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Low-drag events in transitional wall-bounded turbulence
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Intermittency of low-drag pointwise wall shear stress measurements within Newtonian
turbulent channel flow at transitional Reynolds numbers (friction Reynolds numbers
70 – 130) is characterized using experiments and simulations. Conditional mean velocity
profiles during low-drag events closely approach that of a recently discovered nonlinear trav-
eling wave solution; both profiles are near the so-called maximum drag reduction profile, a
general feature of turbulent flow of liquids containing polymer additives (despite the fact that
all results presented are for Newtonian fluids only). Similarities between temporal intermit-
tency in small domains and spatiotemporal intermittency in large domains is thereby found.
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I. INTRODUCTION

In the near-wall region of wall-bounded shear flows, particularly the buffer layer, turbulent
flows are known to be dominated by coherent structures [1] comprised of quasistreamwise vortices
staggered in the flow direction. Indeed, these near-wall structures export turbulent kinetic energy to
the rest of the flow [2]. A number of related qualitative arguments have been put forward to explain
the origin of this self-sustaining near-wall structure [2–5].

The understanding of shear flow turbulence at transitional Reynolds numbers has been greatly
advanced by recent applications of dynamical systems theory to turbulent flow [6]. In particular, the
discovery of three-dimensional fully nonlinear traveling wave (TW) solutions to the Navier-Stokes
equations has enabled a priori study of self-sustained near-wall coherent structures that resemble in
many ways transient structures observed in fully turbulent flows [7]. These solutions, also denoted
as exact coherent states (ECS) [8], are steady states in a reference frame translating at a constant
streamwise speed. They have been found numerically in all canonical wall-bounded geometries for
turbulent flows [8–21]. These solutions arise in pairs at a saddle-node bifurcation point at a particular
Reynolds number. The upper-branch solution of each pair has larger velocity fluctuations and higher
drag compared to the lower-branch solution. They have a spatial structure of low-speed streaks
that are wavy in the streamwise direction, straddled by streamwise vortices, and thus resemble the
recurrent coherent structures in near-wall turbulence. As traveling waves these solutions are spatially
periodic in the streamwise and spanwise flow directions and the spatial wavelengths at which they
first appear are (1) close to observed correlation lengths in near-wall turbulence and (2) consistent
with the smallest domain sizes (minimal channels) in which turbulence is found in direct numerical
simulations (DNS) [3,22].
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Very recently, an ECS family with particularly intriguing behavior has been discovered in the
plane channel flow geometry [23]. The mean velocity profile of the upper branch solution of the
solution family denoted P4 in Ref. [23] closely approaches the classical (von Kármán) profile,
while the lower branch velocity profile approaches a form generally associated with turbulence in
viscoelastic polymer solutions, the so-called Virk profile [24]. This profile is a good approximation
of experimental and computational observations in the so-called maximum drag reduction (MDR)
regime and is insensitive to Reynolds number or polymer properties. It is the most general aspect
of the drag reduction phenomenon. Other properties such as Reynolds shear stress level are not
as general [25]. This ECS result adds to the set of observations in which mean velocity profiles
close to the Virk profile are found in Newtonian flow [26–32], something that we also observe here.
Notwithstanding this intriguing similarity to MDR, we emphasize that all results reported in the
present work are for Newtonian fluid flows.

Furthermore, turbulent trajectories in the minimal geometry spend most of their time near the
upper-branch solution, with occasional excursions toward the lower-branch solution [23]; similar
observations have been made in the Couette geometry [16]. This result clarifies earlier observations
[28,29,32,33] of active and hibernating phases of minimal channel turbulence, showing that these
correspond to time intervals where the trajectory is close to upper- and lower-branch traveling waves,
respectively. Returning briefly to possible connections to viscoelastic turbulence we note that at low
to moderate drag reduction, the hibernating phases increase in frequency while remaining similar in
structure as the degree of viscoelasticity increases [32,34].

