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Flow analysis of the low Reynolds number swimmer C. elegans
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Swimming cells and microorganisms are a critical component of many biological
processes. In order to better interpret experimental studies of low Reynolds number
swimming, we combine experimental and numerical methods to perform an analysis of
the flow field around the swimming nematode Caenorhabditis elegans. We first use image
processing and particle tracking velocimetry to extract the body shape, kinematics, and
flow fields around the nematode. We then construct a three-dimensional model using the
experimental swimming kinematics and employ a boundary element method to simulate
flow fields, obtaining very good quantitative agreement with experiment. We use this
numerical model to show that calculation of flow shear rates using purely planar data results
in significant underestimates of the true three-dimensional value. Applying symmetry
arguments, validated against numerics, we demonstrate that the out-of-plane contribution
can be accounted for via incompressibility and therefore simply calculated from particle
tracking velocimetry. Our results show how fundamental fluid mechanics considerations
may be used to improve the accuracy of measurements in biofluiddynamics.
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I. INTRODUCTION

The study of microorganism and cell swimming has numerous applications in both industry and
medicine, for instance, in the context of mammalian reproduction [1,2], biofuel production [3],
and the design of artificial biomedical systems [4]. Many of these swimmers, such as mammalian
spermatozoa, self-propel by generating traveling undulations along their body [5,6]. One such
undulatory swimmer is the biological model organism Caenorhabditis elegans, a multicellular,
free-living slender nematode worm found in soil environments.

The genetics and physiology of this nematode are well-studied. Its genome has been completely
sequenced [7], and a complete cell lineage has been established [8]. The neuromuscular system
of C. elegans controls its body undulations which allow it to swim, dig, and crawl through
diverse environments. The wealth of available biological knowledge thus makes C. elegans an
ideal candidate for investigations that combine aspects of biology, biomechanics, and the fluid
mechanics of propulsion.

Recently C. elegans has been used extensively as a model system for experimental studies of
propulsion, particularly at low Reynolds number, due to its simple planar swimming gait and size
[9–15]. The nematode generates planar bending waves through contractions of its ventral and dorsal
muscles, producing a quasi-two-dimensional (2D) traveling sine wave along its body [10,16,17]. At
around 1 mm in length and 75 μm in diameter, C. elegans is significantly larger than the majority of
low-Re undulatory swimmers, enabling high-resolution reconstruction and analysis of planar flow
fields from particle tracking data. The resulting flow fields can be used to probe properties of both the
swimmer and fluid, providing new insights into the physics of undulatory propulsion [11–15,18–20].
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FIG. 1. Instantaneous flow streamlines generated by C. elegans, computed numerically from experimental
waveform data. The streamlines show a complex, three-dimensional flow field. Color bar: speed mm/s.

However, despite exhibiting a planar swimming stroke, the flow around C. elegans has a complex
three-dimensional structure (Fig. 1) which is difficult to capture experimentally. Many useful flow
properties, such as the shear rate, are dependent upon out-of-plane flow contributions not measured
by planar velocimetry data; in essence, one measures a 2D slice of a three-dimensional (3D) field.
This limits, for example, our ability to accurately determine drag and propulsion forces experienced
and exerted by the swimming nematode. In this work, we show that numerical and theoretical fluid
mechanics techniques can be used to improve the processing and analysis of these experimental
flow fields.

We first obtain detailed (experimental) imaging data on the shape and kinematics of a swimming
C. elegans, together with particle-tracking data for flow field reconstruction. We then develop a nu-
merical boundary element model of the nematode, with geometry and boundary conditions specified
directly from the experiments, and use this model to improve the processing of particle tracking
velocimetry results. Using simulated flow fields, we examine the spatial distribution of flow shear rate,
an important quantity related to power dissipation and relevant for studies on locomotion in complex,
shear-rate-dependent fluids. We show that using purely planar data significantly underestimates the
true value of the shear rate throughout the field. We then use symmetry arguments validated against
numerics to show that the 2D measurements can be corrected for out-of-plane effects by applying the
incompressibility constraint. Our work shows that fundamental fluid mechanics can be used alongside
experimental measurements to improve our understanding of the biomechanics of locomotion.

