisons by Moran et al. [36] for laminar films flowing down a β = 45◦ incline over the range
Re = 11–220 and those by Adomeit and Renz [37] for water films in the range Re = 27–200). In
previous contributions by our group [38,39], we investigated the deviations between experimentally
recovered and theoretical (Nusselt) velocity profiles systematically in harmonically excited liquid-
film flows pertaining to different flow Re (Re = 2.3–320), liquid Kapitza numbers, Ka = 85,350,

and 1800, and forcing frequencies, fw = 7 and 10 Hz; here, the fluid Ka depends on the liquid
properties only and is defined as

Ka = γf

ρfνf
4/3g sin β1/3 , (5)

with γf representing the surface tension. In agreement with previous investigators, we reported
significant excursions (by up to 100%) of both bulk and interfacial velocities relative to the Nusselt
solution at the wave crests, as well as a strong dependence of the magnitude of these deviations on
the flow Re.

When comparing the mean film height, h, with the Nusselt height, hN, evidence compiled by
Tihon et al. using both experimental (over the range Re = 10–100) and numerical data [40,41]
suggests that solitary waves reduce the wall shear stress in comparison to a flat interface. Hence,
the fluid travels faster, on average, in a wavy-film flow compared to an equivalent flat-film flow
of the same average flow rate. This finding implies that in order for the average flow rate to be
conserved, the mean film height in a wavy-film flow must be lower than the equivalent Nusselt height
(h � hN). Other experimental studies have, however, reported different trends. Moran et al. [36], for
example, observed that h � hN throughout the range of flow conditions that were investigated in the
study noted earlier, as did Takahama and Kato [42] over the range Re = 200–997. In contrast, the
measurements provided by Lel et al. [43] over the range Re = 2–700, Zhou et al. [44] over the range
Re = 320–2060, Ambrosini et al. [45] over the range Re = 150–3300, and Drosos et al. [46] over
the range Re = 60–360 suggest that h � hN is obeyed below Re ≈ 100–500, and h � hN above that
Re range. The transition from one behavior to another is shown to depend on the inclination angle,
the measurement distance from the flow inlet, and properties of the employed fluid. It should finally
be noted that both Karapantsios et al. [47] and Zadrazil et al. [48] report that h � hN for high-Re
water flows (Re = 509–13090 and Re = 306–1532, respectively.)

In light of the large number of experimental studies in the literature that have reported such
comparisons, two remarks can be made. First, irrespective of the trends observed in low-Re film flows,
evidence exists that suggests a reversal of the h � hN relation at higher Re; this may potentially be
linked to the onset of a transition to turbulence. Nevertheless, a possible flow mechanism responsible
for this reversal has yet to be proposed. Second, despite evidence that the variation of h/hN (mean
film height to Nusselt height ratio) is linked to the interface waviness and the associated bulk-velocity
fluctuations, a relation describing this link has not been reported. Similarly, quantitative relationships
that link the film thickness and velocity fluctuations are also lacking. Neither observation comes as
a surprise, given that simultaneously acquired, space- and time-resolved film height and flow-field
information from underneath the wavy interface would be required in order to develop such relations.
In this contribution, we aim to address these deficits.
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C. Aims and objectives

The primary objectives of this work are to provide quantitative information on the statistics of
unsteady film flows, specifically those relating to the dynamics of the interfacial waves in these flows,
and to investigate their mass-transfer characteristics over the range of experimentally and numerically
investigated conditions. The ultimate goal is to provide a set of relations linking the bulk-flow
statistics, namely the mean bulk velocity and bulk-velocity standard deviation with the film-height
statistics, and thus provide a tool for predicting the former using only knowledge of the latter.

Experimental data are recovered by the simultaneous application of planar laser-induced fluoresce
(PLIF) and particle tracking velocimetry (PTV) [38], and are complemented by DNSs, for falling-film
flows spanning the range Re = 10–291, liquids with Ka = 85, 350, and 1800, and inlet (flow-rate)
forcing frequencies of fw = 7 and 10 Hz. Additional DNSs at different upstream locations relative
to the imaged (in the experiment) region of the flow are also performed, along with DNSs of
film flows pertaining to different Re, Ka, and β values, in order to expand the parameter space
of our investigation. Following a brief introduction to the experimental techniques and numerical
methodologies that are employed in our study, we present mean bulk velocity, bulk-velocity standard
deviation, and bulk-velocity coefficient of variation results across the range of flow conditions
that were investigated both experimentally and by DNSs. We then proceed to the main body of
our analysis, which builds upon our previous research effort (see Ref. [39]), and specifically the
Reynolds-like decomposition of the time-varying mean flow rate into steady and unsteady terms. In
our previous paper, we showed that the former is represented by the product of the mean film height
and mean bulk velocity, which varies linearly with the flow Re, and the latter by the covariance of
the film-height and bulk-velocity fluctuations, which varies linearly with the film-height variance.
These quantities were recovered experimentally, by generating film-height and bulk-velocity time
series, and combining them into flow-rate time series. In the present study, we reproduce these results
numerically, expand the analysis to include additional flow conditions, and study the evolution of the
steady and unsteady terms as a function of distance from the flow inlet by DNSs. We then link the
magnitude of these terms with the film-height and bulk-velocity statistics, as well as the magnitude
of the h/hN ratio. Finally, we use these relations to devise an efficient and systematic methodology
for predicting the bulk-velocity statistics, as well as the magnitude of the steady and unsteady terms,
using only film-height information and the mean flow rate, which are considerably easier to obtain
experimentally compared to two-dimensional (2-D) velocity distributions (these are necessary to
recover the bulk-velocity statistics).

II. EXPERIMENTAL METHODOLOGY

A. Experimental facility

The experimental flow facility comprising the flow loop, test section, and optics is described in
detail in previous publications (see Refs. [4,38,39]), and therefore only a brief summary is provided
here for clarity and completeness. The test section over which liquid-film flows develop comprises
a rectangular, 400 × 290 mm glass sheet installed on an aluminium frame and inclined at β = 20◦
to the horizontal [Fig. 1(a)]. The flow is dispensed uniformly along the span of the test section
by a settling chamber featuring a knife edge, which is installed at the flow inlet. The liquid flow
rate through the inlet (settling chamber, knife edge) and onto the test section planar substrate is
pulsed. This is achieved, upstream of the chamber, by bypassing a portion of the flow through a
throttle valve, which is rotated by a stepper motor in order to allow the accurate setting of the wave
frequency. The amplitude of pulsation is determined by the fraction of the total flow that is directed
through the valve. The time-varying flow rate is measured using an ultrasonic flowmeter installed
upstream of the settling-chamber manifold.