In this paper we present experimental observations of spatiotemporally local hibernating turbu-
lence intervals in low-Reynolds-number Newtonian turbulent channel flow, the latter of which are
characterized using conditional sampling techniques. These experimental findings are complemented
by direct numerical simulation (DNS) results and comparisons with the recently discovered P4
family of ECS solutions discussed above [23]. The similarities between them observed here suggest
that there is a significant connection, as yet not fully understood, between temporal intermittency
in minimal domains and spatiotemporal intermittency in large domains. Together these results
corroborate the dynamical picture of active and hibernating intervals, providing a connection between
classical wall-bounded turbulence and ECS. Furthermore, both the low-drag hibernation intervals
and the ECS solutions have a mean velocity profile close to that observed at MDR, thus pointing
towards an improved understanding of the nearly universal behavior of this flow regime. Finally, they
potentially open routes to turbulence control based on manipulation of nonlinear traveling waves.

II. EXPERIMENTAL AND NUMERICAL SETUP

The experiments were conducted in a rectangular duct with a width (w) of 298 mm, half-height
(h) of 12.5 mm, and length of 7.45 m. The fluid used throughout this study was Newtonian, a 60:40%
by weight glycerine-water mixture. The flow was allowed to develop naturally, without the use of a
turbulent trip, into a fully developed turbulent regime over the entire length of the duct, a distance of
596h. Wall-shear stresses were measured by a Dantec 55R46 flush-mounted miniaturized hot-film
probe powered by a StreamLine Pro velocimetry system. The probe had a sensing element which
was 0.2 mm (x+ = xuτ /ν = 1.38) long and 0.75 mm (z+ = 5.19) wide and was flush mounted on
the lower wall of the channel at x/h = 488, z/w = 0.167. Here, x and z denotes the streamwise
and spanwise directions measured from inlet and the channel centerline, respectively; uτ is the
friction velocity at Reτ = uτh/ν = 85 (Re = 2400), and ν is the kinematic viscosity. The hot-film
probe was calibrated in the channel flow facility by a Druck LPX-9381 low-differential pressure
transducer. The pressure transducer estimated the streamwise pressure gradient, from which the mean
wall shear stress could be determined, by measuring the difference in pressure across pressure taps
installed on the lower wall of the stainless steel modules of the rectangular duct, over a distance of 2.05
m (x/h= 164). The pressure transducer had a working range of 50 mbar, was accurate to ±0.05 mbar,
and was periodically calibrated against an MKS Baratron differential pressure transducer (1000 torr
fsd). During the course of an experiment, the ambient fluid temperature would rise by typically 1 ◦C
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due to the viscous heating of the pump. Since hot-film velocimetry is sensitive to temperature drift, the
hot-film probe was calibrated before and after each experiment. The temperature during each experi-
ment was carefully monitored by a platinum resistance thermometer (PRT) so that the voltage output
from the hot-film probe could be linearly interpolated between the two calibration curves accordingly.
The PRT was powered by an Agilent 34970A switch unit, which provided temperature readings with
a resolution of 0.01 ◦C to an accuracy of ±0.09 ◦C. Single-point measurements of the streamwise
(U ) velocity were acquired at various wall-normal distances with a Dantec FibreFlow laser Doppler
velocimetry (LDV) system, 12.5 mm downstream of the flush-mounted wall shear stress probe. The
specially designed optical head on the LDV system provided a focal length of 160 mm and focused
the laser beams to create a measurement volume with diameter of 0.025 mm (x+ = 0.17) and length
of 0.1 mm (z+ = 0.69). Calibration experiments suggest that the LDV has an accuracy of about
1–2% in the mean velocity. The intersecting laser beams were traversed in the wall-normal direction
through the channel flow via a custom-built traverse system, facilitating a spatial resolution of 1 μm
with accuracy of 3 μm. In a separate set of experiments, all three velocity components were measured
simultaneously in the spanwise-wall-normal plane of the flow with a high-speed stereoscopic particle
image velocimetry (SPIV) system, which provides global velocity measurements to an accuracy
of typically 3–5% [35]. The SPIV measurements were taken directly above the location of the
flush-mounted wall shear stress probe. The numerical simulations were performed in an extended
domain using the DNS code CHANNELFLOW [36], which solves the Navier-Stokes equations in the
plane Poiseuille geometry using a Fourier-Chebyshev spatial discretization [37].