II. METHODS

In order to compare the results of the numerical model directly with our experimental data, we use
the same swimming movie to construct experimental velocity fields and to obtain the motion of the
nematode, which provides the nematode’s geometry and kinematics for the numerical simulations.

Particle tracking procedures around swimmers entail a delicate balance between maximizing the
quantity of statistics from which to construct a velocity field and the precision of those measurements.
For C. elegans, one needs enough statistics to construct a smooth, differentiable velocity field, yet
the most precise particle tracking data are located strictly at the nematode z midplane (direction
across the depth of field). Additionally, due to the fact that our microscope objectives have a depth
of field of approximately 20 μm, our experiments represent a depth-averaged 2D slice of a 3D flow
field over this thickness.

In this paper, simulation provides benchmark flow fields, allowing greater selectivity for our
particle identification and tracking algorithms. This selection ensures that we only choose particles
close to the z midplane, shifting the balance from maximizing the number of statistics to maximizing
the precision of our measurements. In regions where we have limited data, we use gentle maximum
value and bilateral filtering algorithms to smooth our experimental results so that they can be
differentiated.
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FIG. 2. (a) Image of the nematode C. elegans. The yellow line shows the “skeletonized” body, and the red
arrows denote the velocities of each body segment. The blue arrow indicates the swimming direction. (b) Three-
dimensional mesh constructed from the experimentally obtained body shape and kinematics of the nematode
for the same snapshot. (c) Experimentally measured streamlines for one snapshot of swimming C. elegans,
produced using particle tracking velocimetry techniques. (d) Flow field produced using the reconstructed 3D
mesh and a numerical model for the same snapshot. Color bar: speed mm/s.

A. Data acquisition and processing

Experiments with C. elegans are performed in Newtonian, water-like (μ ≈ 1 mPa · s and
ρ ≈ 103 kg/m3) M9 buffer solutions [7] in a sealed fluid chamber 20 mm in diameter and 1 mm in
depth. Images are captured using standard bright-field microscopy (Infinity K2/SC microscope with
a CF-4 objective and an IO Industries Flare M180 camera at 150 frames per second). The depth of
focus of the objective is approximately 20 μm, and we ensure that the focal plane is in the middle
of the chamber in order to minimize wall effects.

The nematode, which is 1 mm in length and 75 μm in diameter, beats primarily in the observation
plane; the out-of-plane beating amplitude is less than 6% of its in-plane motion, and therefore
confinement effects are minimal [21]. Given that the flow decay is expected to be exponential,
we also anticipate negligible influence of the chamber boundaries on the flow field (see Fig. 4)
[22]. All data presented here pertain to nematodes swimming at the center of the fluidic chamber,
and out-of-plane recordings are discarded to avoid nematode-wall interactions and to minimize
three-dimensional flow effects.

In-house software is used to track the swimming motion of C. elegans. The position of the
nematode’s centroid is differentiated with respect to time to obtain swimming speed (U ≈ 0.3 mm/s),
the head position is used to compute an average amplitude (A ≈ 0.25 mm), and a comparison of
periodic body shapes is used to estimate the nematode’s beating frequency (f ≈ 2 Hz). Beyond
average kinematic properties, the nematode body contour is automatically extracted for each image
frame, skeletonized [yellow line in Fig. 2(a)], and divided into segments that are tracked to obtain
local body velocities. Sample velocity vectors of the body are shown in Fig. 2(a) in red. This body
shape and associated velocities are used to create an approximate 3D model of the nematode and its
surface velocities, as illustrated in Fig. 2(b).

Particle tracking velocimetry is used to measure the velocity fields generated by swimming
C. elegans. In short, we seed the chamber with 3 μm polystyrene tracer particles [Fig. 2(a)] that are
tracked with in-house algorithms. We track the flow for approximately eight beat cycles, and divide
each cycle into approximately 50 phases. Because the nematode’s swimming stroke is highly periodic
(∼2 Hz) [21], we can construct a “master” swimming cycle using a least-squares fit of the nematode’s
body shapes. This phase-averaging technique considerably improves the spatial resolution of the
experimental velocity fields. In order to estimate the flow field around the nematode’s body more
accurately, we include velocities within the contour of the swimmer-fluid interface, assuming a
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no-slip boundary condition. Finally, the data points for each phase, including tracking plus boundary
conditions, are averaged into gridded spaces of size 13.2 μm. The resulting experimental streamlines
are illustrated in Fig. 2(c) for one particular phase.