Before proceeding with a presentation of the measurement techniques and numerical methodolo-
gies that we employ, it is essential to comment on the selection of the two fw values that we impose.
These were limited, at the upper bound, by our excitation setup which allows for disturbances of up
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FIG. 1. Schematic of the experimental facility and sample wave- and phase-locked average, film height,
and flow-field measurements by application of PLIF and PTV (reproduced from Figs. 1 and 4 in Ref [39]).
(a) Test-section schematic showing the settling chamber and substrate, and the light-sheet orientation relative
to the flow. (b) Wave- and phase-locked average film height near the crest of a solitary wave for a flow
with Re = 21, Ka = 85, and fw = 7 Hz. (c) Wave- and phase-locked average velocity field corresponding to
panel (b).

to ≈11 Hz to be imposed by forcing the inlet flow rate periodically, and at the lower bound by the
threshold frequency below which the regular wave pattern is destroyed by the emergence of parasitic
waves (see, for example, Ref. [27]). Yet, as we showed in Ref. [39], the employment of fw = 7
and 10 Hz often yields distinct wave topologies and film-height statistics. We would also like to
emphasize that the selected frequencies do not coincide with the natural frequency (i.e., the most
amplified mode), which depends on the fluid properties and can therefore vary with the liquid Ka.
However, a comparison of the dynamics of films excited at their natural frequency to films excited
at other frequencies falls beyond the scope of our current study, which rather focuses on relating the
film-height to the bulk-velocity statistics over a large range of flow Re and liquid Ka.
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B. Optical diagnostic techniques

In order to conduct PLIF and PTV measurements, the flow is seeded with rhodamine-B dye
and glass hollow spheres (11 μm mean diameter) respectively. Excitation and imaging are both
performed from the substrate side (underneath), in order to limit image distortions, by employment
of a double-cavity frequency-doubled Nd:YAG laser operated at 100 Hz and a pair of LaVision
VC-Imager Pro HS 500 CMOS cameras (one for collecting the rhodamine fluorescence and one
for the particle scattering signal). The imaging planes of both cameras are mapped and corrected
for perspective distortions using a calibration graticule immersed inside the employed liquid and a
pinhole model available in LaVision’s Davis software. The spatial resolution varies between 28.0
and 29.7 μm/pixel depending on the experimental run. The imaged domain (region of interest)
along the streamwise direction of the flow extends to approximately 33 mm, and the downstream
distance where measurements are collected corresponds to 0.256 m, the furthermost downstream
location that was optically accessible in our flow facility.

Both PLIF and particle images are subjected to perspective-distortion corrections and reflection
removal. The two interfaces (solid-liquid and gas-liquid) are first identified in the PLIF images by
means of dedicated MATLAB algorithms developed in house, and then mapped onto the particle images
for masking. The particle images are used to calculate 2-D velocity-vector maps (PIV calculation) by
means of a four-pass cross-correlation algorithm available in Davis, with a vector-to-vector spatial
resolution of ≈220–240 μm. Individual particles are tracked (PTV calculation) by employment of
the obtained PIV results as reference estimators of the velocity field.

C. Error estimation

A series of independent experiments were conducted for error estimation and technique validation
purposes. Film-height measurements on flat films (Ka = 14.1) were compared to Nusselt-height
calculations, with a resulting average deviation of ≈20 μm. Based on this test, as well as other
carefully designed validation experiments, the relative uncertainty associated with the instantaneous
and local film-height measurements is estimated at �3%.

PTV-derived interfacial and bulk-velocity measurements were also compared to Nusselt-solution
results, with the corresponding mean deviations amounting to 3.2% for both velocity measures.
Finally, based on flow rate comparisons between PLIF/PTV-derived and flow-meter data, a mean
relative deviation of 1.6% was obtained over a total of six flat and nine harmonically excited flows.
This value is smaller than the uncertainty associated with the flow-meter measurement (3%), so the
latter is used as an estimate of our mean flow-rate measurement error (for more details, the reader is
referred to Refs. [38,39]).

III. NUMERICAL METHODOLOGY

Like with our experimental apparatus, the computational framework for interfacial flows has been
developed in our previous works [49–53] and the reader is referred to these for technical details. Here
we review the main ingredients of our framework, again for the purposes of clarity and completeness.

The incompressible flow of the immiscible two-phase system is governed by the momentum
equations (using the Einstein notation),

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − ∂p

∂xi

+ ∂

∂xj

[
μ

(
∂ui

∂xj

+ ∂uj

∂xi

)]
+ ρ gi + fσ,i , (6)

and the continuity equation,

∂ui

∂xi

= 0, (7)
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where t represents time, u is the velocity, p is the pressure, ρ is the density, μ is the dynamic
viscosity, and f σ is the volumetric surface force acting at the liquid-gas interface.

The governing equations are solved using a general-purpose finite-volume framework for the
simulation of interfacial flows [49], resolving all relevant length and time scales. The momentum
equations, see Eq. (6), are discretized using a second-order backward Euler scheme for the transient
term while the spatial terms are discretized using central differencing [49]. The continuity equation,
see Eq. (7), is discretized using a specifically designed momentum-weighted interpolation method
proposed by Ref. [49].

The volume-of-fluid (VOF) method [54] is adopted to capture the interface separating the gas
and liquid phases. The local volume fraction of both phases is represented in each mesh cell by
the color function φ, with φ = 0 in the gas phase and φ = 1 in the liquid phase. The interface is
located in mesh cells with 0 < φ < 1. The local density ρ and viscosity μ are calculated by an
arithmetic average based on the local color function φ [50]. The advection of φ is governed by the
linear advection equation:

∂φ

∂t
+ ui

∂φ

∂xi

= 0, (8)

based on the underlying flow with velocity u, which is discretized using a compressive VOF
methodology [51]. The surface force per unit volume is described by the continuum surface force
(CSF) model [55] as

fγ,i = σ κ
∂φ

∂xi

, (9)

where κ is the interface curvature, assuming a constant surface tension coefficient γ and neglecting
mass transfer between the bulk phases. No convolution is applied to smooth the surface force [52].

The 3-D computational domain has dimensions Lx × Ly × 0.1hN, with Lx being case dependent
and Ly = 4–6 hN. The computational domain is represented by a Cartesian mesh with a minimum
resolution of 10 cells per Nusselt film height hN. The numerical time step applied in the presented
simulations satisfies a Courant number of Co = 
tu |u|/
x � 0.25, as well as the capillary time-step
constraint [53]. A no-slip condition is enforced at the substrate and a free-slip boundary condition is
applied at the top (gas-side) boundary. At the domain inlet the film height is constant, h(x = 0) = hN,
and a semiparabolic velocity profile is prescribed for the liquid phase, including a monochromatic
forcing with frequency f and amplitude A, given as

u(x = 0, 0 � y � hN) = 3

2
[1 + A sin (2πf t)]

(
2 y

hN
− y2

h2
N

)
UN. (10)

For the gas phase, a spatially invariant velocity is prescribed:

u(x = 0, hN < y � 4hN) = 3
2 [1 + A sin (2πf t)]UN. (11)

The domain outlet is modeled as an open boundary [25,33], which assures that the flow can leave
the domain with minimal reflections. Initially, at time t = 0, the velocity field is fully developed and
the film is flat.

IV. FLOW STATISTICS

In previous contributions, we compared wave crest and trough height, wave speed, interfacial
velocity, and axial velocity profile data generated by the application of PLIF and PTV with data
generated by DNSs of the same flows and at the same downstream location where experimental
measurements were collected [39]. In the following sections we present and compare experimental
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TABLE I. Flow conditions and liquid properties for the falling-film flows examined in the present work.
Measurements were collected at a distance 0.256 m downstream of the flow inlet. The substrate inclination
angle was set to β = 20◦ in all cases.