III. RESULTS AND DISCUSSION

To experimentally detect low-drag events we monitor the instantaneous wall shear stress at a
point on the channel wall with a hot-film probe while simultaneously measuring the streamwise
velocity at discrete distances above the wall with LDV or the whole flow field using SPIV. Shown
in Fig. 1(a) are conditionally sampled low instantaneous wall shear stress events (thin gray lines)
measured at Reτ = 100. The laminar equivalent Reynolds number is Re = Uch/ν and Reτ = √

2Re

(where Uc is the laminar centerline velocity for the same pressure drop). Curves are shifted so that
the instant when the wall shear stress falls 10% below the mean (dashed black line) corresponds
to t∗ = tuτ /h = 0. Also shown (black line) is the ensemble average over all the instantaneous low
wall shear stress events, and examples of instantaneous low-drag events with a duration t∗d ≈ 4 (blue
line) and t∗d ≈ 5 (red line). Our selected criteria for hibernation was that the low stress event must
last for a certain minimum duration (data shown here for t∗d > 3 but selecting t∗d > 2.5 or 3.5 gives
essentially identical results). The distribution of the low stress events as a function of t∗d is shown
in Fig. 1(b). Here, events with duration t∗d > 5 are detected, albeit infrequently, and are a function
of Reynolds number. On average the hibernating wall shear stress falls to a plateau in the interval
t∗ = 0.7–2.8 and is preceded for −0.8 < t∗ < 0 by a brief interval of higher than average wall shear
stress. These characteristics are observed at a range of Reynolds number and excellent qualitative
agreement is found between the experiments and DNS in a large flow domain. Figure 1(c) shows
that the DNS captures the essential features observed experimentally but slightly underpredicts the
decrease in wall shear stress during a hibernating event. We attribute this small discrepancy to the
inability to capture with DNS the boundary conditions and very large domain size of the experiment.

A universal feature of near-wall turbulent flows is a logarithmic dependence of the mean
streamwise velocity (U+ = U/uτ ) with increasing distance from the wall (y+ = yuτ /ν). In
Newtonian fluid flow, the mean streamwise velocity collapses to the von Kármán log law. In highly
drag-reducing polymer solution flows, the mean streamwise velocity collapses to the so-called MDR
asymptote [24,33]. In Fig. 2 we illustrate that the velocity field during these hibernating events in
Newtonian turbulent channel flow for 70 < Reτ < 100 essentially collapses to an MDR-like state
that has hitherto been recognised experimentally only upon addition of drag-reducing additives to
the flow. Open symbols in Fig. 2 are the usual ensemble-averaged streamwise velocity values, which
fall onto the von Kármán log law (blue dotted line) once a sufficiently high Reynolds number is
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FIG. 1. (a) Example of instantaneous (thin gray lines) and ensemble-averaged (thick black line)
experimental wall shear stress during intervals of hibernating turbulence at Reτ = 100 (Re = 5000). The thick
blue and red lines highlight instantaneous low-drag events with durations of t∗

d ≈ 4 and t∗
d ≈ 5, respectively. The

mean wall shear stress is shown by the black dashed line. The inset in panel (a) shows the instantaneous channel
centerline velocity at Reτ = 100 (Re = 5000) with a hibernating turbulence interval beginning at t∗ = 0. The
black dashed line shows the equivalent laminar centerline velocity, indicating that the flow does not relaminarize;
this time series is representative for all Reynolds numbers studied. (b) The distribution of experimental low
wall shear stress events as a function of t∗

d at Reτ = 100 (Re = 5000) and (c) the ensemble-averaged wall shear
stress during hibernating turbulence at Reτ = 70 (Re = 2450) (black line), Reτ = 85 (Re = 3600) (blue line),
Reτ = 100 (Re = 5000) (red line), and a DNS at Reτ = 85 (Re = 3600) (green line).