B. Numerical model

In the experimental setup, C. elegans moves through a water-like Newtonian buffer solution [7].
Thus, the characteristic Reynolds number for the flow, Re = ρUL/μ, is less than unity (Re � 0.3).
As such, the dynamics of the flow driven by the swimming nematode is well-modeled by the Stokes
flow equations

μ∇2u − ∇p = 0, ∇ · u = 0, (1)

where u is the fluid velocity and p the dynamic pressure.
In order to solve Eqs. (1) in the fluid surrounding the nematode, we employ the regularized

stokeslet boundary element method [23,24]. The velocity throughout the domain is given by integrals
of stokeslets S and stresslets T over the nematode’s surface, S

λuj (x0) =
∫

S

Sε
ij (x,x0)fi(x) − ui(x)T ε

ijk(x,x0)nk(x) dSx, (2)

for unknown surface tractions, f, and surface velocity u specified from experimental data.
Note that in the majority of implementations of the method of regularized stokeslets, the stresslet

“double layer” ui(x)T ε
ijk(x,x0)nk(x) term in Eq. (2) is eliminated, and the constant λ = 1 [25].

However the surface tractions solved for in the simplified “single layer” formulation are a modified
force density dependent upon a fictitious “complementary” flow inside the worm. In order to provide
a general method that might in the future be used to examine the energetics of locomotion and force
generation inside the worm, the full formulation is used.

In our case, the constant λ is given at leading order by λ ≈ 1/2 + κε/4, where κ is the mean
local curvature of the surface at x0 [26]. We use the regularized form of the stokeslet Sε

ij and stresslet
T ε

ijk [23],

Sε
ij (x,x0) = δij (r2 + 2ε2) + rirj

r3
ε

, (3a)

T ε
ijk(x,x0) = −6rirj rk

r5
ε

− 3ε2(riδjk + rj δik + rkδij )

r5
ε

, (3b)

derived from a regularization of the dirac delta function of the form

φε(x − x0) = 15ε4

8πr7
ε

, r2
ε = r2 + ε2, (4)

where ri = (x − x0)i ,r = |x − x0| and ε � 1 (with ε = 10−4L in our simulations). The implemen-
tation uses routines adapted from BEMLIB [27] and the authors’ boundary element library RegBEM
Phoretic [28], which employs a linear panel representation of the unknown surface tractions fi(x)
with adaptive Fekete quadrature for near-singular element integrals [26].

The nematode geometry is meshed with piecewise-quadratic triangular elements [Fig. 2(b)] using
a custom routine which extrudes a circle of radius a(s) along the experimentally-captured nematode
centerline and caps the head and tail of the worm with a section of a sphere. The radius a(s) is given
as a function of arc length s by fitting a quadratic through the nematode’s radius at the midpoint a1

and the head a2, so that for a nematode of length L we have

a(s) = 4(a2 − a1)

L2

(
s − L

2

)2

+ a1. (5)
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FIG. 3. Spatial distribution of the (a) experimentally-measured x-component u(x,y), (b) simulated x-
component, (c) experimentally-measured y-component v(x,y), and (d) simulated y-component. Experimental
measurements demonstrate good agreement with simulation. Color bars: component velocity magnitude mm/s.

The velocity boundary condition (no-slip) is then imposed on the mesh surface directly from
experimental data via time-centered finite differences of the nematode centerline.

III. RESULTS AND DISCUSSION

A. Comparison of experiments and simulations

Figure 2 shows the streamlines computed experimentally using particle tracking velocimetry (c)
and numerically using simulated flow fields (d). These streamlines show strong agreement, with
both methods capturing head and tail vortices of similar shape and size. A visual comparison of the
x- and y-components of the velocity field, u and v, respectively, again shows very good agreement
between experiment and simulation (Fig. 3). In order to quantify this comparison, Figs. 4(a)–4(c)
shows the distributions of velocity components u and v and speed |u| for experimental and simulated
fields. These plots show that the experiments capture the majority of velocities, with the exception of
the highest velocities corresponding to points closest to the nematode, where it is difficult to obtain
accurate particle tracks. Experiments also predict a larger proportion of zero velocities, which is
again associated with the difficulty of extracting smooth, small, but nonzero, velocities from noisy
particle data.