Re fw [Hz] Ka νf [106 m2 s−1] ρf [kg m−3] γf [103 N m−1] Method

11 7, 10 85 15.6 1170 58.7 Exp & DNS
14 7, 10 85 15.6 1170 58.7 Exp
21 7, 10 85 15.6 1170 58.7 Exp & DNS
25 7, 10 85 15.6 1170 58.7 Exp & DNS
37 7, 10 350 5.77 1113 59.7 Exp
45 7, 10 350 5.77 1113 59.7 Exp & DNS
54 7 350 5.77 1113 59.7 Exp
65 7, 10 350 5.77 1113 59.7 Exp & DNS
113 7, 10 1800 1.71 1170 58.1 Exp
152 7, 10 1800 1.71 1170 58.1 Exp
195 7, 10 1800 1.71 1170 58.1 Exp
238 7, 10 1800 1.71 1170 58.1 Exp
291 7, 10 1800 1.71 1170 58.1 Exp

(“Exp”) and DNS results on film waviness, based on two quantitative measures of this film
characteristic: (i) the standard deviations of the film height and bulk velocity, σh and σU, respectively;
and (ii) the film-height and bulk-velocity coefficients of variation (standard deviations normalized by
the respective means), σh/h and σU/U , respectively. To the best of our knowledge, such comparisons
have not been pursued previously in the literature. The flow Re, fluid (liquid) Ka, and forcing
frequency, fw, of the investigated flow conditions in the experiments and DNSs are given in Table I.
The flows considered comprise three aqueous-glycerol solutions (Ka = 85, 350, and 1800), Re
spanning the ranges Re = 10–25, 37– and 112– respectively, and forcing frequencies fw = 7 and
10 Hz. DNS data are provided for three Re per liquid solution for flows pertaining to liquids with
Ka = 85 and 350.

In the experiments, film-height and bulk-velocity statistics were calculated from time series
such as those presented in Fig. 2 (data corresponding to a ≈0.8-s recording period), for a flow
with Ka = 350, Re = 65, and fw = 10 Hz. These were, in turn, generated by space averaging
the measured film heights and bulk velocities locally over a 100-pixel (≈2.8-mm) flow region
on a per-image basis, with each PLIF/PTV image pair providing a pair of film height and bulk
velocity data points. For film flows excited at fw = 7 Hz, a total of 700 images were recorded per
flow condition, while for film flows excited at fw = 10 Hz, a total of 500 images were recorded
instead, yielding in both cases temporal records that comprise ≈50 waves. Film-height standard
deviations were also calculated, for a wide range of flow conditions, using our entire data records
(i.e., all measurement points in each image and all available images), as well as time series that
were compiled using data that were extracted locally, but from nonsuccessive frames. The standard
deviations that were obtained from the different data samples did not vary by more ≈3% for the
same flow condition.

The mean film heights, h, and mean bulk velocities, U , were calculated using Eqs. (12) and
(13), while the film-height and bulk-velocity standard deviations, σh and σU, were calculated using
Eqs. (14) and (15), respectively, with N = 700 when fw = 7 Hz and N = 500 when fw = 10 Hz.
The mean values are illustrated as continuous lines along the time-varying signals in Fig. 2, while
the standard deviations are represented by dashed lines of magnitude equal to h ± σh and U ± σU,
respectively. Also drawn about the mean values of the film height and bulk velocity are the film-height
and bulk-velocity fluctuations (blue stems), which are calculated according to h′

i = hi − h and
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(a)

(b)

FIG. 2. (a) Film-height and (b) bulk-velocity time series plotted over a ≈0.8-s recording-period for a flow
with Ka = 350, Re = 65, and fw = 10 Hz. Also shown are the film-height and bulk-velocity fluctuations, h′

and U ′, respectively, the mean film height and bulk velocity, h and U , respectively, and the film-height and
bulk-velocity standard deviations, σh and σU, respectively.

U ′
i = Ui − U , respectively, at every point, i, along the time series:

h = 1

N

N∑
i=1

hi, (12)

U = 1

N

N∑
i=1

Ui, (13)

σh =
√√√√ 1

N

N∑
i=1

(hi − h)2, (14)

σU =
√√√√ 1

N

N∑
i=1

(Ui − U )2. (15)

The procedure that we followed to extract the film height and velocity data from the processed
PLIF and PTV images is described in greater detail in Ref. [39], where local film-height and
bulk-velocity measurements were combined in order to generate flow-rate time series. The latter
were used to access the validity and accuracy of the combined PLIF/PTV measurement technique
by comparing the obtained mean flow-rate data with flow-meter measurements, and also to link,
via a simple linear relation that included the mean flow rate and the wave speed, the local and
instantaneous flow rate to the fluctuation of the local and instantaneous film height. In the DNSs, the
film-height and bulk-velocity statistics were calculated from data that were generated at the same
downstream distance, x = 0.256 m, as the experimental data, as well as other locations upstream of
the former, over one spatial period (wavelength).
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A. Film-height statistics

Film-height standard deviation data relating to the examined film-flow conditions have been
presented in a previous publication [39], and thus, we only reiterate here any results that are essential
to the upcoming analysis. With increasing Re, σh increases; however, at the highest Re (Re = 65)
with Ka = 350 and fw = 10 Hz, there is some evidence of saturation. Despite the fact that these
trends are identified in both experimental and DNS data, the experimental σh values are higher
than the DNS values (in the flow cases with Ka = 85, the average deviation between experiments
and DNSs does not exceed 5%, while in those with Ka = 350, the average deviation corresponds
to approximately 13%). The observed deviations, which increase with the flow Re and liquid Ka,
can be directly attributed to the typically larger wave amplitudes, 
h = hmax − hmin, as well as the
more pronounced film-height fluctuations in the capillary-wave regions observed in the experiments.
These, in turn, can be linked to the parabolic crestline shapes of the nominally 2-D waves, which
trigger a modest increase of the wave amplitudes along the test-section centerline, depending on
the liquid Ka and channel width w (see, for example, Ref. [56]). It should also be noted at this
stage that the finite width of our test section and the presence of side walls in the experiment
(unlike in the DNS) are not expected to markedly suppress the primary instability. Vlachogiannis
et al. [57] and Leontidis et al. [58] have shown that at low inclination angles the dependence
of the stability characteristics of film flows on the channel width is particularly prominent.
However, for the range of flow Re, the inclination angle β, and the channel width w employed
in our experimental campaign, the flow behavior should mimic closely that of an infinitely wide
channel.

For the Ka = 1800 flows, on the other hand, σh decreases slightly with increasing Re over the
range Re = 112–291. The ratio σh/h decreases monotonically throughout the range of examined
flow Re for both the Ka = 350 and Ka = 1800 data sets, whereas it first increases and subsequently
saturates in the case of the lower Ka = 85 flows. Among the presented data, σh/h peaks at a maximal
value of 0.43 in the case of the Re = 37, Ka = 350, and fw = 7 Hz flow.

B. Bulk-velocity statistics

Much smaller deviations (of the order of the experimental errors associated with the film height,
bulk velocity, density, viscosity, surface tension, and flow rate measurements and any numerical
errors) are observed between our experimental and DNS bulk-velocity results depicted in Fig. 3.
Furthermore, the trends observed for σU data, and more so the σU/U data, deviate significantly from
those discussed earlier for σh and σh/h, except for flows with Ka = 85 that show similar trends.
Specifically, σU increases over all Re for the Ka = 350 flows, and is almost invariant to Re for
Ka = 1800, whereas σU/U falls rapidly with increasing Re in both cases over the same range of
conditions. This is in contrast to the flows with Ka = 85, in which σU/U increases with increasing
Re before saturating (similarly to σh/h). Interestingly, the bulk-velocity coefficient of variation peaks
at a near-identical value as the film-height coefficient of variation, i.e., σU/U ≈ 0.45. Owing to the
lack of such bulk-velocity information in the literature, no comparisons between our results and
those of other researchers were pursued.