achieved, and are entirely consistent, even for higher-order turbulence statistics (not shown), with
previous experimental results at higher Re [38]. The closed symbols show the ensemble-averaged
streamwise velocity measured during intervals of hibernation, averaged over the plateau region
t∗ = 0.7–2.8 and scaled with the ensemble-averaged wall shear stress determined during the same
time interval for LDV and the instantaneous wall shear stress for SPIV. These experimental data
collapse very well to an MDR-like asymptote (in fact well within the uncertainty in the original data
analysis that led to the MDR asymptote [39]: See the red dashed curve, indicating the lower end of
the 95% confidence interval to the MDR asymptote. This curve is more representative of data at low
y+ than is the canonical MDR log law shown as the solid red curve [33,39]); the uncertainty bars for
the LDV data represent the spread of streamwise velocity data within each conditionally sampled
ensemble average. Excellent agreement is also observed between the LDV and SPIV data sets. The
conditionally sampled DNS velocity profile at Reτ = 85 (Re = 3600) is in good agreement with
the experimental data until y+ ≈ 30 after which it drops off slightly earlier from the MDR slope.
Hence our low-Re data supports the hypothesis, certainly in terms of mean values, that the MDR
and classical log laws represent an envelope of realizable dynamical turbulent states.

We now compare our results with the above-mentioned P4 ECS family in the minimal channel
flow geometry [23], whose features are closely connected to the observations described above.
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FIG. 2. Mean streamwise velocity scaled with mean wall shear stress (open symbols) and conditionally
sampled ensemble-averaged streamwise velocity (hibernating turbulence data − closed symbols) scaled with
conditionally sampled ensemble-averaged (0.7 < t∗ < 2.8) hibernating (low) wall shear stress: Reτ = 70 (Re =
2450) (�,�), Reτ = 85 (Re = 3600) (◦,•), Reτ = 100 (Re = 5000) (�,�), DNS at Reτ = 85 (Re = 3600)
(�,�), and SPIV at Reτ = 85 (Re = 3600) (♦,�). Nonlinear TW solutions from Ref. [23] at Reτ = 85
(Re = 3600): lower branch (blue solid line) and upper branch (black solid line), and at Reτ = 100 (Re = 5000):
lower branch (blue dashed line) and upper branch (black dashed line). The black dotted line is the viscous
sublayer profile: U+ = y+, blue dotted line is the von Kármán log law U+ = 2.44lny+ + 5, and the red solid
line is canonical MDR log law: U+ = 11.7lny+ − 17. The red dashed line shows the lower 95% confidence
interval to the MDR asymptote [33,39]. The lower right inset shows streamwise velocity fluctuations u′+.
Symbols are as in the main figure. The upper left inset shows the proportion of time spent in hibernation (th)
vs Reτ : individual experimental runs (•), average number of events at Reτ = 70, 85, 100, and 130 (•) and a
(black) line to guide the eye.

Figure 2 includes average streamwise velocity profiles (with averaging over the full spatial periods
in x and z) for the high-drag and low-drag branches of this family at both Reτ = 85 (Re = 3600)
and 100 (Re = 5000). The higher-drag (lower bulk velocity) branches, in black, called upper-branch
solutions, have a bulk velocity that closely approaches that of active turbulence and the classical von
Kármán log law, while the lower-branch solutions in blue bound the hibernation data and closely
approach the Virk MDR profile.

The lower right inset in Fig. 2 shows u′+ vs y+ for the experimental and DNS results above the
measurement point (i.e., at z+ = 0) along with results for the TWs. Individual hibernating events
correspond to low-speed streaks that pass near the measurement point—thus the averaging that
we do above the measurement point is essentially averaging over the width of a low-speed streak.
Hence, for comparison, fluctuations for the lower branch TW are averaged in z+ over the low-speed
streak region −30 < z+ < 30. The lower branch and the low-drag conditional results agree very
closely, and likewise for the upper branch results and the unconditional averages. Thus the agreement
between the experimental, DNS, and traveling wave results extends beyond the mean profiles.