Finally, we calculate the spatial decay of the flow speed away from the body of the swimmer. For
an undulatory swimmer, we expect to observe an exponential flow decay [22],

|u|
|ub| = exp

(
−2πr

αL

)
, (6)
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FIG. 4. Comparison of flow structure between experiment and simulation: (a) distribution of u,
(b) distribution of v, (c) distribution of speed |u|, and (d) decay rate |u|/|ub|.
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where |u| is a velocity measurement, |ub| is the speed of the swimmer’s body, assuming a no-slip
boundary condition, r is the normal distance from each velocity measurement to the swimmer’s
body, L is a characteristic length scale of the swimmer (we take L ≈ 1 mm), and α is an exponential
parameter that specifies the rate of decay. We find that the simulations and experiments are in good
agreement with αexp = 0.74 and αsim = 0.85, showing a difference of just 13% in the exponent
(Fig. 4, last panel).

B. Shear rate calculation and correction

A particularly salient characteristic of the flow field is the spatial ditribution of shear rate,
γ̇ = √

ε(u) : ε(u)/2 with ε(u) = ∇u + ∇uT , which is important for calculation of power dissipation
and the energetics of locomotion, and is also relevant for studies on locomotion in complex, (shear)
rate-dependent fluids. Since the beat-pattern of the nematode is planar, there is no flow in the z

direction in the swimmer midplane. However, the z derivatives of the midplane velocity will make,
in general, nontrivial contributions to the shear rate. Writing the shear rate in 2D and 3D explicitly,
we see

γ̇2D = [
2u2

x + (uy + vx)2 + 2v2
y

]1/2
, (7a)

γ̇3D = [
2u2

x + (uy + vx)2 + 2v2
y + 2w2

z + (uz + wx)2 + (vz + wy)2]1/2
, (7b)

where u,v,w are the x,y,z components of the velocity field, and subscripts denote derivative
components.

Because of the additional terms in the 3D formula, we expect that calculation of the shear rate
from 2D particle tracking flow fields will likely result in a systematic underestimate of the true 3D
value. Figure 5(a) shows that this is indeed the case; the spatial distribution of the relative percentage
error in the simulated shear rate calculated with the 2D formula (7a) compared with the true 3D
value spatial distribution of the shear rate as calculated by the 3D (7b) is significant, even reasonably
far from the worm, and is around 30% close to the worm. Thus, we see that we have significant
errors throughout the field, but particularly close to the worm where calculations of shear rate are of
particular interest.

We wish to correct for this error without resorting to Boundary Element calculations and therefore
require estimates of the unknown quantities in the 3D formula (7b). Since the worm kinematics are
planar, we have the symmetry z → −z, and so there is no z flow in the midplane and the quantities

FIG. 5. Shear rate error, calculation, and correction: (a) The percentage relative error in the shear rate as
calculated using the 2D formula (7a) for simulated data, showing large errors throughout. (b)–(d) Shear rate
field for (b) planar 2D experiments calculated with the 2D formula (7a), (c) 3D simulation calculated with the
full formula (7b), and (d) corrected “3D” experiments calculated with the corrected formula (9). (e) Distribution
of shear rates for planar experiments, 3D simulation, and corrected experiments. Note the marked improvement
in similarity between shear rate distribution for the corrected experiments and that of the full 3D simulation.
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wx and wy are zero. Furthermore, the quantities uz and vz are also zero by this symmetry. These
observations are confirmed by our numerical simulation, which calculates the above quantities to
be zero within numerical error. However, the z-component of the velocity w changes sign through
the midplane, and thus its z derivative wz makes a significant contribution to the shear rate. The 3D
formula (7b) can thus be simplified,

γ̇pl = [
2u2

x + (uy + vx)2 + 2v2
y + 2w2

z

]1/2
. (8)

Since the flow is incompressible, we have ∇ · u = 0, so that wz = −(ux + vy), giving the final
formula

γ̇pl = [
2u2

x + 2v2
y + (uy + vx)2 + 2(ux + vy)2]1/2

, (9)

purely in terms of components obtainable via planar particle tracking. Applying the adjusted formula
(9) to our numerical data, the error is eliminated to within 0.01% which is attributable to the accuracy
of our numerical scheme.