The different trends between σU/U and Re on one hand, and σh/h and Re on the other, can largely
be attributed to the significantly stronger variation of U compared to h. Based on the Nusselt solution
to the NS equation, the bulk velocity scales with h2; even though we have shown in Refs. [38,39]
that this relation under- or overpredicts the true flow velocity depending on the film topology, U

increases (incrementally) more with the Re than h does. For example, for the examined flows with
Ka = 350 and fw = 7 and 10 Hz, h increases by ≈30% between Re = 37 and 76 for either wave
frequency, while U increases by ≈70% and ≈55%, respectively. Thus, as the increase of U is not
compensated by an increase of similar extent in the σU data, σU/U falls, at least for the flows
with Ka = 350 and Ka = 1800. Regarding the Ka = 85 films, we observe that σU doubles over
the examined Re range when fw = 7 Hz, and triples when fw = 10 Hz, while U increases, once
more, by ≈70%. The increase in σU/U with the flow Re, in this case, is attributed to the growth
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(a) (b)

FIG. 3. Bulk-velocity statistics obtained by application of PTV and DNSs of the same flows. (a) Bulk-
velocity standard deviation, σU, plotted against the flow Re, for the flow conditions provided in Table I.
(b) Coefficient of variation of the bulk-velocity, σU/U , plotted against the flow Re for the same flow conditions.

of high-amplitude solitary waves over the examined Re range (see Ref. [39]), as evidenced by the
significant increase in σh (by ≈70% when fw = 7 Hz and ≈140% when fw = 10 Hz between
Re ≈ 10–25).

Figure 4 is a plot of σh/h against σU/U , and reveals near-linear relationships with some indication
that data generated for fw = 7 and 10 Hz pertaining to the same Ka may collapse over the range
of investigated Re. This collapse is strongest for the data obtained from the Ka = 1800 films: With
increasing Re, the film-height coefficient of variation varies almost linearly with the bulk-velocity
coefficient of variation. Despite the trends observed among flows forced at the same frequency and
pertaining to the same liquid Ka, a clear relationship between σh/h against σU/U cannot be derived
based on the available experimental and numerical data. The link between the interface (σh/h) and
the flow-field unsteadiness (σU/U ) will, however, be considered in the next section.

V. FLOW UNSTEADINESS

A. Reynolds decomposition of the time-varying flow rate

In our previous contribution in Ref. [39], we examined the impact of flow unsteadiness on the
mass-transfer capacity of harmonically excited falling films by a Reynolds-like decomposition of
the time-varying flow rate per unit span of the flow into mean, Q, and fluctuating, Q′, components:

Q = Q + Q′ = Uh. (16)

In particular, we showed that upon decomposing and averaging the time-varying flow rate per unit
span, Q, the average flow rate, Q, can be described by the sum of (i) the product of the mean bulk
velocity, U , and mean the film height h and (ii) the covariance of the film-height and bulk-velocity
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FIG. 4. Film-height coefficient of variation, σh/h, plotted against the bulk-velocity coefficient of variation,
σU/U , over the range of flow conditions presented in Table I.

fluctuations, h′ and U ′, respectively, that represents the nonlinear coupling between the local and
instantaneous film height h and the local and instantaneous bulk velocity U . We refer to the first
term of Eq. (17) as the steady term and to the second term as the unsteady term:

Q = U h + U ′h′. (17)

Over the range of examined flow conditions (Table I), the steady terms were found to vary linearly
with Re, with gradients that were closely approximated by the fluid kinematic viscosity for each
Ka data set, and the unsteady terms were shown to vary linearly with the film-height variance, σ 2

h ,
effectively a measure of the film waviness.

Here we revisit these experimental results by (i) complementing them with DNSs, including
simulations of water flows with Ka = 4363, β = 45◦, Re = 40, 60, 80, 100, and 120, and fw =
20 Hz, and (ii) studying the evolution of the relative magnitudes of these terms as a function of
distance from the flow inlet using DNSs. The latter will be used to enable a link between the flow
statistics discussed in the pervious section and the flow unsteadiness, expressed as the ratio of the
unsteady term to the mean flow rate, U ′h′/Q.

The relation obtained between the steady terms and the flow Re is presented in Fig. 5. We
emphasize here that Re is based on the time-mean flow rate measured upstream of the inlet, Q, and
not the steady-term product U h [the difference between the two was discussed above in relation to
Eq. (17)]. With increasing Ka, the deviations between the gradients of linear fits to the data and the
relation based on the fluid kinematic viscosities increase from 7% (Ka = 85) to 8% (Ka = 350), 9%
(Ka = 1800), and 11% (Ka = 4363).

The unsteady-term data are shown in Fig. 6. Even though experiments and DNSs display the
same linear trends, the experimentally recovered σ 2

h and U ′h′/Q values are higher than their DNS
counterparts for the same flow conditions. Based on our previous discussion regarding the subtle yet
consistent underprediction of the film-height and bulk-velocity standard deviations by the DNSs,
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(a) (b)

FIG. 5. Steady terms compiled using both experimental and numerical data for flows with Ka = 85, 350,
1800, and 4363, plotted against the flow Re (based on the results presented in Fig. 13 in Ref [39].). Fits to
the four Ka data sets are provided alongside plots of the mean flow rate against the flow Re, referred to in the
legend as “νf fit.”

this result is unsurprising; the comparatively stronger variations of the interface height and bulk
velocity are also reflected in the larger film-height and bulk-velocity fluctuation amplitudes. The
linear relation between the unsteady terms and the film-height variance can be attributed to the high
degree of correlation between h and U . In the next section, we discuss the growth of the unsteady
terms with increasing distance from the flow inlet, and therefore with increasing wave amplitude, and
provide further insight regarding the coupling between the film-height and bulk-velocity fluctuations.
It should, however, be noted that strong evidence in support of this thesis can already be found in the
linear relation that we reported in Ref. [1], between the local and instantaneous flow rate and the local
and instantaneous film height, based on direct experimental measurements as well as DNSs of the
same flows. This result suggests that for each film height, the flow rate (in the axial direction of the
flow) is fixed irrespective of the local film topology and according to a simple relation that comprises
the wave speed, the mean flow rate, and the mean film height. The local and instantaneous flow rate
is given by the product of the local and instantaneous film height and bulk velocity, and thus, the
variation of the bulk velocity about the mean value (bulk-velocity fluctuation, U ′) is expected to track
the film-height fluctuations, h′, a statistical measure of which is the film-height standard deviation, σh.

B. Development of flow unsteadiness

The observation of nonzero U ′h′ values in both experiments and DNSs is associated with flow
unsteadiness at the downstream location where measurements were collected. In the case of a steady
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(a) (b)

FIG. 6. Unsteady terms compiled using both experimental and numerical data for flows with Ka = 85,
350, 1800, and 4363, plotted against the film-height variance (σ 2

h ) (based on the results presented in Fig. 14 in
Ref. [39]). Linear fits to the four Ka data sets are also provided: (a) Experimental results. (b) Numerical results.

flow, for example, the flow immediately downstream of the inlet, both U ′ and h′ are equal to zero
and the mean flow rate can be described by

Q = U h = UN hN. (18)

Once free-surface instabilities emerge downstream of this short-lived flat-film region, they grow and
eventually evolve into the 2-D solitary wave trains that are investigated here, as well in as our earlier
studies [4,33,38,39].