Even at the transitonal Reynolds numbers studied here, turbulent channel flow enters states of
hibernation only on infrequent occasions, with the detection of hundreds of hibernation events
requiring several hours of sampling time. At the highest Re studied (Reτ = 130), the number of
hibernation events, although small, remains finite. The upper left inset in Fig. 2 shows the proportion
of time spent in hibernation (th) vs Reynolds number. Related observations of intermittent events with
low and high turbulence activity have also been made in DNS of transitional pipe flow [40]. Indeed,
the present results suggest that the quiescent regions arising during laminar-turbulent intermittency
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FIG. 3. Panels (a) and (b): Ensemble-averaged streamwise velocity, normalized by the time-averaged
friction velocity (uτ ) at Reτ = 85 (Re = 3600) during hibernating turbulence events (a) captured using SPIV
and (b) from DNS. The ensemble-average comprises 207 PIV snapshots acquired over four low-drag events
in (a) and 1302 DNS snapshots over 651 low-drag events in panel (b). The correlation coefficient between
the SPIV and DNS velocity magnitudes is 0.995. As part of the ensemble averaging the data are symmetrized
about z+ = 0, which is the detection point of the hibernating turbulence intervals. (c) Streamwise-averaged
streamwise velocity for the lower branch TW solution at Reτ = 85 (Re = 3600). The color bar maximum value
is limited to highlight near-wall dynamics (for the TW solution the centerline velocity is ≈34uτ ). Black arrows
show the averaged wall-normal and spanwise velocities. The white arrows have length 0.5uτ .

are spatially local approaches to lower branch traveling waves, at least in some parts of parameter
space. This idea is consistent with low Re minimal channel DNS results, which show temporal
intermittency between upper and lower branch states [23].

Although these forays into hibernation with a Newtonian fluid are rare, previous numerical
simulations suggest that the addition of viscoelasticity from a polymer additive suppresses the
dominant turbulent motions and entices the flow to enter a state of hibernation more frequently
[28,31]. On a time-averaged point of view, this yields a large reduction in turbulent skin-friction
drag, and causes the polymer solution’s streamwise velocity profile to approach the MDR asymptote.
As the level of viscoelasticity increases, it has a stabilizing or reinforcing effect on the dynamics,
leading to important changes in the turbulent fluctuations at MDR [33,34,41].

Finally, Figs. 3(a)–3(c) show conditional-sampled ensemble-averaged flow structures during
hibernation identified from experiments, DNS, and a lower branch ECS solution at Reτ = 85,
respectively (see time series incorporating hibernation intervals in Supplemental Movies 1, 2, and
3 [42]). The ensemble averages include snapshots over the whole duration of the low-drag event,
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i.e., at different points in time as the structure is moving through the measurement plane. In other
words, in the experiments and DNS there is an effective streamwise averaging so it is appropriate
to do the same with the traveling waves. Color indicates streamwise velocity while arrows denote
velocity in the z-y plane. We see that hibernating turbulence is characterized by a counter-rotating
streamwise vortex pair, which induces a low-speed and low-stress streak in the near-wall region of
the flow. Far from the wall the TW [Fig. 3(c)] remains coherent with only a very weak structure,
while the turbulent flows are less so, and thus have lower mean velocity. The vortex-pair structures
found in all three cases are in very good agreement, with very similar magnitudes for all velocity
components but slightly different positions for the streamwise vortex cores [(z+,y+) ≈ (34,33) for
the TW and (29,24) for both DNS and experiments].

IV. CONCLUSIONS

To conclude, we recapitulate the main results in context with other recent observations. In minimal
channels at transitional Reynolds number, turbulent trajectories display intermittent low-drag events
in which the turbulent trajectory moves toward the lower branch P4 exact coherent state identified
in Ref. [23]. This state has a mean velocity profile that is close to the MDR velocity profile observed
for polymer solutions [24]. The present work characterizes low-drag events in extended domains,
also at low Re, using both experiments and computations, showing that in terms of mean profiles,
streamwise fluctuations, and structure of the streamwise velocity fluctuations, these events also
display close similarities in the region y+ � 30 with the P4 ECS found in the minimal domain.
These similarities suggest that there is a significant connection that is not yet understood between
temporal intermittency in minimal domains and spatiotemporal intermittency in extended domains,
and that this connection is mediated by underlying ECS in the state space of the Navier-Stokes
equations. Furthermore, the similarity of the mean velocity profile during the low-drag events to the
MDR profile in polymer solutions is consistent with past work [29,32] in minimal channels that at
low to moderate drag reduction levels the main effect of polymers is to increase the frequency of
low-drag events while leaving their structure virtually unchanged. These observations form a basis
for future work in understanding laminar-turbulence intermittency, drag reduction by polymers, and
possibly in flow control for drag reduction.
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