The principal advantage of this approach is that it can be applied in just as simple a manner
to incompressible non-Newtonian flows, such as shear-thinning and viscoelastic fluids. Such fluids
have complex non-Newtonian constitutive laws and do not readily admit simple three-dimensional
simulation.

We now directly compute the 2D (7a) and the estimated 3D (9) shear rate field for our experimental
data [Fig. 5(b)]. Figure 5 shows a comparison between the “corrected” 3D shear rate field from
experiments and the 3D shear rate field from simulations (c,d). We find the corrected field from
experiments and the simulated 3D field have a strikingly similar structure and an RMS error of
only 14%, compared to an RMS error of roughly 20% before the correction was applied. We note,
however, that there are discrepancies near the head and tail of the worm, where the simulations
suggest a slightly higher shear rate (≈10%); these regions of high velocity near the swimmer-fluid
interface are in locations where we expect particle tracking techniques to pose the greatest challenge.

To quantify the differences between the shear rate fields of the simulations and experiments, as
well as demonstrate the effectiveness of our correction factor for 2D data, we show the distribution
of shear rate for the raw experimental data, corrected experimental data, and the full 3D simulations
[Fig. 5(e)]. We find that a 2D calculation of shear rate using our experimental data underestimates
shear rate for values of γ̇ > 25 s−1 compared to the 3D simulated shear rate field. When the Eq. (9)
is applied to the experimental data, we capture the same shear rate distribution as the 3D simulations
up to γ̇ = 60 s−1. For larger shear rates (γ̇ > 60 s−1), we see only minor deviations from the
3D simulations, suggesting that the corrected shear rate field significantly improves our ability to
estimate the shear rate magnitude from planar data.

Since the shear rate is calculated using derivatives of the velocity field, small fluctuations or errors
in the velocity field are magnified substantially. Nonetheless, we obtain good agreement between
experiment and simulation, with errors being confined to regions of high shear rate; importantly,
we find that the application of the analytical correction factor greatly improves our estimate of the
maximum shear rate around the swimmer, which is particularly useful for swimming applications
with non-Newtonian fluids. These results indicate that the local shear rate near a low Reynolds number
swimmer is likely much higher than previously thought, due to contributions in the third dimension
that planar particle tracking velocimetry does not directly measure. As a result, non-Newtonian
effects as a result of locomotion in complex fluids may be much larger than anticipated. Examples
include the role of elastic stretching, measured by the Weissenberg number Wi = λEγ̇ where λE is the
longest relaxation time of the fluid, and shear-thinning viscosity behavior, measured by the Carreau
number Cr = λCrγ̇ where λCr is a time scale that represents the onset of shear-thinning effects; our
accounting for the shear rate in the third dimension therefore suggests that a planar experimental
measurement may under-represent non-Newtonian effects near the body of the swimmer.
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IV. CONCLUSION

In this work, we used theoretical and numerical techniques to improve the processing of
experimentally obtained particle tracking data, producing smooth velocity fields quantifying the
flow around the swimming nematode C. elegans in a Newtonian solution. We compared our results
with a 3D boundary element model of the nematode, generated directly from experimentally-obtained
nematode kinematics, finding good agreement between numerics and experiment.

We argued that when calculating derivative flow quantities, the only nontrivial out-of-plane
component is wz: the z derivative of the z flow. This observation was validated by simulation,
showing that excluding wz when calculating the flow shear rate results in a significant underestimate.
Accounting for the wz component via incompressibility from 2D data eliminated this error in the
numerics, and greatly improved the experimental data.

Our work illustrates how theory may be used to improve experimental measurements in biological
fluid mechanics and will be directly applicable to investigations of bio-locomotion in complex fluids.
Furthermore, we anticipate that as technology for the acquisition and processing of experimental
flow fields continues to improve, these out-of-plane effects will represent a hard barrier to increasing
the accuracy of results, making such techniques increasingly important.
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