The development of interfacial waves is demonstrated in Fig. 7 by DNS of a film flow with
Ka = 350, Re = 45, and fw = 7 Hz, at distances x = 0, 0.056, 0.106, and 0.256 m (the measurement
location in the experiments) downstream of the flow inlet. In greater detail, the film height is plotted
over one spatial period (i.e., one wavelength), showing the growth of the solitary-wave amplitude
with increasing distance from the inlet which governs, along with the wavelength, the statistical
quantities σh/h and σU/U of the flow. Based on this plot, we conjecture that the magnitude of
the steady term will fall with increasing x until wave growth saturates, while the magnitude of
the unsteady term will increase. This prediction is examined in Fig. 8 over all flow conditions
with Ka = 85 and 350 (see Table I) that were examined numerically. As expected, U ′h′/Q ≈ 0
and U h/Q ≈ 1 near the inlet, downstream of which U h/Q drops while U ′h′/Q increases. The
highest value of the normalized unsteady term over the range of investigated flow conditions is
≈0.15. Another interesting observation that relates to the results of Fig. 8 is that for certain flow
conditions, for example, for the flow with Ka = 350, Re = 45, and fw = 10 Hz, no saturation in
the fall of h U/Q with x, or the growth of U ′h′/Q with x is observed, while in others, such as the
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FIG. 7. Film height plotted over one spatial period (wavelength) for a flow with Ka = 350, Re = 45, and
fw = 7 Hz. The DNS results correspond to distances x = 0, 56, 106, and 256 mm downstream of the flow inlet.
The latter coincides with the location where PLIF/PTV data were collected.

Ka = 85, Re = 10, and fw = 10 Hz flow, both seem to level off with increasing x. If the magnitude
of the steady and unsteady terms is used to gauge whether the growth of the examined 2-D waves
has saturated (as the amplitude of the solitary waves increases the film-height and bulk-velocity
fluctuations also increase), then the plotted data suggest that in some cases, these waves are still
growing. The experimental and numerical results that we show later on (see, for example, Figs. 9
and 10), however, indicate that the relations we propose (linking the variation of the steady and
unsteady terms to the coefficients of variation of the film height and the bulk velocity), are not

(a) (b)

FIG. 8. Normalized steady, U h/Q, and unsteady terms, U ′h′/Q, plotted against the downstream distance
from the inlet (x = 0.056, 0.106, 0.156, 0.206, 0.256 m), for all flow conditions that were investigated
numerically from Table I.
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(a) (b)

FIG. 9. Product of the coefficients of variation of the film height and bulk velocity, σhσU/(h U ), against
the downstream distance from the inlet x = 0.056, 0.106, 0.156, 0.206, and 0.256 m, and of the normalized
unsteady term, U ′h′/Q, for all flow conditions from Table I that were simulated numerically.

contingent upon the saturation of the wave growth – but are instead applicable to any stage of
the 2-D wave development, provided that no redistribution of liquid in the transverse direction of
the flow (corresponding to the 2-D to 3-D wave transition) takes place at the examined region of
the flow. This was confirmed in our experiments by comparing mean flow-rate measurements that
were recovered by simultaneous application of PLIF/PTV, with independent ultrasonic flow-meter
measurements across the range of investigated film-flow conditions [39] – but would not necessarily
be the case if the film height was transversely modulated. Moreover, our mean film-height and
bulk-velocity measurements, as well as our local film-height and velocity measurements that were
generated along the investigated wave topologies, match the 2-D DNSs remarkably well throughout
the range of examined film-flow conditions.

A plot of σhσU/(h U ), i.e., the product of the coefficients of variation of the film height and bulk
velocity, against x, the distance from the inlet, is provided in Fig. 9. The same quantity, σhσU/(h U ),
is also plotted against the unsteady term normalized by the mean flow rate, U ′h′/Q, and an excellent
correlation is observed between the two variables. The following remarks are appropriate here:

(1) The product of the coefficients of variation of the film height and bulk velocity increases
as the magnitude of the unsteady term normalized by the mean flow rate increases. This comes as
no surprise, as the magnitude of the covariance of the film-height and bulk-velocity fluctuations is
expected to be higher in wavier flows (i.e., in flows with increased σh/h).

(2) Consequently, any data extracted near the flow inlet appear near the origin of the plot,
while those extracted from far-downstream locations (e.g., at the PLIF/PTV measurement location,
x = 0.256 m) are furthest away.
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FIG. 10. Product of the coefficients of variation of the film height and bulk velocity, σhσU/(h U ), against the
normalized unsteady term, U ′h′/Q, compiled from both experiments and simulations over all flow conditions
in Table I.

(3) The term y = σhσU/(h U ) can be described as varying as a power law y = axb relative to
x = U ′h′/Q. At low values of σhσU/(h U ), σhσU/(h U ) � U ′h′/Q (data extracted from near the
flow inlet), whereas at higher values (>0.05) this trend is reversed, i.e., σhσU/(h U ) > U ′h′/Q.
However, h U < Q for an unsteady flow, and σh σU � U ′h′ according to the Cauchy-Schwarz
inequality. Consequently, the relation

σhσU

h U
� U ′h′

Q
(19)

must be obeyed, and therefore the relation σhσU/(h U ) < U ′h′/Q observed near the origin is most
likely due to numerical errors. In addition, when U ′h′ = 0 (steady flow), σh = 0 and σU = 0, and
any fit to the data should include the origin.

The same plot of σhσU/(h U ) as a function of U ′h′/Q is reproduced in Fig. 10, this time also
including experimental results from all flow conditions given in Table I. The experimental data
extend to higher U ′h′/Q values owing to the stronger interface-height and velocity-field fluctuations
(discussed earlier in the paper). Specifically, the best (least squares) linear fit to the experimental
data in Fig. 10 is described by the relation

σhσU/(h U ) = 1.20 U ′h′/Q, (20)

with a coefficient of determination of R2 = 0.96, whereas for the DNS data we obtain

σhσU/(h U ) = 1.07 U ′h′/Q, (21)

with R2 = 0.95.
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If a power-law fit is employed instead, the relation

σhσU/(h U ) = 1.87 (U ′h′/Q)1.24 (22)

is obtained for the DNS data, with R2 = 0.98. Both the linear and power-law fits are accurate
descriptions of the data.

Based on the so-far conducted analysis, the following scenario for the evolution of film
unsteadiness is proposed. For a Nusselt flow, for a low-Re flow of very viscous fluid or for the
flow immediately downstream of the inlet, no interfacial waves are observed (σh/h = 0, σU/U = 0)
and the flow is steady. Thus, the film height, bulk velocity, and flow rate are constant, such
that h = h = hN, U = U = UN, and Q = Q = h U = hNUN with U ′h′ = 0. The emergence of
interfacial waves implies that σh/h > 0 and σU/U > 0 as h,U , and Q begin to vary spatiotemporally.
Consequently, Q �= Q and instead Q = Q + Q′ = hU , and Q = U h + U ′h′. With increasing
distance from the inlet, the wave amplitudes grow, resulting in increasing values of σh/h and
σU/U until wave growth saturates. Over this development length, U h/Q decrease and U ′h′/Q
increases to compensate.

Throughout the wave development (onset, amplification) process, the film-height and bulk-
velocity variations, σh/h and σU/U respectively, are linked to the growth of the unsteady
term, U ′h′/Q, and decay of the steady term, U h/Q, via a simple relationship. According to
the experimental measurements, this relationship is of the form σhσU/(h U ) = Ae(U ′h′/Q) =
Ae(1 − U h/Q) (where Ae is a constant), which is bounded by σhσU/(h U ) � U ′h′/Q, or Ae � 1.
According to the simulations, the same relationship is better described by a function of the form
σhσU/(h U ) = As(U ′h′/Q)Bs = As(1 − U h/Q)Bs (where As and Bs are constants). Based on the
results presented in Fig. 10, Ae = 1.20, As = 1.87, and Bs = 1.24. In finding these constants, data
spanning the range U ′h′/Q ≈ 0.03–0.16 and σhσU/(h U ) ≈ 0.03–0.18 and stemming from flows
covering the range of conditions Ka = 85, 350, and 1800, Re ≈ 10–290, and fw = 7 and 10 Hz
were used.

From a practical point of view, this is an extremely valuable result; it can be used as a vehicle to
link the film-height variations to those of the bulk velocity, irrespective of the flow condition and
location relative to the inlet. In the upcoming section, this result will be complemented by a second
relationship that will link this analysis with a (quasi)steady analysis based on the Nusselt solution.

At this point, it is essential to discuss further the physical motivation for the linear and power-law
fits to the σhσU/(h U ) and U ′h′/Q data. Regarding the numerical results of Fig. 9(b), we observe
that a power-law fit describes the data better than a linear fit does; however, we also highlight the
violation of the Cauchy-Schwartz inequality at lower σhσU/(h U ) or U ′h′/Q values. In contrast, the
experimental data extracted from x = 0.256 m (see Fig. 10) suggest a linear relationship without
the need to force the fit through the origin. The slope of the fitted line corresponds to ≈1.20 in
this case, which provides us with a correlation coefficient between (the instantaneous values of)
h and U of 0.83 Q/(h U ). Given that the steady term, h U/Q, varies in the range ≈0.8–1 in
the experiments depending on the waviness of the flow (lower when the interface is more agitated
and vice versa), the correlation coefficient will vary in the range 0.8–1. Thus, the quasilinear trend
between σhσU/(h U ) and U ′h′/Q simply highlights the fact that h and U are strongly coupled,
irrespective of the film waviness. This forms the basis of the analysis we carried out in Ref. [39],
where we linked the instantaneous film height to the instantaneous flow rate via a simple linear
relation, as well as the analysis we carry out at present; the accurate prediction of the bulk-flow
statistics from the film-height statistics would otherwise be impossible. The fact that, based on
the expression we recover by fitting a first-order polynomial to the data, the correlation coefficient
falls when the film waviness falls can most probably be attributed to inaccuracies associated with
the film-height and bulk-velocity measurements which mainly impact the lower range of measured
h U/Q and σhσU/(h U ). Thus, a power-law fit akin to the one fitted to the numerical data is more
representative of the true coupling between h and U .
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(a) (b)

FIG. 11. Normalized (by the Nusselt height) mean film height h/hN, as a function of (a) the unsteady term,
U ′h′/Q, and (b) the product of the coefficients of variation of the film height and bulk velocity, σhσU/(h U ).
Linear fits are shown to both experimental and numerical data.

C. Flow unsteadiness and quasisteady Nusselt flow description

As already noted in the introduction, despite the fact that the variation of h/hN (ratio of the
mean film height to the Nusselt film height) is linked to the interface waviness and associated
bulk-velocity fluctuations, a quantitative relation describing this link is not available. In light of
our previous analysis, we proceed here to plot h/hN against the corresponding unsteady term,
U ′h′/Q, and against the product of the coefficients of variation of the film height and bulk velocity,
σhσU/(h U ), in Fig. 11.

As expected, for the same h/hN values, the experiments show higher film-height and bulk-
velocity fluctuations than the corresponding numerical simulations, a result that we associate with
the parabolic crestline shapes and increased wave amplitudes along the test-section centerline (see
relevant discussion in Sec. IV A). The mean deviation between the measured and numerically
obtained mean film heights over all flow conditions with Ka = 85 and 350 is ≈2.5%, with the latter
(simulations) consistently underpredicting the experiments. These deviations may be attributed to
small systematic errors in the PLIF measurements (of the order of a few μm) or the flow-rate
and viscosity measurements which are associated with 2% and 3% errors respectively, as well
as numerical errors. Despite the fact that these deviations are small and the overall agreement
between experiments and simulations is very satisfactory, it should be noted that any flow conditions
that display h/hN � 1 are mainly related to the Ka = 1800 flows in the range Re = 112–291, a
result that is supported by data provided by Lel et al. [43] (Re = 2–700) and Drosos et al. [46]
(Re = 60–360), who have shown that depending on the inclination angle, distance from the inlet,
and liquid properties, film flows often obey h � hN for Re as low as Re ≈ 100.
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A second noteworthy observation concerns the overall trend, which is common to both
experiments and simulations, and in particular, the linear decrease of h/hN with both U ′h′/Q
and σhσU/(h U ): With this result, we link in a quantitative manner, the Nusselt solution to the
NS equation (quasisteady/Nusselt falling-film flow) to the unsteadiness observed in actual wavy
films. Both experimental and numerical data are fitted with first-order polynomial functions from
the experiments,

h/hN = −0.56 U ′h′/Q + 1.03 (with R2 = 0.99), (23)

h/hN = −0.39 σhσU/(h U ) + 1.03 (with R2 = 0.94), (24)

and according to the DNSs,

h/hN = −0.50 U ′h′/Q + 1 (with R2 = 0.98), (25)

h/hN = −0.44 σhσU/(h U ) + 1 (with R2 = 0.96). (26)

The obtained goodness of fit results are very satisfactory in both experiments and simulations.
Furthermore, the gradients from the two methods are closely matched, an interesting result given that
in the experiments, data from Ka = 1800 flows were also included in deriving these relations (mainly
high-Re flows that obey h � hN). It should be noted that for flows in the laminar-turbulent transition
regime, and more so for values corresponding to fully turbulent flows, a significant deviation from
the observed trends is anticipated. It would be important to revisit this remark in further future work,
by considering a series of experiments and/or simulations dedicated to addressing the effect of the
onset of turbulence on the relations we propose in the present study.

We noted in the introduction that the observation of h/hN � 1 in laminar, wavy film flows has
been attributed to the passage of large-amplitude solitary waves and the preceding capillary ripples,
which reduce the mean wall shear stress in comparison to a flat film (i.e., when the gas-liquid
interface remains undeformed). Here, we observe that in the presence of increased waviness (i.e., for
higher values of σhσU/(h U ), U ′h′/Q, or σ 2

h ) and for a fixed Ka, h/hN falls in a linear manner with
any of the three measures of waviness we have discussed so far, at least over the range of attained
h/hN. Interestingly, in Ref. [41], the intensity of the shear-stress fluctuations was shown to peak at
Re ≈ 35 for film flows with Ka = 1480. In our experiments, we observe the lowest h/hN values
at Re ≈ 20 when Ka = 85, and at Re ≈ 30 when Ka = 350 (see Ref. [38]), which is congruent
with the work by Tihon et al. [41]. Furthermore, the variation of h/hN with the flow Re for film
flows with Ka = 85 and Ka = 350 (i.e., for the cases where a clear minimum in h/hN is observed)
displays a very similar trend to the variation of the minimum wall shear stress as a function of the
flow Re, and an inverse trend to the variation of the maximum wall shear stress as a function of the
flow Re, which constitutes further evidence that this is indeed the mechanism that drives the h/hN

toward lower values when the film waviness increases. In greater detail, h/hN starts off at h/hN ≈ 1
at very low Re where the amplitude of the solitary waves is still small, then falls rapidly, reaching a
minimum, and finally increases again as the growth of the solitary-wave amplitude saturates.

VI. A METHODOLOGY FOR PREDICTING BULK-VELOCITY STATISTICS

A methodology for predicting the mean bulk velocity, U , and bulk-velocity standard deviation,
σU, and by extension the steady and unsteady terms, U h and U ′h′, in laminar falling-film flows has
been developed and will be presented in this section. In the context of a film-flow experiment, we
propose that the use of two simple relations, which require information only on the mean flow rate
(which can be obtained easily using a flow meter) and the statistics of the film height (specifically
only h and σh) suffices for the recovery of accurate bulk-velocity statistics. An error estimation and
quality assessment of the proposed methodology is undertaken separately for the experiments and
simulations based on our results, since flow three dimensionality, e.g., due to the presence of side
walls in the experiment, can lead to slightly different statistics compared to the simulated infinitely
wide 2-D film flows.
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The procedure according to which U and σU are predicted is initiated by considering the
correlation between h/hN and U ′h′/Q. In the case of the experiments, this correlation is described
by Eq. (27) (repeated from above for convenience),

h/hN = −0.56
U ′h′

Q
+ 1.03, (27)

while for the DNSs, the same correlation follows Eq. (28),

h/hN = −0.50
U ′h′

Q
+ 1. (28)

Using these equations and a knowledge of h/hN and Q, the magnitude of the unsteady term, U ′h′,
and therefore the steady term, U h, can also be obtained, the latter using

U h = Q − U ′h′. (29)

Based on this result and the direct measurement of h, U can then be calculated. Finally, using
Eqs. (30) and (31), which provide a link between the the unsteady term and the product σhσU/(h U ),
and given our knowledge of the measured σh, one can obtain σU. In the case of the experiments, this
final relation is given by Eq. (30) (repeated from above),

σhσU

h U
= 1.20

U ′h′

Q
, (30)

whereas for the DNSs it is given by Eq. (31):

σhσU

h U
= 1.87

(
U ′h′

Q

)1.24

. (31)

A. Error estimation

To assess the efficacy of the proposed methodology and to obtain quantitative estimates of the
errors associated with the predictions of U and σU, bulk-velocity statistics were estimated using the
above relations given the knowledge of the mean and standard deviation of the film-height and mean
flow-rate data relating to all flow conditions provided in Table I, which are used as inputs to the
relations.

The average absolute deviation (AAD) between the predicted and directly measured or simulated
bulk velocities, U , amounts to 1.3% and <1% respectively, over all flow conditions, with worst-case
deviations of ≈4% in both cases. By comparison, the mean deviation between all measured U values
and those calculated using Eq. (4), the Nusselt expression for the mean bulk velocity, corresponds to
≈10% for the experiments and to ≈5% for the simulations (for flows with Ka = 85 and 350 only).

Turning to the predictions of σU, the AAD between measured and predicted values is 8% for the
experiments and 6% for the simulations. It should be noted that in estimating σU using Eqs. (30) and
(31), we employed the predicted U values and not the ones obtained directly from the experiments
or simulations. When a linear rather than a power-law fit is employed to link the σhσU/(h U ) to
the unsteady terms in the analysis performed using the DNS data, the mean deviation between the
original and predicted values of σU increased to 8%, still a very satisfactory result.

It is evident then that the accuracy of the proposed methodology in predicting the bulk-velocity
statistics of laminar falling films is excellent, at least over the range of flow conditions that were
employed toward deriving the relevant relations. We would like to emphasize that in the case of the
experiments, the obtained low-deviation values exceeded our expectations, given that the combined
PLIF/PTV technique was not optimized for a particular range of flow conditions but was instead
developed so that it could be applied over a wide range of flows with reasonable accuracy; the mean
film height, for example, varies by a factor of ≈4 across the range of film-flow conditions examined
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TABLE II. Flow conditions and liquid properties of the film flows used to develop the relations provided in
Eqs. (32) and (33).

β [deg] fw [Hz] Re Ka νf [106 m2 s−1] ρf [kg m−3] γf [103 N m−1]

20 7,10 11,21,25 85 15.6 1170 58.7
20 7,10 45,65,76 350 5.77 1113 59.7
45 20 60,100,120 4363 0.899 998 72.0
75 20 40,60,80,100 3932 0.899 998 72.0
90 20 50,70,100,120 3887 0.899 998 72.0

in this study. Focusing on a narrower range of flows and utilizing higher magnification optics for the
velocity measurements could allow a much improved accuracy to be obtained.

A notable limitation associated with the prediction of the mean and standard deviation of the
bulk velocity by employment of the above method is the relatively modest sensitivity of h/hN to
changes in the product h U (or equivalently the unsteady flow-rate term, U ′h′). Even though the
ensuing effect on the relative error associated with the prediction of U is not particularly significant
(given that the magnitude of the error in the prediction of U is less than 2% for both experiments and
simulations), the error induced in the prediction of σU, both via the inherent uncertainty associated
with the correlations (i.e., the fit quality) and the propagation of the uncertainty in U , can be high.
Moreover, when the flow displays limited waviness (i.e., when σh is small), the relative error in
the calculation of σU can be large. On the other hand, the sensitivity of σhσU/(h U ) to changes in
U ′h′ is relatively high, which mitigates the aforementioned limitations and is the primary reason for
choosing Eqs. (30) and (31) to obtain an estimate of σU, rather than using a relation derived from
Fig. 11 (another reason being the higher fit quality obtained in the former). In the next section, we
revisit the relations we have used so far to predict U and σU, by including a wider range of flow
conditions by DNSs of water flows that were not investigated experimentally. This extended study
aims to establish the widespread applicability of these relationships in laminar falling-film flows.

B. Extended DNSs

Here we expand our analysis to include a wider range of flow conditions by DNS as shown in
Table II. In addition to the flows with Ka = 85 and Ka = 350 (β = 20◦) examined earlier, water film
flows flowing down β = 45◦, 75◦, and finally 90◦ (vertical) inclined substrates have been included.
The objective behind the inclusion of additional flow conditions is precisely to assess the suitability
and generality of the proposed methodology and the validity of our previous analysis over a broader
range of flow conditions.

Plots of h/hN against U ′h′/Q and σhσU/(h U ) are presented in Fig. 12, while a plot of U ′h′/Q
against σhσU/(h U ) is presented in Fig. 13. Linear fits are shown in Fig. 12, and a power-law curve
fit is shown in Fig. 13.

The relationships that can be used to recover the unsteady term, and by extension the mean and
standard deviation of the bulk velocity, are given in Eqs. (32) and (33):

h/hN = −0.50
U ′h′

Q
+ 1 , (32)

σhσU

h U
= 1.82

(
U ′h′

Q

)1.19

. (33)

The R2 values are 0.98 and � 0.99, respectively.
Aside from the power-law function fitted to the data in Fig. 13, a linear best fit is also included,

with the y intercept not forced through the origin (0,0). The value of R2 in this case was better
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(a) (b)

FIG. 12. Variation of h/hN as a function of (a) U ′h′/Q, and (b) σhσU/(h U ) obtained by DNS of flows
with Re, Ka, β, and fw as outlined in Table II.

than 0.99, suggesting that based on DNSs, the overall trend is close to linear over the examined
range of U ′h′/Q and σhσU/(h U ), with the exception of flow conditions with U ′h′/Q � 0.05 and
σhσU/(h U ) � 0.05. This particular region of the plot is occupied by data stemming from flows
that display very limited waviness, for example, very viscous flows or near-inlet flow data (see, for
example, Fig. 9) and are expected to have larger deviations.

As per our previous analysis, aimed at assessing the strength of the proposed methodology and at
obtaining quantitative estimates of the errors associated with the predictions of U and σU, predictions
of U and σU were obtained using the relations in Eqs. (32) and (33), along with the known mean
film height, film-height standard deviation, and the mean flow rate for the conditions provided in
Table II. The AAD between the predicted and simulated values of U is <1%, while that associated
with the prediction of σU is ≈5%. The maximum worst-case deviation is <20%. It should be noted
that we also calculated the deviations over all flow conditions pertaining to the Ka = 85 and 350
data sets (i.e., the data sets that were examined earlier, alongside the experimental results, in the
previous section) using the above relations rather than those presented in Eqs. (28) and (31) and
obtained near-identical values.

C. Methodology validation

In this final section we assess the accuracy of our methodology by contrasting results obtained
using our proposed relations with experimental and numerical results from flows that were not
included in deriving these relations. The relevant flow conditions are provided in Table III. A
total of six flow conditions, two from each set of experiments with Ka = 85, 350, and 1800, were
included (β = 20◦ in all cases), along with simulations of three flows with (i) β = 60◦, Re =
120, Ka = 4078, fw = 20 Hz; (ii) β = 90◦, Re = 50, Ka = 3887, fw = 50 Hz; and (iii) β = 90◦,
Re = 70, Ka = 3887, fw = 20 Hz. The distance downstream of the inlet where data were extracted
corresponds to x = 256 mm in the experiments and x = 250 hN in the simulations.
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FIG. 13. Plot of the product of the coefficients of variation of the film height and bulk velocity, σhσU/(h U ),
against the relative unsteady terms, U ′h′/Q, compiled using numerical data pertaining to all flow conditions of
Table II.

The predicted mean bulk-velocity, U
∗
, and bulk-velocity standard deviation values, σU

∗, obtained
using Eqs. (27) and (30) in the case of the experiments, and Eqs. (32) and (33) in the simulations,
were normalized by the experimental and numerical results respectively and are presented in Fig. 14
as a function of the flow Re. The mean and maximum relative deviations between U

∗
and U over the

six experimentally investigated flow conditions in the validation exercise amount to 2.2% and 5%
respectively, while for the three flow conditions examined by simulations, both mean and maximum
relative deviations amount to <1%. Further, the mean and maximum relative deviations between
σU

∗ and σU amount to 6% and 11% in the experiments and 4% and 8% in the simulations. Hence,
in both experiments and simulations, the observed deviations do not exceed those obtained earlier
between the experimental and numerical data employed to develop the relations and the predicted
values of U and σU based on these relations.

TABLE III. Flow conditions and liquid properties of the film flows used to assess the validity of the
experimentally derived correlations provided in Eqs. (27) and (30), and the DNS-based correlations provided
in Eqs. (32) and (33).

β [deg] fw [Hz] Re Ka νf [106 m2 s−1] ρf [kg m−3] γf [103 N m−1] Method

20 10 12,29 85 15.6 1170 58.7 Exp
20 10 45,77 350 5.77 1113 59.7 Exp
20 7 175,257 1800 1.71 1054 58.1 Exp
60 20 120 4078 0.899 998 72.0 DNS
90 50 50 3887 0.899 998 72.0 DNS
90 20 70 3887 0.899 998 72.0 DNS
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(a) (b)

FIG. 14. Predicted values of the bulk velocity: (a) mean, U
∗
, and (b) standard deviation, σU

∗, normalized
by direct experimental and numerical results from the same flow conditions (in Table III) and plotted as a
function of the flow.

VII. CONCLUSIONS

An optical measurement technique that combines simultaneous planar laser-induced fluorescence
(PLIF) with particle tracking velocimetry (PTV) was employed alongside direct numerical
simulations (DNSs) for the detailed characterization of the flow and interface statistics of
harmonically excited, planar falling-film flows. PLIF was employed in order to measure space-
and time-resolved film thickness, and PTC was employed to obtain 2-D velocity-field measurements
underneath the wavy film interface. The experiments used three different aqueous-glycerol solutions
corresponding to Kapitza numbers Ka = 85, 350, and 1800, spanned the range of Reynolds numbers
Re = 10–291, and had two inlet forcing frequencies fw = 7 and 10 Hz. Based on the PLIF and PTV
data, the variations of film height, bulk velocity, and flow rate were recovered along the wave
topology. The uncertainties associated with the film-height and bulk-velocity measurements are
estimated at �3% and ≈3%, respectively, while the error quoted for the PLIF- and PTV-derived
mean flow-rate measurements corresponds to 3%.

Building upon our previous research effort in Ref. [1], we generated film-height, bulk-velocity,
and flow-rate time series in order to study the dynamics of the unsteady film flows, and in particular
the film-height and bulk-velocity fluctuations over the range of experimentally and numerically
investigated flow conditions. In doing so, the local and instantaneous flow rate was decomposed
into steady and unsteady terms, U h and U ′h′, respectively, which were compared to the film-
height and bulk-velocity coefficients of variation, σh/h and σU/U , respectively, as well as to results
from quasisteady Nusselt flows. The most significant results that emerge from this analysis can be
summarized below as follows:

(1) The steady flow-rate (mass-transfer) term, U h, varies linearly with the flow Re, and the
unsteady flow-rate term, U ′h′, varies linearly with the film-height variance, σh

2, based on both
experimental and numerical results, which generally showed excellent agreement.

(2) The product of the coefficients of variation of the film height and bulk velocity, σUσh/(U h),
increases as the magnitude of the unsteady term relative to the mean flow rate, U ′h′/Q, increases.
This comes as no surprise, as the magnitude of the covariance of the film-height and bulk-velocity
fluctuations is expected to be higher for a wavier flow (i.e., a flow that displays more pronounced
film-height and bulk-velocity fluctuations).
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(3) This trend is observed in both experiments and simulations at a downstream distance of
x = 0.256 m, where the PLIF/PTV data were generated, as well as in simulations of the same
flows that included data over a range of distances, closer to the flow inlet. It is also found that with
increasing distance from the flow inlet, the normalized steady term U h/Q decreases, while the
normalized unsteady term U ′h′/Q increases. Linear fits can be used to describe these trends in both
the experiments and simulations; however, a power-law curve is found to fit the numerical data more
closely.

(4) The terms σUσh/U h and U ′h′/Q are both found to decrease linearly with the normalized
(by the Nusselt flow) thickness, h/hN; a result that links quantitatively the Nusselt solution to the
unsteadiness observed in real wavy falling films (and specifically, to the magnitude of these unsteady
terms).

(5) Based on the relations that were derived to describe the aforementioned trends, and also the
knowledge of the mean film height, h, film-height standard deviation, σh, and mean flow rate, Q, a
methodology for predicting the mean bulk velocity, U , and bulk-velocity standard deviation, σU, is
presented. In the experiments, the errors associated with the predictions of U and σU are estimated
at ≈1.5% and 8%, while in the simulations, these amount to <1% and <2%, respectively.

And as already mentioned, of particular interest would be the effect of the onset of turbulence on
the relations we propose here. We hope to examine this and related issues in future studies.
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